AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

CO2 capture and in-situ conversion: recent progresses and perspectives

Bin ShaoaYun ZhangaZheyi SunaJianping Lib,cZihao GaoaZhicheng XieaJun Hua,b( )Honglai Liua
School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
ECUST School of Carbon Neutrality Future Technology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
Show Author Information

HIGHLIGHTS

● The process of integrating CO2 capture and conversion at intermediate or high temperature are discussed in detail.

● The process parameters as well as the components of real flue gas have a great influence on the performance of dualfunction materials.

● The dual-fluidized-bed reactors are proposed in view of up-scaling the iCCC technology to the industrial scale.

Graphical Abstract

Abstract

Global warming caused by excess carbon dioxide (CO2) emission has been a focus of the world. The development of neutral carbon technologies becomes a strategic choice for the sustainable human society. Integrating CO2 capture and conversion (iCCC) technology can simultaneously convert the captured CO2 from flue gas into value-added chemicals, which saves great energies and expenses incurred in CO2 compression and transportation processes of conventional carbon capture, utilization, and storage (CCUS) technology. The present review critically discusses the dual-function materials (DFMs) and the iCCC technology at intermediate temperature for methane production and high temperature for syngas production. The design of reactor and optimization of operation conditions are emphasized from the perspective of industrial applications. The dual-fixed-bed reactors mode by switching the flue gas and reactant gases, and the dual-fluidized-bed reactors mode by the circulation of DFMs particles are comparatively reviewed. We hope this review can stimulate further studies including designing and fabricating feasible DFMs, exploring realistic catalytic process for CO2 conversion to high value-added chemicals, developing workable reactor modes and optimizing operation conditions, and establishing industrial demonstration for real applications of iCCC technology in the future.

References

[1]

J. Rogelj, M. den Elzen, N. Höhne, T. Fransen, H. Fekete, H. Winkler, R. Schaeffer, F. Sha, K. Riahi, M. Meinshausen, Paris Agreement climate proposals need a boost to keep warming well below 2 °C, Nature 534 (2016) 631–639.

[2]

W. Gao, S. Liang, R. Wang, Q. Jiang, Y. Zhang, Q. Zheng, B. Xie, C.Y. Toe, X. Zhu, J. Wang, L. Huang, Y. Gao, Z. Wang, C. Jo, Q. Wang, L. Wang, Y. Liu, B. Louis, J. Scott, A.C. Roger, R. Amal, H. He, S.E. Park, Industrial carbon dioxide capture and utilization: state of the art and future challenges, Chem. Soc. Rev. 49 (2020) 8584–8686.

[3]

J. Leclaire, D.J. Heldebrant, A call to (green) arms: a rallying cry for green chemistry and engineering for CO2 capture, utilisation and storage, Green Chem. 20 (2018) 5058–5081.

[4]

H.-J. Ho, A. Iizuka, E. Shibata, Carbon capture and utilization technology without carbon dioxide purification and pressurization: a review on its necessity and available technologies, Ind. Eng. Chem. Res. 58 (2019) 8941–8954.

[5]

D.H. Moon, S.S. Park, S.-P. Kang, W. Lee, K.T. Park, D.H. Chun, G.B. Rhim, S.- M. Hwang, M.H. Youn, S.K. Jeong, Determination of kinetic factors of CO2 mineralization reaction for reducing CO2 emissions in cement industry and verification using CFD modeling, Chem. Eng. J. 420 (2021) 129420.

[6]

L. Ren, S. Zhou, T. Peng, X. Ou, A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China, Renew. Sustain. Energy Rev. 143 (2021) 110846.

[7]

A. Elkamel, M. Ba-Shammakh, P. Douglas, E. Croiset, An optimization approach for integrating planning and CO2 emission reduction in the petroleum refining industry, Ind. Eng. Chem. Res. 47 (2008) 760–776.

[8]

A. Bermejo-López, B. Pereda-Ayo, J.A. González-Marcos, J.R. González-Velasco, Simulation-based optimization of cycle timing for CO2 capture and hydrogenation with dual function catalyst, Catal. Today (2021), https://doi.org/10.1016/j.cattod.2021.08.023.

