Journal Home > Volume 3 , Issue 1

Antimicrobials are frequently used in both humans and animals for the treatment of bacterially-generated illnesses. Antibiotic usage has increased for more than 40% from last 15 years globally per day in both human populations and farm animals leading to the large-scale discharge of antibiotic residues into wastewater. Most antibiotics end up in sewer systems, either directly from industry or healthcare systems, or indirectly from humans and animals after being partially metabolized or broken down following consumption. To prevent additional antibiotic compound pollution, which eventually impacts on the spread of antibiotic resistance, it is crucial to remove antibiotic residues from wastewater. Antibiotic accumulation and antibiotic resistance genes cannot be effectively and efficiently eliminated by conventional sewage treatment plants. Because of their high energy requirements and operating costs, many of the available technologies are not feasible. However, the biosorption method, which uses low-cost biomass as the biosorbent, is an alternative technique to potentially address these problems. An extensive literature survey focusing on developments in the field was conducted using English language electronic databases, such as PubMed, Google Scholar, Pubag, Google books, and ResearchGate, to understand the relative value of the available antibiotic removal methods. The predominant techniques for eliminating antibiotic residues from wastewater were categorized and defined by example. The approaches were contrasted, and the benefits and drawbacks were highlighted. Additionally, we included a few antibiotics whose removal from aquatic environments has been the subject of extensive research. Lastly, a few representative publications were identified that provide specific information on the removal rates attained by each technique. This review provides evidence that biosorption of antibiotic residues from biological waste using natural biosorbent materials is an affordable and effective technique for eliminating antibiotic residues from wastewater.


menu
Abstract
Full text
Outline
About this article

Efficacy of new generation biosorbents for the sustainable treatment of antibiotic residues and antibiotic resistance genes from polluted waste effluent

Show Author's information Barkha MadhogariaaSangeeta Banerjeea,bAtreyee Kundua( )Prasanta Dhakb
Department of Microbiology, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
Department of Chemistry, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India

Highlights

• One approach to combat increasing antibiotic resistance and the resulting rise in mortality rates worldwide is to remediate or biodegrade antibiotics contaminating wastewater.

• Removal of antibiotic residues from sewage water using conventional technologies has provided satisfactory results but the disadvantages cannot be ignored.

• This review suggests an alternative method, known as biosorption that can remove contaminants through adsorption of biological waste.

• Biosorbents are natural substances that are effective, easy-to-use, and inexpensive.

• Genetically modified plants and microorganisms should be investigated that can enhance the biosorption efficiency over a short time period.

Abstract

Antimicrobials are frequently used in both humans and animals for the treatment of bacterially-generated illnesses. Antibiotic usage has increased for more than 40% from last 15 years globally per day in both human populations and farm animals leading to the large-scale discharge of antibiotic residues into wastewater. Most antibiotics end up in sewer systems, either directly from industry or healthcare systems, or indirectly from humans and animals after being partially metabolized or broken down following consumption. To prevent additional antibiotic compound pollution, which eventually impacts on the spread of antibiotic resistance, it is crucial to remove antibiotic residues from wastewater. Antibiotic accumulation and antibiotic resistance genes cannot be effectively and efficiently eliminated by conventional sewage treatment plants. Because of their high energy requirements and operating costs, many of the available technologies are not feasible. However, the biosorption method, which uses low-cost biomass as the biosorbent, is an alternative technique to potentially address these problems. An extensive literature survey focusing on developments in the field was conducted using English language electronic databases, such as PubMed, Google Scholar, Pubag, Google books, and ResearchGate, to understand the relative value of the available antibiotic removal methods. The predominant techniques for eliminating antibiotic residues from wastewater were categorized and defined by example. The approaches were contrasted, and the benefits and drawbacks were highlighted. Additionally, we included a few antibiotics whose removal from aquatic environments has been the subject of extensive research. Lastly, a few representative publications were identified that provide specific information on the removal rates attained by each technique. This review provides evidence that biosorption of antibiotic residues from biological waste using natural biosorbent materials is an affordable and effective technique for eliminating antibiotic residues from wastewater.

Keywords: Antibiotic resistance, Wastewater, Antibiotic pollutants, Remediation, Biosorption

References(165)

[1]

F.Z. Gao, L.Y. He, L.X. He, et al., Untreated swine wastes changed antibiotic resistance and microbial community in the soils and impacted abundances of antibiotic resistance genes in the vegetables, Sci. Total Environ. 741 (2020) 140482, doi: 10.1016/j.scitotenv.2020.140482.

[2]

N. Hedberg, I. Stenson, M. Nitz Pettersson, et al., Antibiotic use in Vietnamese fish and lobster sea cage farms; implications for coral reefs and human health, Aquaculture 495 (2018) 366–375, doi: 10.1016/j.aquaculture.2018.06.005.

[3]

J. Turnidge, Antibiotic use in animals: prejudices, perceptions and realities, J. Antimicrob. Chemother. 53 (1) (2004) 26–27, doi: 10.1093/jac/dkg493.

[4]

W. Witte, Ecological impact of antibiotic use in animals on different complex microflora: environment, RSC Adv. 14 (4) (2000) 321–325, doi: 10.1016/s0924-8579(00)00144-8.

[5]

L.H.M.L.M. Santos, M. Gros, S. Rodriguez-Mozaz, et al., Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals, Sci. Total Environ. 461-462 (2013) 302–316, doi: 10.1016/j.scitotenv.2013.04.077.

[6]

Q. Sui, X. Cao, S. Lu, et al., Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: a review, Emerg. Contam. 1 (1) (2015) 14–24, doi: 10.1016/j.emcon.2015.07.001.

[7]

R.P. Mouton, J. Hermans, A.M. Simoons-Smit, et al., Correlations between consumption of antibiotics and methicillin resistance in coagulase negative staphylococci, J. Antimicrob. Chemother. 26 (4) (1990) 573–583, doi: 10.1093/jac/26.4.573.

[8]

Y. Tian, S. Yao, L. Zhou, et al., Efficient removal of antibiotic-resistant bacteria and intracellular antibiotic resistance genes by heterogeneous activation of peroxymonosulfate on hierarchical macro-mesoporous Co3O4-SiO2 with enhanced photogenerated charges, J. Hazard. Mater. 430 (2022) 127414, doi: 10.1016/j.jhazmat.2021.127414.

[9]

M. Bacanlı, N. Başaran, Importance of antibiotic residues in animal food, Food Chem. Toxicol. 125 (2019) 462–466, doi: 10.1016/j.fct.2019.01.033.

