Journal Home > Volume 1 , Issue 3

Human gut microbiome is a major source of human bacterial population and a significant contribution to both positive and harmful effects. Due to its involvement in a variety of interactions, gut microorganisms have a great impact on our health throughout our lives. The impact of gut microbial population is been studied intensively in last two decades. Extensive literature survey focusing developments in the field were searched in English language Electronic Databases like PubMed, Google Scholar, Pubag, Google books, and Research Gate were mostly used to understand the role of human gut mirobiome and its role in different human diseases. Gut microbiome in healthy subjects differs from those who suffer from diseases. Type 2 diabetes, obesity, non-alcoholic liver disease, and cardiometabolic diseases have all been linked to dysbiosis of the gut microbiota. Pathogenesis of many disorders is also linked to changes in gut microbiota. Other diseases like cancer, arithritis, autism, depression, anxiety, sleep disorder, HIV, hypertension, and gout are also related to gut microbiota dysbiosis. We focus in this review on recent studies looking into the link between gut microbiome dysbiosis and disease etiology. Research on how gut microbiota affects host metabolism has been changed in past decades from descriptive analyses to high throughput integrative omics data analysis such as metagenomics and metabolomics. Identification of molecular mechanisms behind reported associations is been carried out in human, animals, and cells for measure of host physiology and mechanics. Still many the mechanisms are not completely understood.


menu
Abstract
Full text
Outline
About this article

Correlation between human gut microbiome and diseases

Show Author's information Barkha MadhogariaaPriyanka Bhowmikb( )Atreyee Kundua( )
Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
Department of Biological Sciences, Adamas University, Barrackpore-Barasat Road, 24 Paragnas North, Jagannathpur, Kolkata, West Bengal, India

Abstract

Human gut microbiome is a major source of human bacterial population and a significant contribution to both positive and harmful effects. Due to its involvement in a variety of interactions, gut microorganisms have a great impact on our health throughout our lives. The impact of gut microbial population is been studied intensively in last two decades. Extensive literature survey focusing developments in the field were searched in English language Electronic Databases like PubMed, Google Scholar, Pubag, Google books, and Research Gate were mostly used to understand the role of human gut mirobiome and its role in different human diseases. Gut microbiome in healthy subjects differs from those who suffer from diseases. Type 2 diabetes, obesity, non-alcoholic liver disease, and cardiometabolic diseases have all been linked to dysbiosis of the gut microbiota. Pathogenesis of many disorders is also linked to changes in gut microbiota. Other diseases like cancer, arithritis, autism, depression, anxiety, sleep disorder, HIV, hypertension, and gout are also related to gut microbiota dysbiosis. We focus in this review on recent studies looking into the link between gut microbiome dysbiosis and disease etiology. Research on how gut microbiota affects host metabolism has been changed in past decades from descriptive analyses to high throughput integrative omics data analysis such as metagenomics and metabolomics. Identification of molecular mechanisms behind reported associations is been carried out in human, animals, and cells for measure of host physiology and mechanics. Still many the mechanisms are not completely understood.

Keywords: Microbiota, Microbiome, Bacteria, Gut, Infections, Microflora

References(73)

[1]

E.J. Woodmansey, Intestinal bacteria and ageing, J. Appl. Microbiol. 102 (5) (2007) 1178–1186, doi: 10.1111/j.1365-2672.2007.03400.

[2]

M. Pascal, M. Perez-Gordo, T. Caballero, et al., Micro, Aller. Dis. Front. Immunol. 9 (2018) 584, doi: 10.3389/fimmu.2018.01584.

[3]
E. Thursby, N. Juge, Introduction to the human gut microbiota, Biochem. J. 474 (11) (2017) 1823–1836 https://publications.jrc.ec.europa.eu/repository/handle/JRC112042.
[4]
S. Linda, J.M. Willey, C. Woolverton, in: Prescott's Microbiology, eighth ed, McGraw Hill, New York, 2013, pp. 713–721. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3577227/. Retrieved on 05.04.2022 from.
[5]

E.M. Bik, P.B. Eckburg, S.R. Gill, et al., Molecular analysis of the bacterial microbiota in the human stomach, Proc. Natl. Acad. Sci. U S A. 103 (3) (2006) 732–737, doi: 10.1073/pnas.0506655103.

[6]

A. Swidsinski, J. Weber, V. Loening-Baucke, et al., Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease, J. Clin. Microbiol 43 (7) (2005) 3380–3389, doi: 10.1128/JCM.43.7.3380-3389.2005.