[9]

S. Bode, M. Jung, Carbon dioxide capture and storage-liability for non-permanence under the UNFCCC, Int. Environ. Agreements Polit. Law Econ. 6 (2006) 173–186.

[10]

Z. Zhang, S.-Y. Pan, H. Li, J. Cai, A.G. Olabi, E.J. Anthony, V. Manovic, Recent advances in carbon dioxide utilization, Renew. Sustain. Energy Rev. 125 (2020) 109799.

[11]

O. Massarweh, A.S. Abushaikha, A review of recent developments in CO2 mobility control in enhanced oil recovery, Petroleum (2021), https://doi.org/10.1016/ j.petlm.2021.05.002.

[12]

Q. Yi, W. Li, J. Feng, K. Xie, Carbon cycle in advanced coal chemical engineering, Chem. Soc. Rev. 44 (2015) 5409–5445.

[13]

E.C. Ra, K.Y. Kim, E.H. Kim, H. Lee, K. An, J.S. Lee, Recycling carbon dioxide through catalytic hydrogenation: recent key developments and perspectives, ACS Catal. 10 (2020) 11318–11345.

[14]

M.A. Sabri, S. Al Jitan, D. Bahamon, L.F. Vega, G. Palmisano, Current and future perspectives on catalytic-based integrated carbon capture and utilization, Sci. Total Environ. 790 (2021) 148081.

[15]

M.S. Duyar, M.A.A. Treviño, R.J. Farrauto, Dual function materials for CO2 capture and conversion using renewable H2, Appl. Catal. B Environ. 168–169 (2015) 370–376.

[16]

M.S. Duyar, S. Wang, M.A. Arellano-Treviño, R.J. Farrauto, CO2 utilization with a novel dual function material (DFM) for capture and catalytic conversion to synthetic natural gas: an update, J. CO2 Utiliz. 15 (2016) 65–71.

[17]

C.V. Miguel, M.A. Soria, A. Mendes, L.M. Madeira, A sorptive reactor for CO2 capture and conversion to renewable methane, Chem. Eng. J. 322 (2017) 590–602.

[18]

A. Al-Mamoori, A.A. Rownaghi, F. Rezaei, Combined capture and utilization of CO2 for syngas production over dual-function materials, ACS Sustain. Chem. Eng. 6 (2018) 13551–13561.

[19]

H. Sun, J. Wang, J. Zhao, B. Shen, J. Shi, J. Huang, C. Wu, Dual functional catalytic materials of Ni over Ce-modified CaO sorbents for integrated CO2 capture and conversion, Appl. Catal. B Environ. 244 (2019) 63–75.

[20]

A. Al-Mamoori, S. Lawson, A.A. Rownaghi, F. Rezaei, Oxidative dehydrogenation of ethane to ethylene in an integrated CO2 capture-utilization process, Appl. Catal. B Environ. 278 (2020) 119329.

[21]

A. Al-Mamoori, T. Alghamdi, A.A. Rownaghi, F. Rezaei, Enhancing the ethylene yield over hybrid adsorbent catalyst materials in CO2-assisted oxidative dehydrogenation of ethane by tuning catalyst support properties, Energy Fuels 34 (2020) 14483–14492.

[22]

L.F. Bobadilla, J.M. Riesco-García, G. Penelás-Pérez, A. Urakawa, Enabling continuous capture and catalytic conversion of flue gas CO2 to syngas in one process, J. CO2 Utiliz. 14 (2016) 106–111.

[23]

F. Wang, S. He, H. Chen, B. Wang, L. Zheng, M. Wei, D.G. Evans, X. Duan, Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation, J. Am. Chem. Soc. 138 (2016) 6298–6305.

[24]

M. Inoue, K. Miyazaki, B. Lu, C. Song, Y. Honda, M. Arao, T. Ohwaki, M. Matsumoto, H. Imai, A. Shima, Y. Sone, R.C. Peng, T. Shibayanagi, T. Abe, Structure-sensitivity factors based on highly active CO2 methanation catalysts prepared via the polygonal barrel-sputtering method, J. Phys. Chem. C 124 (2020) 10016–10025.