[10]

X. Liu, S. Lu, W. Guo, et al., Antibiotics in the aquatic environments: a review of lakes, China, Sci. Total Environ. 627 (2018) 1195–1208, doi: 10.1016/j.scitotenv.2018.01.271.

[11]

Y. Shao, Y. Wang, Y. Yuan, et al., A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China, Sci. Total Environ. 798 (2021) 149205, doi: 10.1016/j.scitotenv.2021.149205.

[12]

T.T.H. Van, Z. Yidana, P.M. Smooker, et al., Antibiotic use in food animals worldwide, with a focus on Africa: pluses and minuses, J. Glob. Antimicrob. Resist. 20 (2020) 170–177, doi: 10.1016/j.jgar.2019.07.031.

[13]

Y. Hu, G.F. Gao, B. Zhu, The antibiotic resistome: gene flow in environments, animals and human beings, Front. Med. 11 (2) (2017) 161–168, doi: 10.1007/s11684-017-0531-x.

[14]

S. Liu, P. Wang, C. Wang, et al., Anthropogenic disturbances on antibiotic resistome along the Yarlung Tsangpo River on the Tibetan Plateau: ecological dissemination mechanisms of antibiotic resistance genes to bacterial pathogens, Water Res. 202 (2021) 117447, doi: 10.1016/j.watres.2021.117447.

[15]

S. Ghosh, T.M. LaPara, The effects of subtherapeutic antibiotic use in farm animals on the proliferation and persistence of antibiotic resistance among soil bacteria, ISME J. 1 (3) (2007) 191–203, doi: 10.1038/ismej.2007.31.

[16]

M. Girmatsion, A. Mahmud, B. Abraha, et al., Rapid detection of antibiotic residues in animal products using surface-enhanced Raman Spectroscopy: a review, Food Contr. 126 (2021) 108019, doi: 10.1016/j.foodcont.2021.108019.

[17]

B. Madhogaria, P. Bhowmik, A. Kundu, et al., Correlation between human gut microbiome and diseases, Infect. Med. 1 (3) (2022) 180–191, doi: 10.1016/j.imj.2022.08.004.

[18]

J. Xin, V.M. Yu, Hubbard-Lucey, et al., Immuno-oncology drug development goes global, Nat. Rev. Drug Discov. 18 (12) (2019) 899–900, doi: 10.1038/d41573-019-00167-9.

[19]

M. Minale, A. Guadie, Y. Li, et al., Enhanced removal of oxytetracycline antibiotics from water using manganese dioxide impregnated hydrogel composite: Adsorption behavior and oxidative degradation pathways, Chemosphere 280 (2021) 130926, doi: 10.1016/j.chemosphere.2021.130926.

[20]

S. Singh, V. Kumar, A.G. Anil, et al., Adsorption and detoxification of pharmaceutical compounds from wastewater using nanomaterials: a review on mechanism, kinetics, valorization and circular economy, J. Environ. Manage. 300 (2021) 113569, doi: 10.1016/j.jenvman.2021.113569.

[21]

F. Saremi, M.R. Miroliaei, M.S. Nejad, et al., Adsorption of tetracycline antibiotic from aqueous solutions onto vitamin B6-upgraded biochar derived from date palm leaves, J. Mol. Liq. 318 (2020) 114126, doi: 10.1016/j.molliq.2020.114126.

[22]

M.B. Ahmed, J.L. Zhou, H.H. Ngo, et al., Adsorptive removal of antibiotics from water and wastewater: progress and challenges, Sci. Total Environ. 532 (2015) 112–126, doi: 10.1016/j.scitotenv.2015.05.130.

[23]

S. Sengupta, M.K. Chattopadhyay, H.P. Grossart, The multifaceted roles of antibiotics and antibiotic resistance in nature, Front. Microbiol. 4 (2013) 47, doi: 10.3389/fmicb.2013.00047.

[24]

V.C. L, The antibiotic resistance crisis: part 1: causes and threats, P T. 40 (4) (2015) 277–283.

[25]

J.E. Fernandez, V. Perreten, S. Schwendener, The novel macrolide resistance genes mef(F) and msr(G) are located on a plasmid in Macrococcus canis and a transposon in Macrococcus caseolyticus, J. Antimicrob. Chemother. 76 (1) (2021) 48–54, doi: 10.1093/jac/dkaa405.

[26]

J. Basu, P. Giri, A. Kundu, et al., Isolation and characterization of 3rd Generation Cephalosporin Resistant Gram-positive bacteria from urban environmental soil of West Bengal, India, J. Mycopathol. Res. 60 (3) (2022) 395–399.

[27]

B.O. Oyedemi, E.M. Kotsia, P.D. Stapleton, et al., Capsaicin and gingerol analogues inhibit the growth of efflux-multidrug resistant bacteria and R-plasmids conjugal transfer, J. Ethnopharmacol. 245 (2019) 111871, doi: 10.1016/j.jep.2019.111871.

[28]

P. Bhowmik, B. Modi, P. Roy, et al., Strategies to combat Gram-negative bacterial resistance to conventional antibacterial drugs: a review, Osong. Public Health Res. Perspect. 14 (5) (2023) 333–346, doi: 10.24171/j.phrp.2022.0323.

[29]
S. Schwarz, A. Cloeckaert, M.C. Roberts, in: Mechanisms and spread of bacterial resistance to antimicrobial agents. Antimicrobial Resistance in Bacteria of Animal Origin, ASM Press, Washington, DC, USA, 2019, pp. 73–98, doi: 10.1128/9781555817534.ch6.
DOI
[30]

M.A. Abushaheen, et al., Antimicrobial resistance, mechanisms and its clinical significance, Dis. Mon. 66 (6) (2020) 100971, doi: 10.1016/j.disamonth.2020.100971.

[31]

N.J. Krüger, K. Stingl, Two steps away from novelty: principles of bacterial DNA uptake, Mol. Microbiol. 80 (4) (2011) 860–867, doi: 10.1111/j.1365-2958.2011.07647.x.

[32]

R.P. Novick, G.E. Christie, J.R. Penadés, The phage-related chromosomal islands of Gram-positive bacteria, Nat. Rev. Microbiol. 8 (2010) 541–551, doi: 10.1038/nrmicro2393.

