AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Prediction of CO2 solubility in deep eutectic solvents using random forest model based on COSMO-RS-derived descriptors

Jingwen Wanga,bZhen SongbLifang ChenbTao Xua( )Liyuan DengcZhiwen Qib( )
Academy of Building Energy Efficiency, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
Department of Chemical Engineering, Norwegian University of Science and Technology, Sem Sælandsvei 4, 7491, Trondheim, Norway
Show Author Information

HIGHLIGHTS

● A QSPR model is developed for predicting CO2 solubility in DESs.

● Efficiency of the input variables is explored by a multiple linear regression model.

● Importance of the input variables in the QSPR model is ranked by random forest model.

● CO2 solubility predictions by QSPR model are compared to the COSMO-RS model.

● QSPR model is suggested to be a reliable tool for selecting DESs for CO2 capture.

Graphical Abstract

Abstract

This work presents the development of molecular-based mathematical model for the prediction of CO2 solubility in deep eutectic solvents (DESs). First, a comprehensive database containing 1011 CO2 solubility data in various DESs at different temperatures and pressures is established, and the COSMO-RS-derived descriptors of involved hydrogen bond acceptors and hydrogen bond donors of DESs are calculated. Afterwards, the efficiency of the input variables, i.e., temperature, pressure, COSMO-RS-derived descriptors of HBA and HBD as well as their molar ratio, is explored by a qualitative analysis of CO2 solubility in DESs using a simple multiple linear regression model. A machine learning method namely random forest is then employed to develop more accurate nonlinear quantitative structure-property relationship (QSPR) model. Combining the QSPR validation and comparisons with literature-reported models (i.e., COSMO-RS model, traditional thermodynamic models and equations of state methods), the developed QSPR model with COSMO-RS-derived parameters as molecular descriptors is suggested to be able to give reliable predictions of CO2 solubility in DESs and could be used as a useful tool in selecting DESs for CO2 capture processes.

References

[1]

Q. Zhang, K. De Oliveira Vigier, S. Royer, F. Jerome, Deep eutectic solvents: syntheses, properties and applications, Chem. Soc. Rev. 41 (2012) 7108–7146.

[2]

B.B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, J.M. Klein, A. Horton, L. Adhikari, T. Zelovich, B.W. Doherty, B. Gurkan, E.J. Maginn, A. Ragauskas, M. Dadmun, T.A. Zawodzinski, G.A. Baker, M.E. Tuckerman, R.F. Savinell, J.R. Sangoro, Deep eutectic solvents: a review of fundamentals and applications, Chem. Rev. 121 (2021) 1232–1285.

[3]

E.L. Smith, A.P. Abbott, K.S. Ryder, Deep eutectic solvents (DESs) and their applications, Chem. Rev. 114 (2014) 11060–11082.

[4]

H.Y. Cheng, Z.W. Qi, Applications of deep eutectic solvents for hard-to-separate liquid systems, Separ. Purif. Technol. 274 (2021) 119027.

[5]

R.Z. Wang, H. Qin, J.W. Wang, H.Y. Cheng, L.F. Chen, Z.W. Qi, Reactive extraction for intensifying 2-ethylhexyl acrylate synthesis using deep eutectic solvent [Im: 2PTSA], Green Energy Environ. 6 (2021) 405–412.

[6]

G. García, S. Aparicio, R. Ullah, M. Atilhan, Deep eutectic solvents: physicochemical properties and gas separation applications, Energy Fuels 29 (2015) 2616–2644.

[7]

Y. Liu, Z. Dai, Z. Zhang, S. Zeng, F. Li, X. Zhang, Y. Nie, L. Zhang, S. Zhang, X. Ji, Ionic liquids/deep eutectic solvents for CO2 capture: reviewing and evaluating, Green Energy Environ. 6 (2021) 314–328.

[8]

Z. Song, X. Hu, H. Wu, M. Mei, S. Linke, T. Zhou, Z. Qi, K. Sundmacher, Systematic screening of deep eutectic solvents as sustainable separation media exemplified by the CO2 capture process, ACS Sustain. Chem. Eng. 8 (2020) 8741–8751.