[25]

Y. Song, E. Ozdemir, S. Ramesh, A. Adishev, S. Subramanian, A. Harale, M. Albuali, A. Fadhel Bandar, A. Jamal, D. Moon, H. Choi Sun, T. Yavuz Cafer, Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO, Science 367 (2020) 777–781.

[26]

B. Shao, G. Hu, K.A.M. Alkebsi, G. Ye, X. Lin, W. Du, J. Hu, M. Wang, H. Liu, F. Qian, Heterojunction-redox catalysts of FexCoyMg10CaO for high-temperature CO2 capture and in situ conversion in the context of green manufacturing, Energy Environ. Sci. 14 (2021) 2291–2301.

[27]

J. Cored, A. García-Ortiz, S. Iborra, M.J. Climent, L. Liu, C.-H. Chuang, T.-S. Chan, C. Escudero, P. Concepción, A. Corma, Hydrothermal synthesis of ruthenium nanoparticles with a metallic core and a ruthenium carbide shell for lowtemperature activation of CO2 to methane, J. Am. Chem. Soc. 141 (2019) 19304–19311.

[28]

X. Xu, L. Liu, Y. Tong, X. Fang, J. Xu, D.-e. Jiang, X. Wang, Facile Cr3+-doping strategy dramatically promoting Ru/CeO2 for low-temperature CO2 methanation: unraveling the roles of surface oxygen vacancies and hydroxyl groups, ACS Catal. 11 (2021) 5762–5775.

[29]

X. Yan, W. Sun, L. Fan, P.N. Duchesne, W. Wang, C. Kübel, D. Wang, S.G.H. Kumar, Y.F. Li, A. Tavasoli, T.E. Wood, D.L.H. Hung, L. Wan, L. Wang, R. Song, J. Guo, I. Gourevich, A.A. Jelle, J. Lu, R. Li, B.D. Hatton, G.A. Ozin, Nickel@Siloxene catalytic nanosheets for high-performance CO2 methanation, Nat. Commun. 10 (2019) 2608.

[30]

W.L. Vrijburg, E. Moioli, W. Chen, M. Zhang, B.J.P. Terlingen, B. Zijlstra, I.A.W. Filot, A. Züttel, E.A. Pidko, E.J.M. Hensen, Efficient base-metal NiMn/TiO2 catalyst for CO2 methanation, ACS Catal. 9 (2019) 7823–7839.

[31]

W. Wang, C. Duong-Viet, H. Ba, W. Baaziz, G. Tuci, S. Caporali, L. Nguyen-Dinh, O. Ersen, G. Giambastiani, C. Pham-Huu, Nickel nanoparticles decorated nitrogendoped carbon nanotubes (Ni/N-CNT); a robust catalyst for the efficient and selective CO2 methanation, ACS Appl. Energy Mater. 2 (2019) 1111–1120.

[32]

W. Li, A. Zhang, X. Jiang, C. Chen, Z. Liu, C. Song, X. Guo, Low temperature CO2 methanation: ZIF-67-derived Co-based porous carbon catalysts with controlled crystal morphology and size, ACS Sustain. Chem. Eng. 5 (2017) 7824–7831.

[33]

A. Parastaev, V. Muravev, E. Huertas Osta, A.J.F. van Hoof, T.F. Kimpel, N. Kosinov, E.J.M. Hensen, Boosting CO2 hydrogenation via size-dependent metal–support interactions in cobalt/ceria-based catalysts, Nat. Catal. 3 (2020) 526–533.

[34]

B. Jurca, L. Peng, A. Primo, A. Gordillo, V.I. Parvulescu, H. García, Co–Fe nanoparticles wrapped on N-doped graphitic carbons as highly selective CO2 methanation catalysts, ACS Appl. Mater. Interfaces 13 (2021) 36976–36981.

[35]

L. Proaño, E. Tello, M.A. Arellano-Treviño, S. Wang, R.J. Farrauto, M. Cobo, In-situ DRIFTS study of two-step CO2 capture and catalytic methanation over Ru, “Na2O”/ Al2O3 Dual Functional Material, Appl. Surf. Sci. 479 (2019) 25–30.