[33]

J. Griboff, J.C. Carrizo, R.I. Bonansea, et al., Multiantibiotic residues in commercial fish from Argentina. The presence of mixtures of antibiotics in edible fish, a challenge to health risk assessment, Food Chem. 332 (2020) 127380, doi: 10.1016/j.foodchem.2020.127380.

[34]

M. Gros, S. Rodríguez-Mozaz, D. Barceló, Rapid analysis of multiclass antibiotic residues and some of their metabolites in hospital, urban wastewater and river water by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry, J. Chromatogr. A 1292 (2013) 173–188, doi: 10.1016/j.chroma.2012.12.072.

[35]

X. Liu, Y. Lv, K. Xu, et al., Response of ginger growth to a tetracycline-contaminated environment and residues of antibiotic and antibiotic resistance genes, Chemosphere 201 (2018) 137–143, doi: 10.1016/j.chemosphere.2018.02.178.

[36]

J. Huygens, E. Daeseleire, J. Mahillon, et al., Presence of antibiotic residues and antibiotic resistant bacteria in cattle manure intended for fertilization of agricultural fields: aone health perspective, Antibiotics 10 (4) (2021) 410, doi: 10.3390/antibiotics10040410.

[37]

J.W. Peterson, L.J. Petrasky, M.D. Seymour, et al., Adsorption and breakdown of penicillin antibiotic in the presence of titanium oxide nanoparticles in water, Chemosphere 87 (8) (2012) 911–917, doi: 10.1016/j.chemosphere.2012.01.044.

[38]

L. Kabiraj, A. Kundu, Potential role of microRNAs in pancreatic cancer manifestation: a review, J. Egypt. Natl. Cancer Inst. 34 (1) (2022) 26, doi: 10.1186/s43046-022-00127-2.

[39]

S. Álvarez-Torrellas, J.A. Peres, V. Gil-Álvarez, et al., Effective adsorption of non-biodegradable pharmaceuticals from hospital wastewater with different carbon materials, Chem. Eng. J. 320 (2017) 319–329, doi: 10.1016/j.cej.2017.03.077.

[40]

Q. He, J.J. Liang, L.X. Chen, et al., Removal of the environmental pollutant carbamazepine using molecular imprinted adsorbents: molecular simulation, adsorption properties, and mechanisms, Water Res. 168 (2020) 115164, doi: 10.1016/j.watres.2019.115164.

[41]

K. Ji, Y. Kho, C. Park, et al., Influence of water and food consumption on inadvertent antibiotics intake among general population, Environ. Res. 110 (7) (2010) 641– 649, doi: 10.1016/j.envres.2010.06.008.

[42]

L. Santos, F. Ramos, Analytical strategies for the detection and quantification of antibiotic residues in aquaculture fishes: a review, Trends Food Sci. Technol. 52 (2016) 16–30, doi: 10.1016/j.tifs.2016.03.015.

[43]

N. Bilandžić, B.S. Kolanović, I. Varenina, et al., Veterinary drug residues determination in raw milk in Croatia, Food Contr. 22 (12) (2011) 1941–1948, doi: 10.1016/j.foodcont.2011.05.007.

[44]

J. Bengtsson-Palme, M. Milakovic, H. Švecová, et al., Industrial wastewater treatment plant enriches antibiotic resistance genes and alters the structure of microbial communities, Water Res. 162 (2019) 437–445, doi: 10.1016/j.watres.2019.06.073.

[45]

I.D. Rafraf, I. Lekunberri, A. Sànchez-Melsió, et al., Abundance of antibiotic resistance genes in five municipal wastewater treatment plants in the Monastir Governorate, Tunisia, Environ. Pollut. 219 (2016) 353–358, doi: 10.1016/j.envpol.2016.10.062.

[46]

J. Xu, Y. Xu, H. Wang, et al., Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river, Chemosphere 119 (2015) 1379–1385, doi: 10.1016/j.chemosphere.2014.02.040.

[47]

L. Li, R. Hou, W. Shen, et al., Development of a monoclonal-based ic-ELISA for the determination of kitasamycin in animal tissues and simulation studying its molecular recognition mechanism, Food Chem. 363 (2021) 129465, doi: 10.1016/j.foodchem.2021.129465.

[48]

M. Xue, H. Wu, S. Liu, et al., Simultaneous determination of 44 pharmaceutically active compounds in water samples using solid-phase extraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry, Anal. Bioanal. Chem. 412 (1) (2020) 203–222, doi: 10.1007/s00216-019-02229-8.

[49]

J. Ji, T. Gao, E.S. Salama, et al., Using Aspergillus niger whole-cell biocatalyst mycelial aerobic granular sludge to treat pharmaceutical wastewater containing β-lactam antibiotics, Chem. Eng. J. 412 (2021) 128665, doi: 10.1016/j.cej.2021.128665.

[50]

A. Bielen, A. Šimatović, ićJ. Kosić-Vukš, et al., Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries, Water Res. 126 (2017) 79–87, doi: 10.1016/j.watres.2017.09.019.

[51]

P. Chaturvedi, B.S. Giri, P. Shukla, et al., Recent advancement in remediation of synthetic organic antibiotics from environmental matrices: challenges and perspective, Bioresour. Technol. 319 (2021) 124161, doi: 10.1016/j.biortech.2020.124161.

[52]

S. Rodriguez-Mozaz, I. Vaz-Moreira, S. Varela Della Giustina, et al., Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment, Environ. Int. 140 (2020) 105733, doi: 10.1016/j.envint.2020.105733.

[53]

A. Ikhlaq, F. Javed, A. Akram, et al., Synergic catalytic ozonation and electroflocculation process for the treatment of veterinary pharmaceutical wastewater in a hybrid reactor, J. Water Process. Eng. 38 (2020) 101597, doi: 10.1016/j.jwpe.2020.101597.

[54]

K. Kümmerer, Significance of antibiotics in the environment, J. Antimicrob. Chemother. 52 (1) (2003) 5–7, doi: 10.1093/jac/dkg293.

[55]

P.K. Mutiyar, A.K. Mittal, Risk assessment of antibiotic residues in different water matrices in India: key issues and challenges, Environ. Sci. Pollut. Res. 21 (12) (2014) 7723–7736, doi: 10.1007/s11356-014-2702-5.

[56]

Q. Wang, P. Wang, Q. Yang, Occurrence and diversity of antibiotic resistance in untreated hospital wastewater, Sci. Total Environ. 621 (2018) 990–999, doi: 10.1016/j.scitotenv.2017.10.128.