[7]

F. Bäckhed, J. Roswall, Y. Peng, et al., Dynamics and stabilization of the human gut microbiome during the first year of life, Cell Host Microbe 17 (5) (2015) 690–703, doi: 10.1016/j.chom.2015.04.004.

[8]

M.J. Claesson, S Cusack, O. O'Sullivan, et al., Composition, variability, and temporal stability of the intestinal microbiota of the elderly, Proc. Natl. Acad. Sci. U S A. 108 (Suppl 1) (2011) 4586–4591, doi: 10.1073/pnas.1000097107.

[9]

E. Biagi, L. Nylund, M. Candela, et al., Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians, PLoS ONE 5 (5) (2010) e10667, doi: 10.1371/journal.pone.0010667.

[10]

A.W. Walke, J. Parkhill, Microbiology. Fighting obesity with bacteria, Science 341 (6150) (2013) 1069–1070, doi: 10.1126/science.1243787.

[11]

S.R. Modi, J.J. Collins, D.A. Relman, Antibiotics and the gut microbiota, J. Clin. Invest 124 (10) (2014) 4212–4218, doi: 10.1172/JCI72333.

[12]

H.E. Jakobsson, C. Jernberg, A.F. Andersson, et al., Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome, PLoS One 5 (3) (2010) 9836, doi: 10.1371/journal.pone.0009836.

[13]
K. Gao, Y. Pi, C.L. Mu, et al., Antibiotics-induced modulation of large intestinal microbiota altered aromatic amino acid profile and expression of neurotransmitters in the hypothalamus of piglets, J Neurochem 146 (3) (2018) 219–234 Epub 2018 Jun 28. PMID: 29524228, doi: 10.1111/jnc.14333.
[14]

J.K. Goodrich, J.L. Waters, A.C. Poole, et al., Human genetics shape the gut microbiome, Cell 159 (4) (2014) 789–799, doi: 10.1016/j.cell.2014.09.053.

[15]

R. Blekhman, J.K. Goodrich, K. Huang, et al., Host genetic variation impacts microbiome composition across human body sites, Genome Biol 16 (1) (2015) 191, doi: 10.1186/s13059-015-0759-1.

[16]

F. Guarner, J.R. Malagelada, Gut flora in health and disease, Lancet 361 (9356) (2003) 512–519, doi: 10.1016/S0140-6736(03)12489-0.

[17]

U. Vyas, N. Ranganathan, Probiotics, prebiotics, and synbiotics: gut and beyond, Gastroenterol. Res. Pract (2012) 872716, doi: 10.1155/2012/872716.

[18]

S. Mathews, S. Henderson, D. Reinhold, Uptake and accumulation of antimicrobials, triclocarban and triclosan, by food crops in a hydroponic system, Environ. Sci. Pollut. Res. Int 21 (9) (2014) 6025–6033, doi: 10.1007/s11356-013-2474-3.

[19]
M. Carabotti, A. Scirocco, M.A. Maselli, et al., The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems, Ann. Gastroenterol 28 (2) (2015) 203–209 Retrieved on 30.03.2022 from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367209/.
[20]
J.A. Foster, K.A. McVey Neufeld, Gut-brain axis: how the microbiome influences anxiety and depression, Trends Neurosci 36 (5) (2013) 305–312 https://www.researchednutritionals.com/wp-content/uploads/2017/04/gut-brainaxis-how-the-microbiome-influences-anxiety-and-depression.pdf.
[21]

G. Lippi, E. Danese, C. Mattiuzzi, et al., The Intriguing Link between the Intestinal Microbiota and Cardiovascular Disease, SeminThrombHemost 43 (6) (2017) 609–613, doi: 10.1055/s-0036-159790.

[22]

W.H. Tang, T. Kitai, S.L. Hazen, Gut microbiota in cardiovascular health and disease, Circ. Res 120 (7) (2017) 1183–1196, doi: 10.1161/CIRCRESAHA.117.309715.

[23]

J. Ni, G.D. Wu, L. Albenberg, et al., Gut microbiota and IBD: causation or correlation? Nat. Rev. GastroenterolHepatol 4 (10) (2017) 573–584, doi: 10.1038/nrgastro.2017.88.

[24]

A. Srivastava, J. Gupta, S. Kumar, et al., Gut biofilm forming bacteria in inflammatory bowel disease, Microb. Pathog 112 (2017) 5–14, doi: 10.1016/j.micpath.2017.09.041.