[36]

A. Bermejo-López, B. Pereda-Ayo, J.A. González-Marcos, J.R. González-Velasco, Modeling the CO2 capture and in situ conversion to CH4 on dual function Ru-Na2CO3/Al2O3 catalyst, J. CO2 Utiliz. 42 (2020) 101351.

[37]

J.V. Veselovskaya, P.D. Parunin, O.V. Netskina, A.G. Okunev, A novel process for renewable methane production: combining direct air capture by K2CO3/Alumina sorbent with CO2 methanation over Ru/Alumina catalyst, Top. Catal. 61 (2018) 1528–1536.

[38]

H. Sun, Y. Zhang, S. Guan, J. Huang, C. Wu, Direct and highly selective conversion of captured CO2 into methane through integrated carbon capture and utilization over dual functional materials, J. CO2 Utiliz. 38 (2020) 262–272.

[39]

S.J. Park, M.P. Bukhovko, C.W. Jones, Integrated capture and conversion of CO2 into methane using NaNO3/MgO + Ru/Al2O3 as a catalytic sorbent, Chem. Eng. J. 420 (2021) 130369.

[40]

H. Sun, Y. Wang, S. Xu, A.I. Osman, G. Stenning, J. Han, S. Sun, D. Rooney, P.T. Williams, F. Wang, C. Wu, Understanding the interaction between active sites and sorbents during the integrated carbon capture and utilization process, Fuel 286 (2021) 119308.

[41]

L. Hu, A. Urakawa, Continuous CO2 capture and reduction in one process: CO2 methanation over unpromoted and promoted Ni/ZrO2, J. CO2 Utiliz. 25 (2018) 323–329.

[42]

M.A. Arellano-Treviño, Z. He, M.C. Libby, R.J. Farrauto, Catalysts and adsorbents for CO2 capture and conversion with dual function materials: limitations of Nicontaining DFMs for flue gas applications, J. CO2 Utiliz. 31 (2019) 143–151.

[43]

S.B. Jo, J.H. Woo, J.H. Lee, T.Y. Kim, H.I. Kang, S.C. Lee, J.C. Kim, A novel integrated CO2 capture and direct methanation process using Ni/CaO catalsorbents, Sustain. Energy Fuels 4 (2020) 4679–4687.

[44]

Z. Zhou, N. Sun, B. Wang, Z. Han, S. Cao, D. Hu, T. Zhu, Q. Shen, W. Wei, 2Dlayered Ni-MgO-Al2O3 nanosheets for integrated capture and methanation of CO2, ChemSusChem 13 (2020) 360–368.

[45]

A. Bermejo-López, B. Pereda-Ayo, J.A. González-Marcos, J.R. González-Velasco, Ni loading effects on dual function materials for capture and in-situ conversion of CO2 to CH4 using CaO or Na2CO3, J. CO2 Utiliz. 34 (2019) 576–587.

[46]

A. Bermejo-López, B. Pereda-Ayo, J.A. González-Marcos, J.R. González-Velasco, Mechanism of the CO2 storage and in situ hydrogenation to CH4. Temperature and adsorbent loading effects over Ru-CaO/Al2O3 and Ru-Na2CO3/Al2O3 catalysts, Appl. Catal. B Environ. 256 (2019) 117845.

[47]

Q. Zheng, R. Farrauto, A. Chau Nguyen, Adsorption and methanation of flue gas CO2 with dual functional catalytic materials: a parametric study, Ind. Eng. Chem. Res. 55 (2016) 6768–6776.

[48]

J.V. Veselovskaya, P.D. Parunin, O.V. Netskina, L.S. Kibis, A.I. Lysikov, A.G. Okunev, Catalytic methanation of carbon dioxide captured from ambient air, Energy 159 (2018) 766–773.

[49]

C. Jeong-Potter, R. Farrauto, Feasibility study of combining direct air capture of CO2 and methanation at isothermal conditions with dual function materials, Appl. Catal. B Environ. 282 (2021) 119416.