[57]

K.D. Brown, J. Kulis, B. Thomson, et al., Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico, Sci. Total Environ. 366 (2–3) (2006) 772–783, doi: 10.1016/j.scitotenv.2005.10.007.

[58]

D. Lucas, M. Badia-Fabregat, T. Vicent, et al., Fungal treatment for the removal of antibiotics and antibiotic resistance genes in veterinary hospital wastewater, Chemosphere 152 (2016) 301–308, doi: 10.1016/j.chemosphere.2016.02.113.

[59]

S. Zhuang, X. Zhu, J. Wang, Adsorptive removal of plasticizer (dimethyl phthalate) and antibiotic (sulfamethazine) from municipal wastewater by magnetic carbon nanotubes, J. Mol. Liq. 319 (2020) 114267, doi: 10.1016/j.molliq.2020.114267.

[60]

M. Kumar, B. Ram, H. Sewwandi, et al., Treatment enhances the prevalence of antibiotic-resistant bacteria and antibiotic resistance genes in the wastewater of Sri Lanka, and India, Environ. Res. 183 (2020) 109179, doi: 10.1016/j.envres.2020.109179.

[61]

T. Azuma, K. Otomo, M. Kunitou, et al., Environmental fate of pharmaceutical compounds and antimicrobial-resistant bacteria in hospital effluents, and contributions to pollutant loads in the surface waters in Japan, Sci. Total Environ. 657 (2019) 476–484, doi: 10.1016/j.scitotenv.2018.11.433.

[62]

W. Hayashi, M. Iimura, E. Soga, et al., Presence of colistin- and tigecycline-resistant Klebsiella pneumoniae ST29 in municipal wastewater influents in Japan, Microb. Drug Resist. 27 (10) (2021) 1433–1442, doi: 10.1089/mdr.2020.0514.

[63]

P. Biswas, B.P. Vellanki, Occurrence of emerging contaminants in highly anthropogenically influenced River Yamuna in India, Sci. Total Environ. 782 (2021) 146741, doi: 10.1016/j.scitotenv.2021.146741.

[64]

J. Kurasam, P. Sihag, P.K. Mandal, et al., Presence of fluoroquinolone resistance with persistent occurrence of gyrA gene mutations in a municipal wastewater treatment plant in India, Chemosphere 211 (2018) 817–825, doi: 10.1016/j.chemosphere.2018.08.011.

[65]

A. Gosset, L. Wiest, A. Fildier, et al., Ecotoxicological risk assessment of contaminants of emerging concern identified by “suspect screening” from urban wastewater treatment plant effluents at a territorial scale, Sci. Total Environ. 778 (2021) 146275, doi: 10.1016/j.scitotenv.2021.146275.

[66]

S.M. Zainab, M. Junaid, N. Xu, et al., Antibiotics and antibiotic resistant genes (ARGs) in groundwater: a global review on dissemination, sources, interactions, environmental and human health risks, Water Res. 187 (2020) 116455, doi: 10.1016/j.watres.2020.116455.

[67]

D.J. Schwartz, A.E. Langdon, G. Dantas, Understanding the impact of antibiotic perturbation on the human microbiome, Genome Med. 12 (1) (2020) 82, doi: 10.1186/s13073-020-00782-x.

[68]

J. Chen, G.G. Ying, W.J. Deng, Antibiotic residues in food: extraction, analysis, and human health concerns, J. Agric. Food Chem. 67 (27) (2019) 7569–7586, doi: 10.1021/acs.jafc.9b01334.

[69]
N.P. Kumarswamy, Detection of antibiotic residues in raw cow milk in Thrissur, India, 2018, Available at: https://www.academia.edu/37429243/Detection_of_antibiotic_residues_in_raw_cow_milk_in_Thrissur_India. Accessed November 30, 2023.
[70]

Y. Ben, C. Fu, M. Hu, et al., Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: a review, Environ. Res. 169 (2019) 483–493, doi: 10.1016/j.envres.2018.11.040.

[71]

M. Isidori, M. Lavorgna, A. Nardelli, et al., Toxic and genotoxic evaluation of six antibiotics on non-target organisms, Sci. Total Environ. 346 (1–3) (2005) 87–98, doi: 10.1016/j.scitotenv.2004.11.017.

[72]

A.L. Batt, I.B. Bruce, D.S. Aga, Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges, Environ. Pollut. 142 (2) (2006) 295–302, doi: 10.1016/j.envpol.2005.10.010.

[73]

D. Sharma, L. Misba, A.U. Khan, Antibiotics versus biofilm: an emerging battleground in microbial communities, Antimicrob. Resist. Infect. Control 8 (2019) 76, doi: 10.1186/s13756-019-0533-3.

[74]

S.M. Limbu, L. Zhou, S.X. Sun, et al., Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk, Environ. Int. 115 (2018) 205–219, doi: 10.1016/j.envint.2018.03.034.

[75]

D.B. Kim, N.E. Song, T.G. Nam, et al., Investigation and human health risk assessment of multi-class veterinary antibiotics in honey from South Korea, J. Food Compos. Anal. 102 (2021) 104040, doi: 10.1016/j.jfca.2021.104040.

[76]

Y. Zhang, X. Li, Z. Liu, et al., The neurobehavioral impacts of typical antibiotics toward zebrafish larvae, Chemosphere 340 (2023) 139829, doi: 10.1016/j.chemosphere.2023.139829.

[77]

M. Qian, J. Wang, X. Ji, et al., Sub-chronic exposure to antibiotics doxycycline, oxytetracycline or florfenicol impacts gut barrier and induces gut microbiota dysbiosis in adult zebrafish (Daino rerio), Ecotoxicol. Environ. Saf. 221 (2021) 112464, doi: 10.1016/j.ecoenv.2021.112464.

[78]

C. Jernberg, S. Löfmark, C. Edlund, et al., Long-term ecological impacts of antibiotic administration on the human intestinal microbiota, ISME J. 1 (1) (2007) 56–66, doi: 10.1038/ismej.2007.3.

[79]

Z. Yang, A. Lai, H. Chen, et al., Degradation of metronidazole by dielectric barrier discharge in an aqueous solution, Front. Environ. Sci. Eng. 13 (3) (2019) 33, doi: 10.1007/s11783-019-1117-4.

[80]

E.S. Massima Mouele, J.O. Tijani, K.O. Badmus, et al., Removal of pharmaceutical residues from water and wastewater using dielectric barrier discharge methods-areview, Int. J. Environ. Res. Public Health 18 (4) (2021) 1683, doi: 10.3390/ijerph18041683.

