AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Nest-like multilevel structured graphene oxide-on-polyacrylonitrile membranes for highly efficient filtration of ultrafine particles

State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
Show Author Information

Graphical Abstract

Abstract

Developing filtration media for particulate matter (PM) removal has been proven to be extremely challenging. Here, we report a facile and scalable strategy to fabricate a multi-level structured polyacrylonitrile/graphene oxide (PAN/GO) air filtration membrane to remove ultrafine particles in air by combining multi-jet electrospinning and physical bonding. Our approach allows the thin PAN nanofibers and two-dimensional GO nanosheets to form interpenetrating bonding structures on non-woven fabric and to assemble into stable filtration media. The resultant composite membranes can filtrate 300 nm particles with a high removal efficiency of 98.8%, a low pressure drop of 55 Pa, and a desirable quality factor of 0.34 Pa-1. This multi-level PAN/GO filter is expected to have wider applications not only for the ultrafine particle filtration and separation but also for the design of three-dimensional functional structures in the future.

References

[1]

Yang Y, Christakos G, Huang W, Lin C, Fu P, Mei Y. Uncertainty assessment of PM2.5 contamination mapping using spatiotemporal sequential indicator simulations and multi-temporal monitoring data. Sci Rep 2016;6: 24335.

[2]

Lee ES, Fung CC, Zhu Y. Evaluation of a high efficiency cabin air (HECA) filtration system for reducing particulate pollutants inside school buses. Environ Sci Technol 2015;49: 3358-65.

[3]

Apte JS, Marshall JD, Cohen AJ, Brauer M. Addressing global mortality from ambient PM2.5. Environ Sci Technol 2015;49: 8057-66.

[4]

Wang N, Si YS, Wang N, Sun G, Mohamed E-N, Salem S Al-Deya, Ding B. Multilevel structured polyacrylonitrile/silica nanofibrous membranes for high-performance air filtration. Separ Purif Technol 2014;126: 44-51.

[5]

Zhang S, Liu H, Yu J, Luo W, Ding B. Microwave structured polyamide-6 nanofiber/net membrane with embedded poly(m-phenylene isophthalamide) staple fibers for effective ultrafine particle filtration. J Mater Chem A 2016;4: 6149-57.

[6]

Barhate R, Ramakrishna S. Nanofibrous filtering media: filtration problems and solutions from tiny materials. J Membr Sci 2007;296: 1-8.

[7]

Wang N, Yang Y, Al-Deyab SS, El-Newehy M, Yu J, Ding B. Ultra-Light 3D Nanofibre-nets binary structured nylon 6−polyacrylonitrile membranes for efficient filtration of fine particulate matter. J Mater Chem A 2015;3: 23946-54.

[8]

Li X, Wang N, Fan G, Yu J, Gao J, Sun G, Ding B. Electreted polyetherimide-silica fibrous membranes for enhanced filtration of fine particles. J Colloid Interface Sci 2015;439: 12-20.

[9]

Tanaka S, DoiA, Nakatani N, Katayama Y, Miyake Y. Synthesis of ordered mesoporous carbon films, powders, and fibers by direct triblock-copolymertemplating method using an ethanol/water system. Carbon 2009;47: 2688-98.

[10]

Wang D, Sun G, Chiou BS. Controllable and environmentally benign fabrication process of thermoplastic nanofibers. Macromol Mater Eng 2007;292: 407-14.

[11]

Qiu P, Mao C. Biomimetic branched hollow fibers templated by selfassembled fibrous polyvinylpyrrolidone structures in aqueous solution. ACS Nano 2010;4: 1573-9.

[12]

Wang X, Li Y. Selected-control hydrothermal synthesis of a- and b-MnO2 single crystal nanowires. J Am Chem Soc 2002;124: 2880-1.

[13]

Podgórski A, Balazy A, Gradon L. Application of nano fibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem Eng Sci 2006;61: 6804-15.

[14]

Jeong S, Cho H, Han S, Won P, Lee H, Hong S, Yeo J, Kwon J, Ko SH. High efficiency, transparent, reusable, and active PM2.5 filters by hierarchical Ag nanowire percolation network. Nano Lett 2017;17(7): 4339-46.