[25]

L. Wen, A. Duffy, Factors influencing the gut microbiota, inflammation, and type 2 diabetes, J Nutr 147 (7) (2017) 1468S–11475, doi: 10.3945/jn.116.240754.

[26]

C. McKenzie, J. Tan, L. Macia, et al., The nutrition-gut microbiomephysiology axis and allergic diseases, Immunol Rev 278 (1) (2017) 277–295, doi: 10.1111/imr.12556.

[27]

G. Knaysi, A.R. Smith, J.M. Wilson, et al., The skin as a route of allergen exposure: part Ⅱ. Allergens and role of the microbiome and environmental exposures, Curr. Allergy Asthma Rep (1) (2017) 7, doi: 10.1007/s11882-017-0675-4.

[28]

F.B. Seganfredo, C.A. Blume, M. Moehlecke, et al., Weight-loss interventions and gut microbiota changes in overweight and obese patients: a systematic review, Obes. Rev 18 (8) (2017) 832–851, doi: 10.1111/obr.12541.

[29]

J.R. Araújo, J. Tomas, C. Brenner, et al., Impact of high-fat diet on the intestinal microbiota and small intestinal physiology before and after the onset of obesity, Biochimie 141 (2017) 97–106, doi: 10.1016/j.biochi.2017.05.019.

[30]

A. Mangalam, S.K. Shahi, D. Luckey, et al., Human gut-derived commensal bacteria suppress CNS inflammatory and demyelinating disease, Cell Rep 20 (6) (2017) 1269–1277, doi: 10.1016/j.celrep.2017.07.031.

[31]

H. Tremlett, K.C. Bauer, S. Appel-Cresswell, et al., The gut microbiome in human neurological disease: a review, Ann. Neurol 81 (3) (2017) 369–382, doi: 10.1002/ana.24901.

[32]

T.S. Postler, S. Ghosh, Understanding the holobiont: how microbial metabolites affect human health and shape the immune system, Cell Metab 26 (1) (2017) 110–130, doi: 10.1016/j.cmet.2017.05.008.

[33]

Y.Y. Hsieh, S.Y. Tung, H.Y. Pan, et al., Increased abundance of clostridium and fusobacterium in gastric microbiota of patients with gastric cancer in Taiwan, Sci. Rep 8 (1) (2018) 158, doi: 10.1038/s41598-017-18596-0.

[34]

A. Snyder, E. Pamer, J. Wolchok, Immunotherapy. Could microbial therapy boost cancer immunotherapy? Science 350 (6264) (2015) 1031–1032, doi: 10.1126/science.aad7706.

[35]

A.M. Sheflin, A.K. Whitney, T.L. Weir, Cancer-promoting effects of microbial dysbiosis, Curr. Oncol. Rep 16 (10) (2014) 406 PMID: 25123079; PMCID: PMC4180221, doi: 10.1007/s11912-014-0406-0.

[36]

C.P. Moran, F. Shanahan, Gut microbiota and obesity: role in aetiology and potential therapeutic target, Best Pract. Res. Clin. Gastroenterol 28 (4) (2014) 585–597, doi: 10.1016/j.bpg.2014.07.005.

[37]

J.M. Dahlhamer, E.P. Zammitti, B.W. Ward, et al., Prevalence of inflammatory bowel disease among adults aged ≥18 years - United States, 2015, MMWR Morb. Mortal Wkly Rep 65 (42) (2016) 166–1169, doi: 10.15585/mmwr.mm6542a3.

[38]
J. Ni, G.D. Wu, L. Albenberg, et al., Gut microbiota and IBD: causation or correlation? Nat. Rev. Gastroenterol. Hepatol 14 (10) (2017) 573–584 Epub 2017 Jul 19 PMID28743984PMCIDPMC5880536, doi: 10.1038/nrgastro.2017.88.
[39]

Y. Chen, J. Zhou, L. Wang, Role and mechanism of gut microbiota in human disease, Front. Cell Infect. Microbiol (11) (2021) 625913 PMID: 33816335; PMCID: PMC8010197, doi: 10.3389/fcimb.2021.625913.