[81]

D. Dobslaw, A. Schulz, S. Helbich, et al., VOC removal and odor abatement by a low-cost plasma enhanced biotrickling filter process, J. Environ. Chem. Eng. 5 (6) (2017) 5501–5511, doi: 10.1016/j.jece.2017.10.015.

[82]

G. Iervolino, V. Vaiano, V. Palma, Enhanced removal of water pollutants by dielectric barrier discharge non-thermal plasma reactor, Sep. Purif. Technol. 215 (2019) 155–162, doi: 10.1016/j.seppur.2019.01.007.

[83]

B. Li, T. Zhang, Different removal behaviours of multiple trace antibiotics in municipal wastewater chlorination, Water Res. 47 (9) (2013) 2970–2982, doi: 10.1016/j.watres.2013.03.001.

[84]

Q.B. Yuan, M.T. Guo, W.J. Wei, et al., Reductions of bacterial antibiotic resistance through five biological treatment processes treated municipal wastewater, Environ. Sci. Pollut. Res. 23 (19) (2016) 19495–19503, doi: 10.1007/s11356-016-7048-8.

[85]

J.L. Acero, F.J. Benitez, F.J. Real, et al., Kinetics of aqueous chlorination of some pharmaceuticals and their elimination from water matrices, Water Res. 44 (14) (2010) 4158–4170, doi: 10.1016/j.watres.2010.05.012.

[86]

F. Dong, C. Li, J. Crittenden, et al., Sulfadiazine destruction by chlorination in a pilot-scale water distribution system: kinetics, pathway, and bacterial community structure, J. Hazard. Mater. 366 (2019) 88–97, doi: 10.1016/j.jhazmat.2018.11.096.

[87]

V.D. Gaffney, V.V. Cardoso, M.J. Benoliel, et al., Chlorination and oxidation of sulfonamides by free chlorine: identification and behaviour of reaction products by UPLC-MS/MS, J. Environ. Manage. 166 (2016) 466–477, doi: 10.1016/j.jenvman.2015.10.048.

[88]

B. Li, T. Zhang, pH significantly affects removal of trace antibiotics in chlorination of municipal wastewater, Water Res. 46 (11) (2012) 3703–3713, doi: 10.1016/j.watres.2012.04.018.

[89]

S. Suarez, J.M. Lema, F. Omil, Pre-treatment of hospital wastewater by coagulation-flocculation and flotation, Bioresour. Technol. 100 (7) (2009) 2138–2146, doi: 10.1016/j.biortech.2008.11.015.

[90]

C. Adams, Y. Wang, K. Loftin, et al., Removal of antibiotics from surface and distilled water in conventional water treatment processes, J. Environ. Eng. 128 (3) (2002) 253–260, doi: 10.1061/(asce)0733-9372(2002)128:3(253).

[91]

M.H. Mahdi1, T.J. Mohammed, J.A. Al-Najar, Advanced Oxidation Processes (AOPs) for treatment of antibiotics in wastewater: A review, IOP Conf. Ser.: Earth Environ. Sci. 779 (2021) 012109, doi: 10.1088/1755-1315/779/1/012109.

[92]

E.A. Serna-Galvis, A.L. Giraldo-Aguirre, J. Silva-Agredo, et al., Removal of antibiotic cloxacillin by means of electrochemical oxidation, TiO2 photocatalysis, and photo-Fenton processes: analysis of degradation pathways and effect of the water matrix on the elimination of antimicrobial activity, Environ. Sci. Pollut. Res. Int. 24 (7) (2017) 6339–6352, doi: 10.1007/s11356-016-6257-5.

[93]

D. Cheng, H.H. Ngo, W. Guo, et al., Feasibility study on a new pomelo peel derived biochar for tetracycline antibiotics removal in swine wastewater, Sci. Total Environ. 720 (2020) 137662, doi: 10.1016/j.scitotenv.2020.137662.

[94]

K. Wang, T. Zhuang, Z. Su, et al., Antibiotic residues in wastewaters from sewage treatment plants and pharmaceutical industries: occurrence, removal and environmental impacts, Sci. Total Environ. 788 (2021) 147811, doi: 10.1016/j.scitotenv.2021.147811.

[95]

S. Li, Y. Wu, H. Zheng, et al., Antibiotics degradation by advanced oxidation process (AOPs): recent advances in ecotoxicity and antibiotic-resistance genes induction of degradation products, Chemosphere 311 (Pt2) (2023) 136977, doi: 10.1016/j.chemosphere.2022.136977.

[96]

H. Wu, X. Niu, J. Yang, et al., Retentions of bisphenol A and norfloxacin by three different ultrafiltration membranes in regard to drinking water treatment, Chem. Eng. J. 294 (2016) 410–416, doi: 10.1016/j.cej.2016.02.117.

[97]

X.D. Weng, Y.L. Ji, R Ma, et al., Superhydrophilic and antibacterial zwitterionic polyamide nanofiltration membranes for antibiotics separation, J. Membr. Sci. 510 (2016) 122–130, doi: 10.1016/j.memsci.2016.02.070.

[98]

S.O. Ganiyu, E.D. van Hullebusch, M. Cretin, et al., Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: a critical review, Sep. Purif. Technol. 156 (2015) 891–914, doi: 10.1016/j.seppur.2015.09.059.

[99]

B.L. Phoon, C.C. Ong, M.S. Mohamed Saheed, et al., Conventional and emerging technologies for removal of antibiotics from wastewater, J. Hazard. Mater. 400 (2020) 122961, doi: 10.1016/j.jhazmat.2020.122961.

[100]

M.S. de Ilurdoz, J.J Sadhwani, J.V. Reboso, Antibiotic removal processes from water & wastewater for the protection of the aquatic environment - a review, J. Water Process. Eng. 45 (2022) 102474, doi: 10.1016/j.jwpe.2021.102474.

[101]

X. Huang, S. Wu, S. Tang, et al., Photocatalytic hydrogel layer supported on alkali modified straw fibers for ciprofloxacin removal from water, J. Mol. Liq. 317 (2020) 113961, doi: 10.1016/j.molliq.2020.113961.

[102]

M. Atasoy, I. Owusu-Agyeman, E. Plaza, et al., Bio-based volatile fatty acid production and recovery from waste streams: current status and future challenges, Bioresour. Technol. 268 (2018) 773–786, doi: 10.1016/j.biortech.2018.07.042.