[15]

Liu K, Xiao Z, Ma P, Chen J, Li M, Liu Q, Wang Y, Wang D. Large scale poly(vinyl alcohol-co-ethylene)/TiO2 hybrid nanofibrous filters with efficient fine particle filtration and repetitive-use performance. RSC Adv 2015;5(107): 87924-31.

[16]

Wang X, Ding B, Sun G, Wang M, Yu J. Electro-spinning/netting: a strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Prog Mater Sci 2013;58: 1173-243.

[17]

Wang X, Ding B, Yu J, Wang M. Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials. Nano Today 2011;6: 510-30.

[18]

Du J, Hsieh YL. Nanofibrous membranes from aqueous electrospinning of carboxymethyl chitosan. Nanotechnology 2008;19: 125707.

[19]

Zhang P, Wan D, Zhang Z, Wang G, Hu J, Shao G. RGO-functionalized polymer nanofibrous membrane with exceptional surface activity and ultra-low airflow resistance for PM2.5 filtration. Environ Sci: Nano 2018;5(8): 1813-20.

[20]

Zuo F, Zhang S, Liu H, Fong H, Yin X, Yu J, Ding B. Free-standing polyurethane nanofiber/nets air filters for effective PM capture. Small 2017;13(46).

[21]

Nie G, Li Z, Lu X, Lei J, Zhang C, Wang C. Fabrication of polyacrylonitrile/CuS composite nanofibers and their recycled application in catalysis for dye degradation. Appl Surf Sci 2013;284: 595-600.

[22]

Yun KM, Suryamas AB, Iskandar F, Bao L, Niinuma H, Okuyama K. Morphology optimization of polymer nanofiber for applications in aerosol particle filtration. Separ Purif Technol 2010;75: 340-5.

[23]

Zhang Q, Welch J, Park H, Wu CY, Sigmund W, Marijnissen JCM. Improvement in nanofiber filtration by multiple thin layers of nanofiber mats. J Aerosol Sci 2010;41: 230-6.

[24]

Cho D, Naydich A, Frey MW, Joo YL. Further improvement of air filtration efficiency of cellulose filters coated with nanofibers via inclusion of electrostatically active nanoparticles. Polymer 2013;54: 2364-72.

[25]

Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc 1958;80: 1339.

[26]

Shou D, Ye L, Fan J. Gas transport properties of electrospun polymer nanofibers. Polymer 2014;55: 3149-55.

[27]

Leung WW-F, Hung C-H, Yuen P-T. Effect of face velocity, nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on a substrate. Separ Purif Technol 2010;71: 30-7.

[28]

Przekop R, Gradon L. Effect of particle and fiber size on the morphology of deposits in fibrous filters. Int J Numer Methods Fluids 2014;76: 779-88.

[29]

Ostrowski SG, Van Bell CT, Winograd N, Ewing AG. Mass spectrometric imaging of highly curved membranes during Tetrahymena mating. Science 2004;305: 71-3.

[30]

Wang X, Si Y, Wang X, Yang J, Ding B, Chen L, Hu Z, Yu J. Tuning hierarchically aligned structures for high-strength PMIA-MWCNT hybrid nanofibers. Nanoscale 2013;5: 886-9.

[31]

Ren T, Si Y, Yang J, Ding B, Yang X, Hong F, Yu J. Polyacrylonitrile/polybenzoxazine-based Fe3O4@carbon nanofibers: hierarchical porous structure and magnetic adsorption propert. J Mater Chem 2012;22: 15919-27.

[32]

Cho BM, Nam YS, Cheon JY, Park WH. Residual charge and filtration efficiency of polycarbonate fibrous membranes prepared by electrospinning. J Appl Polym Sci 2015;132: 1-7.

[33]

Wang CS. Electrostatic forces in fibrous filtersda review. Powder Technol 2001;4: 118-66.

Journal of Materiomics
Pages 422-427
Cite this article:
Li J, Zhang D, Jiang X, et al. Nest-like multilevel structured graphene oxide-on-polyacrylonitrile membranes for highly efficient filtration of ultrafine particles. Journal of Materiomics, 2019, 5(3): 422-427. https://doi.org/10.1016/j.jmat.2019.02.011

96

Views

11

Crossref

N/A

Web of Science

14

Scopus

Altmetrics

Received: 02 January 2019
Revised: 25 February 2019
Accepted: 27 February 2019
Published: 28 February 2019
© 2019 The Chinese Ceramic Society. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return