[50]

F. Kosaka, Y. Liu, S.-Y. Chen, T. Mochizuki, H. Takagi, A. Urakawa, K. Kuramoto, Enhanced activity of integrated CO2 capture and reduction to CH4 under pressurized conditions toward atmospheric CO2 utilization, ACS Sustain. Chem. Eng. 9 (2021) 3452–3463.

[51]

M.A. Arellano-Treviño, N. Kanani, C.W. Jeong-Potter, R.J. Farrauto, Bimetallic catalysts for CO2 capture and hydrogenation at simulated flue gas conditions, Chem. Eng. J. 375 (2019) 121953.

[52]

A. Porta, C.G. Visconti, L. Castoldi, R. Matarrese, C. Jeong-Potter, R. Farrauto, L. Lietti, Ru-Ba synergistic effect in dual functioning materials for cyclic CO2 capture and methanation, Appl. Catal. B Environ. 283 (2021) 119654.

[53]

K. Cheng, L. Zhang, J. Kang, X. Peng, Q. Zhang, Y. Wang, Selective transformation of syngas into gasoline-range hydrocarbons over mesoporous H-ZSM-5-supported cobalt nanoparticles, Chem. Eur. J. 21 (2015) 1928–1937.

[54]

X. Peng, K. Cheng, J. Kang, B. Gu, X. Yu, Q. Zhang, Y. Wang, Impact of hydrogenolysis on the selectivity of the Fischer–Tropsch synthesis: diesel fuel production over mesoporous zeolite-Y-supported cobalt nanoparticles, Angew. Chem. Int. Ed. 54 (2015) 4553–4556.

[55]

Q. Cheng, Y. Tian, S. Lyu, N. Zhao, K. Ma, T. Ding, Z. Jiang, L. Wang, J. Zhang, L. Zheng, F. Gao, L. Dong, N. Tsubaki, X. Li, Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer–Tropsch synthesis, Nat. Commun. 9 (2018) 3250–3259.

[56]

F. Jiao, J. Li, X. Pan, J. Xiao, H. Li, H. Ma, M. Wei, Y. Pan, Z. Zhou, M. Li, S. Miao, J. Li, Y. Zhu, D. Xiao, T. He, J. Yang, F. Qi, Q. Fu, X. Bao, Selective conversion of syngas to light olefins, Science 351 (2016) 1065–1068.

[57]

L. Zhong, F. Yu, Y. An, Y. Zhao, Y. Sun, Z. Li, T. Lin, Y. Lin, X. Qi, Y. Dai, L. Gu, J. Hu, S. Jin, Q. Shen, H. Wang, Cobalt carbide nanoprisms for direct production of lower olefins from syngas, Nature 538 (2016) 84–87.

[58]

Y. Xu, X. Li, J. Gao, J. Wang, G. Ma, X. Wen, Y. Yang, Y. Li, M. Ding, A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products, Science 371 (2021) 610–613.

[59]

K. Cheng, W. Zhou, J. Kang, S. He, S. Shi, Q. Zhang, Y. Pan, W. Wen, Y. Wang, Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability, Inside Chem. 3 (2017) 334–347.

[60]

B. Zhao, P. Zhai, P. Wang, J. Li, T. Li, M. Peng, M. Zhao, G. Hu, Y. Yang, Y.-W. Li, Q. Zhang, W. Fan, D. Ma, Direct transformation of syngas to aromatics over Na-ZnFe5C2 and hierarchical HZSM-5 tandem catalysts, Inside Chem. 3 (2017) 323–333.

[61]

C. Liu, J. Su, Y. Xiao, J. Zhou, S. Liu, H. Zhou, Y. Ye, Y. Lu, Y. Zhang, W. Jiao, L. Zhang, Y. Wang, C. Wang, X. Zheng, Z. Xie, Constructing directional component distribution in a bifunctional catalyst to boost the tandem reaction of syngas conversion, Chem. Catal. 1 (2021) 896–907.

[62]

P. Kaiser, R.B. Unde, C. Kern, A. Jess, Production of liquid hydrocarbons with CO2 as carbon source based on reverse water-gas shift and fischer-tropsch synthesis, Chem. Ing. Tech. 85 (2013) 489–499.