[103]

S. Aydin, Enhanced biodegradation of antibiotic combinations via the sequential treatment of the sludge resulting from pharmaceutical wastewater treatment using white-rot fungi Trametes versicolor and Bjerkandera adusta, Appl. Microbiol. Biotechnol. 100 (14) (2016) 6491–6499, doi: 10.1007/s00253-016-7473-0.

[104]

Z. Chen, H. Wang, N. Ren, et al., Simultaneous removal and evaluation of organic substrates and NH3-N by a novel combined process in treating chemical synthesis-based pharmaceutical wastewater, J. Hazard. Mater. 197 (2011) 49–59, doi: 10.1016/j.jhazmat.2011.09.053.

[105]

R. Han, D. Ding, Y. Xu, et al., Use of rice husk for the adsorption of Congo red from aqueous solution in column mode, Bioresour. Technol. 99 (8) (2008) 2938–2946, doi: 10.1016/j.biortech.2007.06.027.

[106]

V. Homem, L. Santos, Degradation and removal methods of antibiotics from aqueous matrices: a review, J. Environ. Manage. 92 (10) (2011) 2304–2347, doi: 10.1016/j.jenvman.2011.05.023.

[107]

Z. Aksu, Ö. Tunç, Application of biosorption for penicillin G removal: comparison with activated carbon, Process. Biochem. 40 (2) (2005) 831–847, doi: 10.1016/j.procbio.2004.02.014.

[108]

B.N. Estevinho, I. Martins, N. Ratola, et al., Removal of 2, 4-dichlorophenol and pentachlorophenol from waters by sorption using coal fly ash from a Portuguese thermal power plant, J. Hazard. Mater. 143 (1–2) (2007) 535–540, doi: 10.1016/j.jhazmat.2006.09.072.

[109]

A. Fakhri, S. Behrouz, Comparison studies of adsorption properties of MgO nanoparticles and ZnO–MgO nanocomposites for linezolid antibiotic removal from aqueous solution using response surface methodology, Process. Saf. Environ. Prot. 94 (2015) 37–43, doi: 10.1016/j.psep.2014.12.007.

[110]

Y.H. Shih, K.Y. Wang, B. Singco, et al., Metal-organic framework-polymer composite as a highly efficient sorbent for sulfonamide adsorption and desorption: effect of coordinatively unsaturated metal site and topology, Langmuir 32 (44) (2016) 11465–11473, doi: 10.1021/acs.langmuir.6b03067.

[111]

Y. Wang, W.B. Jiao, J.T. Wang, et al., Amino-functionalized biomass-derived porous carbons with enhanced aqueous adsorption affinity and sensitivity of sulfonamide antibiotics, Bioresour. Technol. 277 (2019) 128–135, doi: 10.1016/j.biortech.2019.01.033.

[112]

S.V. Manjunath, R. Singh Baghel, M. Kumar, Antagonistic and synergistic analysis of antibiotic adsorption on Prosopis juliflora activated carbon in multicomponent systems, Chem. Eng. J. 381 (2020) 122713, doi: 10.1016/j.cej.2019.122713.

[113]

Z.W. Zeng, X.F. Tan, Y.G. Liu, et al., Comprehensive adsorption studies of doxycycline and ciprofloxacin antibiotics by biochars prepared at different temperatures, Front. Chem. 6 (2018) 80, doi: 10.3389/fchem.2018.00080.

[114]

R. Antonelli, G.R.P. Malpass, M.G.C. da Silva, et al., Adsorption of ciprofloxacin onto thermally modified bentonite clay: experimental design, characterization, and adsorbent regeneration, J. Environ. Chem. Eng. 8 (6) (2020) 104553, doi: 10.1016/j.jece.2020.104553.

[115]

T.M. Darweesh, M.J. Ahmed, Adsorption of ciprofloxacin and norfloxacin from aqueous solution onto granular activated carbon in fixed bed column, Ecotoxicol. Environ. Saf. 138 (2017) 139–145, doi: 10.1016/j.ecoenv.2016.12.032.

[116]

J. Rivera-Utrilla, G. Prados-Joya, M. Sánchez-Polo, et al., Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon, J. Hazard. Mater. 170 (1) (2009) 298–305, doi: 10.1016/j.jhazmat.2009.04.096.

[117]

J. Chang, Z. Shen, X. Hu, et al., Adsorption of tetracycline by shrimp shell waste from aqueous solutions: adsorption isotherm, kinetics modeling, and mechanism, ACS Omega 5 (7) (2020) 3467–3477, doi: 10.1021/acsomega.9b03781.

[118]

S. Banerjee, A. Kundu, P. Dhak, Bioremediation of uranium from waste effluents using novel biosorbents: a review, J. Radioanal. Nucl. Chem. 331 (6) (2022) 2409–2435, doi: 10.1007/s10967-022-08304-2.

[119]

M.J. Ahmed, M.A. Islam, M. Asif, et al., Human hair-derived high surface area porous carbon material for the adsorption isotherm and kinetics of tetracycline antibiotics, Bioresour. Technol. 243 (2017) 778–784, doi: 10.1016/j.biortech.2017.06.174.

[120]

S. Li, P.L. Show, H.H. Ngo, et al., Algae-mediated antibiotic wastewater treatment: a critical review, Environ. Sci. Ecotechnol. 9 (2022) 100145, doi: 10.1016/j.ese.2022.100145.

[121]

N. Sunsandee, P. Ramakul, S. Phatanasri, et al., Biosorption of dicloxacillin from pharmaceutical waste water using tannin from Indian almond leaf: kinetic and equilibrium studies, Biotechnol. Rep. 27 (2020) e00488, doi: 10.1016/j.btre.2020.e00488.

[122]

A. Hom-Diaz, A. Jaén-Gil, S. Rodríguez-Mozaz, et al., Insights into removal of antibiotics by selected microalgae (Chlamydomonas reinhardtii, Chlorella sorokiniana, Dunaliella tertiolecta and Pseudokirchneriella subcapitata), Algal Res. 61 (2022) 102560, doi: 10.1016/j.algal.2021.102560.

[123]

N.E.l. Messaoudi, M.E.l. Khomri, E.H. Ablouh, et al., Biosynthesis of SiO2 nanoparticles using extract of Nerium oleander leaves for the removal of tetracycline antibiotic, Chemosphere 287 (Pt4) (2022) 132453, doi: 10.1016/j.chemosphere.2021.132453.