[40]
A. Bhattacharjee, Oral micro-particulate colon targeted drug delivery system for the treatment of Crohn's disease: a review, Int. J. Life Sci. Biotech. Pharm. Res. 1 (2) (2012) 31–39 Retrieved on 15.05.2022 from http://www.ijlbpr.com/index.php?m=content&c=index&a=show&catid=115&id=379.
[41]

A.B. Hall, M. Yassour, J. Sauk, et al., A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients, Genome Med 9 (1) (2017) 103, doi: 10.1186/s13073-017-0490-5.

[42]

A.F. Ahmad, G. Dwivedi, F. O'Gara, et al., The gut microbiome and cardiovascular disease: current knowledge and clinical potential, Am J Physiol. Heart Circ. Physiol 317 (5) (2019) H923–H938, doi: 10.1152/ajpheart.00376.2019.

[43]

A. Albillos, A. de Gottardi, M. Rescigno, The gut-liver axis in liver disease: pathophysiological basis for therapy, J. Hepatol. 72 (3) (2020) 558–577, doi: 10.1016/j.jhep.2019.10.003.

[44]

O. Koren, A. Spor, J. Felin, et al., Human oral, gut, and plaque microbiota in patients with atherosclerosis, Proc. Natl. Acad. Sci. U S A. 108 (Suppl 1) (2011) 4592–4598, doi: 10.1073/pnas.1011383107.

[45]

K. Lau, V. Srivatsav, A. Rizwan, et al., Bridging the gap between gut microbial dysbiosis and cardiovascular diseases, Nutrients 9 (8) (2017) 859 PMID: 28796176; PMCID: PMC5579652., doi: 10.3390/nu9080859.

[46]

J.L. Pluznick, Renal and cardiovascular sensory receptors and blood pressure regulation, Am. J. Physiol. Renal Physiol 305 (4) (2013) 439–444, doi: 10.1152/ajprenal.00252.2013.

[47]

E.M. Richards, C.J. Pepine, M.K. Raizada, et al., The gut, its microbiome, and hypertension, Curr. Hypertens. Rep 19 (4) (2017) 36, doi: 10.1007/s11906-017-0734-1.

[48]

E. Mutlu, A. Keshavarzian, P. Engen, et al., Intestinal dysbiosis: a possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats, Alcohol Clin. Exp. Res 33 (10) (2009) 1836–1846, doi: 10.1111/j.1530-0277.2009.01022.x.

[49]

D. Paquin-Proulx, C. Ching, I. Vujkovic-Cvijin, et al., Bacteroides are associated with GALT iNKT cell function and reduction of microbial translocation in HIV-1 infection, Mucosal Immunol 10 (1) (2017) 69–78, doi: 10.1038/mi.2016.34.

[50]

L. Karthik, G. Kumar, T. Keswani, et al., Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound, PLoS One 9 (3) (2014) e90972, doi: 10.1371/journal.pone.0090972.

[51]

F. Gevi, L. Zolla, S. Gabriele, et al., Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism, Mol. Autism 7 (2016) 47, doi: 10.1186/s13229-016-0109-5.

[52]

C.A. Cason, K.T. Dolan, G. Sharma, et al., Plasma microbiome-modulated indole- and phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes, J Vasc Surg 68 (5) (2018) 1552–1562. e7, doi: 10.1016/j.jvs.2017.09.029.

[53]

L.T. Stiemsma, S.E. Turvey, Asthma and the microbiome: defining the critical window in early life, Allergy Asthma Clin. Immunol 13 (2017) 3, doi: 10.1186/s13223-016-0173-6.

[54]

Z. Guo, J. Zhang, Z. Wang, et al., Intestinal microbiota distinguish gout patients from healthy humans, Sci Rep. 6 (2016) 20602, doi: 10.1038/srep20602.

[55]

L. Derosa, B. Routy, G. Kroemer, et al., The intestinal microbiota determines the clinical efficacy of immune checkpoint blockers targeting PD-1/PD-L1, Oncoimmunology 7 (6) (2018) 1434468, doi: 10.1080/2162402X.2018.1434468.

[56]

Y. Zheng, T. Wang, X. Tu, et al., Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma, J. Immunothe Can. 7 (1) (2019) 1–7, doi: 10.1186/s40425-019-0650-9.

[57]

R.N. Alolga, Y. Fan, Z. Chen, et al., Significant pharmacokinetic differences of berberine are attributable to variations in gut microbiota between Africans and Chinese, Sci Rep 6 (2016) 27671, doi: 10.1038/srep27671.