[63]

E. Gomez, B. Yan, S. Kattel, J.G. Chen, Carbon dioxide reduction in tandem with light-alkane dehydrogenation, Nat. Rev. Chem. 3 (2019) 638–649.

[64]

S.M. Kim, P.M. Abdala, M. Broda, D. Hosseini, C. Copéret, C. Müller, Integrated CO2 capture and conversion as an efficient process for fuels from greenhouse gases, ACS Catal. 8 (2018) 2815–2823.

[65]

A. Abdulrasheed, A.A. Jalil, Y. Gambo, M. Ibrahim, H.U. Hambali, M.Y. Shahul Hamid, A review on catalyst development for dry reforming of methane to syngas: recent advances, Renew. Sustain. Energy Rev. 108 (2019) 175–193.

[66]

A. Löfberg, J. Guerrero-Caballero, T. Kane, A. Rubbens, L. Jalowiecki-Duhamel, Ni/CeO2 based catalysts as oxygen vectors for the chemical looping dry reforming of methane for syngas production, Appl. Catal. B Environ. 212 (2017) 159–174.

[67]

I.V. Yentekakis, P. Panagiotopoulou, G. Artemakis, A review of recent efforts to promote dry reforming of methane (DRM) to syngas production via bimetallic catalyst formulations, Appl. Catal. B Environ. 296 (2021) 120210.

[68]

Z. Lv, C. Qin, S. Chen, D.P. Hanak, C. Wu, Efficient-and-stable CH4 reforming with integrated CO2 capture and utilization using Li4SiO4 sorbent, Separ. Purif. Technol. 277 (2021) 119476.

[69]

S. Tian, F. Yan, Z. Zhang, J. Jiang, Calcium-looping reforming of methane realizes in situ CO2 utilization with improved energy efficiency, Sci. Adv. 5 (2019) eaav5077.

[70]

J. Hu, P. Hongmanorom, V.V. Galvita, Z. Li, S. Kawi, Bifunctional Ni-Ca based material for integrated CO2 capture and conversion via calcium-looping dry reforming, Appl. Catal. B Environ. 284 (2021) 119734.

[71]

B. Stoppacher, S. Bock, K. Malli, M. Lammer, V. Hacker, The influence of hydrogen sulfide contaminations on hydrogen production in chemical looping processes, Fuel 307 (2022) 121677.

[72]

A. Löfberg, T. Kane, J. Guerrero-Caballero, L. Jalowiecki-Duhamel, Chemical looping dry reforming of methane: toward shale-gas and biogas valorization, Chem. Eng. Process 122 (2017) 523–529.

[73]

H.M. Torres Galvis, K.P. de Jong, Catalysts for production of lower olefins from synthesis gas: a review, ACS Catal. 3 (2013) 2130–2149.

[74]

E. Gomez, B. Yan, S. Kattel, J.G. Chen, Carbon dioxide reduction in tandem with light-alkane dehydrogenation, Nat. Rev. Chem. 3 (2019) 638–649.

[75]

N. Ruthwik, D. Kavya, A. Shadab, N. Lingaiah, C. Sumana, Thermodynamic analysis of chemical looping combustion integrated oxidative dehydrogenation of propane to propylene with CO2, Chem. Eng. Process 153 (2020) 107959.

[76]

Y. Gambo, S. Adamu, G. Tanimu, I.M. Abdullahi, R.A. Lucky, M.S. Ba-Shammakh, M.M. Hossain, CO2-mediated oxidative dehydrogenation of light alkanes to olefins: advances and perspectives in catalyst design and process improvement, Appl. Catal. A-Gen. 623 (2021) 118273.

[77]

A.M. Mauerhofer, J. Fuchs, S. Müller, F. Benedikt, J.C. Schmid, H. Hofbauer, CO2 gasification in a dual fluidized bed reactor system: impact on the product gas composition, Fuel 253 (2019) 1605–1616.

[78]

T. Papalas, A.N. Antzaras, A.A. Lemonidou, Intensified steam methane reforming coupled with Ca-Ni looping in a dual fluidized bed reactor system: a conceptual design, Chem. Eng. J. 382 (2020) 122993.