[124]

I.N. Abd, M.J. Mohammed-Ridha, Tetracycline antibiotic removal from aqueous solution using Cladophora and spirulina algae biomass, Iraqi J. Agric. Sci. 52 (2) (2021) 336–347, doi: 10.36103/ijas.v52i2.1295.

[125]

N.A. Aziz, N. Jayasuriya, L. Fan, et al., A low-cost treatment system for underground water using Moringa oleifera seeds and Musa cavendish peels for remote communities, J. Chem. Technol. Biotechnol. 96 (3) (2021) 680–696, doi: 10.1002/jctb.6581.

[126]

P.V. Viotti, W.M. Moreira, O.A.A. dos Santos, et al., Diclofenac removal from water by adsorption on Moringa oleifera pods and activated carbon: mechanism, kinetic and equilibrium study, J. Cleaner Prod. 219 (2019) 809–817, doi: 10.1016/j.jclepro.2019.02.129.

[127]

G. Iervolino, V. Vaiano, V. Palma, Enhanced removal of water pollutants by dielectric barrier discharge non-thermal plasma reactor, Sep. Purif. Technol. 215 (2019) 155–162, doi: 10.1016/j.seppur.2019.01.007.

[128]

A.R. Cardoso, L.P.T. Carneiro, G. Cabral-Miranda, et al., Employing bacteria machinery for antibiotic detection: using DNA gyrase for ciprofloxacin detection, Chem. Eng. J. 409 (2021) 128135, doi: 10.1016/j.cej.2020.128135.

[129]

X. Tang, Y. Huang, Q. He, et al., Adsorption of tetracycline antibiotics by nitrilotriacetic acid modified magnetic chitosan-based microspheres from aqueous solutions, Environ. Technol. Innov. 24 (2021) 101895, doi: 10.1016/j.eti.2021.101895.

[130]

U.A. Guler, M. Sarioglu, Removal of tetracycline from wastewater using pumice stone: equilibrium, kinetic and thermodynamic studies, J. Environ. Health Sci. Eng. 12 (1) (2014) 79, doi: 10.1186/2052-336X-12-79.

[131]

X. Lu, B. Tang, Q. Zhang, et al., The presence of Cu facilitates adsorption of tetracycline (TC) onto water hyacinth roots, Int. J. Environ. Res. Public Health 15 (9) (2018) E1982, doi: 10.3390/ijerph15091982.

[132]

Y. Wang, S. Gong, Y. Li, et al., Adsorptive removal of tetracycline by sustainable ceramsite substrate from bentonite/red mud/pine sawdust, Sci. Rep. 10 (1) (2020) 2960, doi: 10.1038/s41598-020-59850-2.

[133]

L. Lu, M. Liu, Y. Chen, et al., Effective removal of tetracycline antibiotics from wastewater using practically applicable iron(Ⅲ)-loaded cellulose nanofibres, R. Soc. Open Sci. 8 (8) (2021) 210336, doi: 10.1098/rsos.210336.

[134]

A. Pizzi, Tannins medical/pharmacological and related applications: a critical review, Sustain. Chem. Pharm. 22 (2021) 100481, doi: 10.1016/j.scp.2021.100481.

[135]

M. Barral-Martinez, M. Fraga-Corral, P. Garcia-Perez, et al., Almond by-products: valorization for sustainability and competitiveness of the industry, Foods 10 (8) (2021) 1793, doi: 10.3390/foods10081793.

[136]

E. Charpentier, L. Doudet, I. Allart-Simon, et al., Synergy between indoloquinolines and ciprofloxacin: an antibiofilm strategy against Pseudomonas aeruginosa, Antibiotics 10 (10) (2021) 1205, doi: 10.3390/antibiotics10101205.

[137]

R. Deng, X. Gao, J. Hou, et al., Multi-omics analyses reveal molecular mechanisms for the antagonistic toxicity of carbon nanotubes and ciprofloxacin to Escherichia coli, Sci. Total Environ. 726 (2020) 138288, doi: 10.1016/j.scitotenv.2020.138288.

[138]

O.S. Agboola, O.S. Bello, Enhanced adsorption of ciprofloxacin from aqueous solutions using functionalized banana stalk, Biomass Convers. Biorefin. 12 (12) (2022) 5463–5478, doi: 10.1007/s13399-020-01038-9.

[139]

D. Veclani, A. Melchior, Adsorption of ciprofloxacin on carbon nanotubes: insights from molecular dynamics simulations, J. Mol. Liq. 298 (2020) 111977, doi: 10.1016/j.molliq.2019.111977.

[140]

A. Oliva, A. Curtolo, L. Volpicelli, et al., Synergistic meropenem/vaborbactam plus fosfomycin treatment of KPC producing K. pneumoniaeseptic thrombosis unresponsive to ceftazidime/avibactam: from the bench to the bedside, Antibiotics 10 (7) (2021) 781, doi: 10.3390/antibiotics10070781.

[141]

N.P. Marathe, C. Pal, S.S. Gaikwad, et al., Untreated urban waste contaminates Indian River sediments with resistance genes to last resort antibiotics, Water Res. 124 (2017) 388–397, doi: 10.1016/j.watres.2017.07.060.

[142]

A.M. Voigt, P. Ciorba, M. Döhla, et al., The investigation of antibiotic residues, antibiotic resistance genes and antibiotic-resistant organisms in a drinking water reservoir system in Germany, Int. J. Hyg. Environ. Health 224 (2020) 113449, doi: 10.1016/j.ijheh.2020.113449.

[143]

M.J. M-Ridha, Y.R. Hasan, M.A. Ibrahim, Adsorption kinetics and mechanisms for meropenem antibiotic removal in batch mode via rice husk functionalized with Mg/Fe-layered double hydroxides, Sep. Sci. Technol. 56 (16) (2021) 2721–2733, doi: 10.1080/01496395.2020.1852258.

[144]

A. Altamirano Briones, I. Cóndor Guevara, D. Mena, et al., Degradation of meropenem by heterogeneous photocatalysis using TiO2/fiberglass substrates, Catalysts 10 (3) (2020) 344, doi: 10.3390/catal10030344.

[145]

Y. Ben, M. Hu, X. Zhang, et al., Efficient detection and assessment of human exposure to trace antibiotic residues in drinking water, Water Res. 175 (2020) 115699, doi: 10.1016/j.watres.2020.115699.