[9]

J. Wang, H. Cheng, Z. Song, L. Chen, L. Deng, Z. Qi, Carbon dioxide solubility in phosphonium-based deep eutectic solvents: an experimental and molecular dynamics study, Ind. Eng. Chem. Res. 58 (2019) 17514–17523.

[10]

Y. Zhang, X. Ji, X. Lu, Choline-based deep eutectic solvents for CO2 separation: review and thermodynamic analysis, Renew. Sustain. Energy Rev. 97 (2018) 436–455.

[11]

X. Li, M. Hou, B. Han, X. Wang, L. Zou, Solubility of CO2 in a choline chloride + urea eutectic mixture, J. Chem. Eng. Data 53 (2008) 548–550.

[12]

Y. Chen, N. Ai, G. Li, H. Shan, Y. Cui, D. Deng, Solubilities of carbon dioxide in eutectic mixtures of choline chloride and dihydric alcohols, J. Chem. Eng. Data 59 (2014) 1247–1253.

[13]

R.B. Leron, A. Caparanga, M.-H. Li, Carbon dioxide solubility in a deep eutectic solvent based on choline chloride and urea at T = 303.15 – 343.15 K and moderate pressures, J. Taiwan Inst. Chem. Eng. 44 (2013) 879–885.

[14]

R.B. Leron, M.H. Li, Solubility of carbon dioxide in a eutectic mixture of choline chloride and glycerol at moderate pressures, J. Chem. Thermodyn. 57 (2013) 131–136.

[15]

J. Wang, Z. Song, H. Cheng, L. Chen, L. Deng, Z. Qi, Computer-aided design of ionic liquids as absorbent for gas separation exemplified by CO2 capture cases, ACS Sustain. Chem. Eng. 6 (2018) 12025–12035.

[16]

C.H. Jiang, H.Y. Cheng, Z.X. Qin, R.Z. Wang, L.F. Chen, C. Yang, Z.W. Qi, X.C. Liu, COSMO-RS prediction and experimental verification of 1,5-pentanediamine extraction from aqueous solution by ionic liquids, Green Energy Environ. 6 (2021) 422–431.

[17]

R. Haghbakhsh, S. Raeissi, Modeling vapor-liquid equilibria of mixtures of SO2 and deep eutectic solvents using the CPA-NRTL and CPA-UNIQUAC models, J. Mol. Liq. 250 (2018) 259–268.

[18]

L.F. Zubeir, C. Held, G. Sadowski, M.C. Kroon, PC-SAFT modeling of CO2 solubilities in deep eutectic solvents, J. Phys. Chem. B 120 (2016) 2300–2310.

[19]

N.R. Mirza, N.J. Nicholas, Y. Wu, K.A. Mumford, S.E. Kentish, G.W. Stevens, Experiments and thermodynamic modeling of the solubility of carbon dioxide in three different deep eutectic solvents (DESs), J. Chem. Eng. Data 60 (2015) 3246–3252.

[20]

E.A. Crespo, L.P. Silva, J.O. Lloret, P.J. Carvalho, L.F. Vega, F. Llovell, J.A.P. Coutinho, A methodology to parameterize SAFT-type equations of state for solid precursors of deep eutectic solvents: the example of cholinium chloride, Phys. Chem. Chem. Phys. 21 (2019) 15046–15061.

[21]

M.B. Haider, R. Kumar, Solubility of CO2 and CH4 in sterically hindered aminebased deep eutectic solvents, Separ. Purif. Technol. 248 (2020) 117055.

[22]

Y.S. Zhao, R. Gani, R.M. Afzal, X.P. Zhang, S.J. Zhang, Ionic liquids for absorption and separation of gases: an extensive database and a systematic screening method, AIChE J. 63 (2017) 1353–1367.

[23]

J.L. Han, C.N. Dai, G.Q. Yu, Z.G. Lei, Parameterization of COSMO-RS model for ionic liquids, Green Energy Environ. 3 (2018) 247–265.

[24]

Y.Y. Zhang, X.Y. Ji, Y.J. Xie, X.H. Lu, Screening of conventional ionic liquids for carbon dioxide capture and separation, Appl. Energy 162 (2016) 1160–1170.