[79]

M. Hervy, J. Maistrello, L. Brito, M. Rizand, E. Basset, Y. Kara, M. Maheut, Powerto-gas: CO2 methanation in a catalytic fluidized bed reactor at demonstration scale, experimental results and simulation, J. CO2 Utiliz. 50 (2021) 101610.

[80]

W. Kaminsky, Chemical recycling of plastics by fluidized bed pyrolysis, Fuel Commun. 8 (2021) 100023.

[81]

J.H. Lim, Y. Lee, J.H. Shin, K. Bae, J.H. Han, D.H. Lee, Hydrodynamic characteristics of gas-solid fluidized beds with shroud nozzle distributors for hydrochlorination of metallurgical-grade silicon, Powder Technol. 266 (2014) 312–320.

[82]

Z. Zhao, Q. Du, G. Zhao, J. Gao, H. Dong, Y. Cao, Q. Han, P. Yuan, L. Su, Fine particle emission from an industrial coal-fired circulating fluidized-bed boiler equipped with a fabric filter in China, Energy Fuels 28 (2014) 4769–4780.

[83]

Q. Liu, W. Zhong, A. Yu, C.-H. Wang, Modelling the co-firing of coal and biomass in a 10 kWth oxy-fuel fluidized bed, Powder Technol. 395 (2022) 43–59.

[84]

K.-C. Xie, Breakthrough and innovative clean and efficient coal conversion technology from a chemical engineering perspective, Chem. Eng. Sci. X 10 (2021) 100092.

[85]

J.-C. Charpentier, Modern chemical engineering in the framework of globalization, sustainability, and technical innovation, Ind. Eng. Chem. Res. 46 (2007) 3465–3485.

[86]

E. Nolasco, V.S. Vassiliadis, W. Kähm, S.D. Adloor, R.A. Ismaili, R. Conejeros, T. Espaas, N. Gangadharan, V. Mappas, F. Scott, Q. Zhang, Optimal control in chemical engineering: past, present and future, Comput. Chem. Eng. 155 (2021) 107528.

[87]

M. Haaf, A. Stroh, J. Hilz, M. Helbig, J. Ströhle, B. Epple, Process modelling of the calcium looping process and validation against 1 MWth pilot testing, Energy Procedia. 114 (2017) 167–178.

[88]

B. Li, Y. Li, H. Sun, Y. Wang, Z. Wang, Thermochemical heat storage performance of CaO pellets fabricated by extrusion-spheronization under harsh calcination conditions, Energy Fuels 34 (2020) 6462–6473.

[89]

J. Ströhle, J. Hilz, B. Epple, Performance of the carbonator and calciner during long-term carbonate looping tests in a 1 MWth pilot plant, J. Environ. Chem. Eng. 8 (2020) 103578.

[90]

V. Pawar, S. Appari, D.S. Monder, V.M. Janardhanan, Study of the combined deactivation due to sulfur poisoning and carbon deposition during biogas dry reforming on supported Ni catalyst, Ind. Eng. Chem. Res. 56 (2017) 8448–8455.

[91]

I.S. Omodolor, H.O. Otor, J.A. Andonegui, B.J. Allen, A.C. Alba-Rubio, Dualfunction materials for CO2 capture and conversion: a review, Ind. Eng. Chem. Res. 59 (2020) 17612–17631.

[92]

S. Sun, H. Sun, P.T. Williams, C. Wu, Recent advances in integrated CO2 capture and utilization: a review, Sustain. Energy Fuels 5 (2021) 4546–4559.

Green Chemical Engineering
Pages 189-198
Cite this article:
Shao B, Zhang Y, Sun Z, et al. CO2 capture and in-situ conversion: recent progresses and perspectives. Green Chemical Engineering, 2022, 3(3): 189-198. https://doi.org/10.1016/j.gce.2021.11.009

216

Views

3

Downloads

66

Crossref

65

Web of Science

84

Scopus

5

CSCD

Altmetrics

Received: 30 September 2021
Revised: 07 November 2021
Accepted: 17 November 2021
Published: 07 December 2021
© 2021 Institute of Process Engineering, Chinese Academy of Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return