[58]

M. Zimmermann, M. Zimmermann-Kogadeeva, R. Wegmann, et al., Mapping human microbiome drug metabolism by gut bacteria and their genes, Nature 570 (2019) 462–467, doi: 10.1038/s41586-019-1291-3.

[59]
S.E. Winter, M.G. Winter, M.N. Xavier, et al., Host-derived nitrate boosts growth of E. coli in the inflamed gut, Science 339 (6120) (2013) 708–711 2013, doi: 10.1126/science.1232467.
[60]

J.W. Kuo, C.H. Kuo, F.C. Wang, et al., Fecal microbiota transplantation: review and update, J. Form Med. Assoc 118 (2019) S23–S31, doi: 10.1016/j.jfma.2018.08.011.

[61]

A. Khoruts, J. Dicksved, J.K. Jansson, et al., Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea, J. Clin. Gastroent 44 (5) (2010) 354–360, doi: 10.1097/MCG.0b013e3181c87e02.

[62]

M.J. Hamilton, A.R. Weingarden, M.J. Sadowsky, et al., Standardized frozen preparation for transplantation of fecal microbiota for Recurrentclostridiumdifficileinfection, Off. J. Am. Coll. Gastrol. ACG. 107 (5) (2012) 761–767, doi: 10.1038/ajg.2011.482.

[63]

Z. Kassam, C.H. Lee, Y. Yuan, et al., Fecal Microbiota Transplantation forClostridiumdifficileInfection: systematic Review and Meta-Analysis, Off. J. Am. Coll. Gastrol. ACG 108 (4) (2013) 500–508, doi: 10.1038/ajg.2013.59.

[64]

E. Gough, H. Shaikh, A.R. Mangesn, Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection, Clin. Infect. Dis 53 (10) (2011) 994–1002 2011, doi: 10.1093/cid/cir632.

[65]

E. Van Nood, A. Vrieze, M. Nieuwdorp, et al., Duodenal infusion of donor feces for recurrent Clostridium difficile, N. Engl. J. Med 368 (5) (2013) 407–415, doi: 10.1056/NEJMoa1205037.

[66]
T. Marrs, J. Walter, Pros and cons: is faecal microbiota transplantation a safe and efficient treatment option for gut dysbiosis? Allergy 76 (7) (2021) 2312–2317 Epub 2021 Mar 9. PMID: 33483999, doi: 10.1111/all.14750.
[67]

S. Paramsothy, M.A. Kamm, N.O. Kaakoush, et al., J. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial, Lancet. 389 (10075) (2017) 1218–1228, doi: 10.1016/S0140-6736(17)30182-4.

[68]

B. Cui, P. Li, L. Xu, et al., Step-up fecal microbiota transplantation strategy: a pilot study for steroid-dependent ulcerative colitis, J. Transl Med 13 (1) (2015) 1–12, doi: 10.1186/s12967-015-0646-2.

[69]

M.Q. Xu, H.L. Cao, W.Q. Wang, et al., Fecal microbiota transplantation broadening its application beyond intestinal disorders, World J. Gastroent. WJG 21 (1) (2015) 102, doi: 10.3748/wjg.v21.i1.102.

[70]

O.C. Aroniadis&, L.J. Brandt, Fecal microbiota transplantation: past, present and future, Curr. Opin. Gastroenterol. 29 (1) (2013) 79–84, doi: 10.1097/MOG.0b013e32835a4b3e.

[71]

S.D.H. Malnick, D. Fisher, M. Somin, et al., Treating the metabolic syndrome by fecal transplantation-current status, Biology (Basel) 10 (5) (2021) 447 PMID: 34065241; PMCID: PMC8161223, doi: 10.3390/biology10050447.

[72]

B. Routy, E. Le Chatelier, L. Derosa, et al., Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors, Science 359 (6371) (2018) 91–97, doi: 10.1126/science.aan3706.

[73]

D. Donglin, T. Wei, Z. Chao, et al., Fecal Microbiota transplantation is a promising method to restore gut microbiota dysbiosis and relieve neurological deficits after traumatic brain injury, Oxid. Med. Cell Long (2021) 1–21, doi:10.1155/2021/5816837.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 20 June 2022
Revised: 07 August 2022
Accepted: 16 August 2022
Published: 24 August 2022
Issue date: September 2022

Copyright

© 2022 The Author(s). Published by Elsevier Ltd on behalf of Tsinghua University Press.

Acknowledgements

The authors thank Techno India University, West Bengal, for support and encouragement during this study.

Rights and permissions

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Return