[146]

Y. Yu, Y. Zhou, Z. Wang, et al., Investigation of the removal mechanism of antibiotic ceftazidime by green algae and subsequent microbic impact assessment, Sci. Rep. 7 (2017) 4168, doi: 10.1038/s41598-017-04128-3.

[147]

P. Chaturvedi, A. Singh, P. Chowdhary, et al., Occurrence of emerging sulfonamide resistance (sul1 and Sul2) associated with mobile integrons-integrase (intI1 and intI2) in riverine systems, Sci. Total Environ. 751 (2021) 142217, doi: 10.1016/j.scitotenv.2020.142217.

[148]

Y. Zou, Y. Xiao, H. Wang, et al., New insight into fates of sulfonamide and tetracycline resistance genes and resistant bacteria during anaerobic digestion of manure at thermophilic and mesophilic temperatures, J. Hazard. Mater. 384 (2020) 121433, doi: 10.1016/j.jhazmat.2019.121433.

[149]

L. Kergoat, P. Besse-Hoggan, M. Leremboure, et al., Environmental concentrations of sulfonamides can alter bacterial structure and induce diatom deformities in freshwater biofilm communities, Front. Microbiol. 12 (2021) 643719, doi: 10.3389/fmicb.2021.643719.

[150]

M. Conde-Cid, R. Cela-Dablanca, G. Ferreira-Coelho, et al., Sulfadiazine, sulfamethazine and sulfachloropyridazine removal using three different porous materials: pine bark, “oak ash” and mussel shell, Environ. Res. 195 (2021) 110814, doi: 10.1016/j.envres.2021.110814.

[151]

Y. Li, Z. Li, W. Wang, et al., Miniaturization of self-assembled solid phase extraction based on graphene oxide/chitosan coupled with liquid chromatography for the determination of sulfonamide residues in egg and honey, J. Chromatogr. A 1447 (2016) 17–25, doi: 10.1016/j.chroma.2016.04.026.

[152]

Y. Liu, P. Nie, F. Yu, Enhanced adsorption of sulfonamides by a novel carboxymethyl cellulose and chitosan-based composite with sulfonated graphene oxide, Bioresour. Technol. 320 (PtB) (2021) 124373, doi: 10.1016/j.biortech.2020.124373.

[153]

Y. Gao, R. Kang, J. Xia, et al., Understanding the adsorption of sulfonamide antibiotics on MIL-53s: metal dependence of breathing effect and adsorptive performance in aqueous solution, J. Colloid Interface Sci. 535 (2019) 159–168, doi: 10.1016/j.jcis.2018.09.090.

[154]

X. Geng, S. Lv, J. Yang, et al., Carboxyl-functionalized biochar derived from walnut shells with enhanced aqueous adsorption of sulfonamide antibiotics, J. Environ. Manage. 280 (2021) 111749, doi: 10.1016/j.jenvman.2020.111749.

[155]

L. Sun, S. Wan, D. Yuan, et al., Adsorption of nitroimidazole antibiotics from aqueous solutions on self-shaping porous biomass carbon foam pellets derived from Vallisneria natans waste as a new adsorbent, Sci. Total Environ. 664 (2019) 24–36, doi: 10.1016/j.scitotenv.2019.01.412.

[156]

D.H. Carrales-Alvarado, R. Leyva-Ramos, I. Rodríguez-Ramos, et al., Adsorption capacity of different types of carbon nanotubes towards metronidazole and dimetridazole antibiotics from aqueous solutions: effect of morphology and surface chemistry, Environ. Sci. Pollut. Res. 27 (14) (2020) 17123–17137, doi: 10.1007/s11356-020-08110-x.

[157]

J.F. Saldarriaga, N.A. Montoya, I. Estiati, et al., Unburned material from biomass combustion as low-cost adsorbent for amoxicillin removal from wastewater, J. Clean. Prod. 284 (2021) 124732, doi: 10.1016/j.jclepro.2020.124732.

[158]

G.G. Newton, E.P. Abraham, Cephalosporin C, a new antibiotic containing sulphur and D-alpha-aminoadipic acid, Nature 175 (4456) (1955) 548, doi: 10.1038/175548a0.

[159]

M. Salgado-Caxito, A.I. Moreno-Switt, A.C. Paes, et al., Higher prevalence of extended-spectrum cephalosporin-resistant Enterobacterales in dogs attended for enteric viruses in Brazil before and after treatment with cephalosporins, Antibiotics 10 (2) (2021) 122, doi: 10.3390/antibiotics10020122.

[160]

W.Q. Guo, H.S. Zheng, S. Li, et al., Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae, Bioresour. Technol. 221 (2016) 284–290, doi: 10.1016/j.biortech.2016.09.036.

[161]

A.R. Ribeiro, B. Sures, T.C. Schmidt, Cephalosporin antibiotics in the aquatic environment: a critical review of occurrence, fate, ecotoxicity and removal technologies, Environ. Pollut. 241 (2018) 1153–1166, doi: 10.1016/j.envpol.2018.06.040.

[162]

D. Hu, Y. Zhao, H. Wang, et al., Multiple draft tubes airlift loop membrane bioreactor as an efficient system for acidic 7-amino cephalosporanic acid (7-ACA) wastewater treatment, Bioresour. Technol. 304 (2020) 123014, doi: 10.1016/j.biortech.2020.123014.

[163]

M. Dutta, R. Baruah, N.N. Dutta, et al., The adsorption of certain semi-synthetic cephalosporins on activated carbon, Colloids Surf. A Physicochem. Eng. Aspects 127 (1–3) (1997) 25–37, doi: 10.1016/s0927-7757(97)00062-9.

[164]

K. Orlewska, Z. Piotrowska-Seget, M. Cycoń, Use of the PCR-DGGE method for the analysis of the bacterial community structure in soil treated with the cephalosporin antibiotic cefuroxime and/or inoculated with a multidrug-resistant Pseudomonas putidastrain MC1, Front. Microbiol. 9 (2018) 1387, doi: 10.3389/fmicb.2018.01387.

[165]

A. Rusu, E.L. Buta, The development of third-generation tetracycline antibiotics and new perspectives, Pharmaceutics 13 (12) (2021) 2085, doi:10.3390/pharmaceutics13122085.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 10 October 2023
Revised: 01 December 2023
Accepted: 12 December 2023
Published: 19 February 2024
Issue date: March 2024

Copyright

© 2024 The Author(s).

Acknowledgements

Acknowledgment

The authors thank Techno India University, West Bengal, for support and encouragement during this study.

Rights and permissions

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Return