[25]

J. Yang, Z. Hou, G. Wen, P. Cui, Y. Wang, J. Gao, A brief review of the prediction of liquid-liquid equilibrium of ternary systems containing ionic liquids by the COSMO-SAC Model, J. Solut. Chem. 48 (2019) 1547–1563.

[26]

J. Zhang, L. Qin, D. Peng, H. Cheng, L. Chen, Z. Qi, COSMO-descriptor based computer-aided ionic liquid design for separation processes. Part Ⅱ: Task-specific design for extraction process, Chem. Eng. Sci. 162 (2017) 364–374.

[27]

D. Peng, J. Zhang, H. Cheng, L. Chen, Z. Qi, Computer-aided ionic liquid design for separation processes based on group contribution method and COSMO-SAC model, Chem. Eng. Sci. 159 (2017) 58–68.

[28]

A. Kamgar, S. Mohsenpour, F. Esmaeilzadeh, Solubility prediction of CO2, CH4, H2, CO and N2 in choline chloride/urea as an eutectic solvent using NRTL and COSMORS models, J. Mol. Liq. 247 (2017) 70–74.

[29]

H.S. Salehi, R. Hens, O.A. Moultos, T.J.H. Vlugt, Computation of gas solubilities in choline chloride urea and choline chloride ethylene glycol deep eutectic solvents using Monte Carlo simulations, J. Mol. Liq. 316 (2020) 113729.

[30]

R. Hens, T.J.H. Vlugt, Molecular simulation of vapor-liquid equilibria using the Wolf method for electrostatic interactions, J. Chem. Eng. Data 63 (2018) 1096–1102.

[31]

B. Sepehri, A review on created QSPR models for predicting ionic liquids properties and their reliability from chemometric point of view, J. Mol. Liq. 297 (2020) 112013.

[32]

A. Khajeh, M. Shakourian-Fard, K. Parvaneh, Quantitative structure-property relationship for melting and freezing points of deep eutectic solvents, J. Mol. Liq. 321 (2021) 114744.

[33]

T. Lemaoui, N.E.H. Hammoudi, I.M. Alnashef, M. Balsamo, A. Erto, B. Ernst, Y. Benguerba, Quantitative structure properties relationship for deep eutectic solvents using Sσ-profile as molecular descriptors, J. Mol. Liq. 309 (2020) 113165.

[34]

Y. Benguerba, I.M. Alnashef, A. Erto, M. Balsamo, B. Ernst, A quantitative prediction of the viscosity of amine based DESs using Sσ-profile molecular descriptors, J. Mol. Struct. 1184 (2019) 357–363.

[35]

X. Kang, C. Liu, S. Zeng, Z. Zhao, J. Qian, Y. Zhao, Prediction of Henry's law constant of CO2 in ionic liquids based on SEP and Sσ-profile molecular descriptors, J. Mol. Liq. 262 (2018) 139–147.

[36]

Y. Zhao, J. Gao, Y. Huang, R.M. Afzal, X. Zhang, S. Zhang, Predicting H2S solubility in ionic liquids by the quantitative structure-property relationship method using Sσ-profile molecular descriptors, RSC Adv. 6 (2016) 70405–70413.

[37]

D. Peng, F. Picchioni, Prediction of toxicity of ionic liquids based on GC-COSMO method, J. Hazard Mater. 398 (2020) 122964.

[38]

X. Kang, Z. Chen, Y. Zhao, Assessing the ecotoxicity of ionic liquids on Vibrio fischeri using electrostatic potential descriptors, J. Hazard Mater. 397 (2020) 122761.

[39]

T. Lemaoui, A.S. Darwish, N.E.H. Hammoudi, F. Abu Hatab, A. Attoui, I.M. Alnashef, Y. Benguerba, Prediction of electrical conductivity of deep eutectic solvents using COSMO-RS sigma profiles as molecular descriptors: a quantitative structure-property relationship study, Ind. Eng. Chem. Res. 59 (2020) 13343–13354.

[40]

Z. Song, H. Shi, X. Zhang, T. Zhou, Prediction of CO2 solubility in ionic liquids using machine learning methods, Chem. Eng. Sci. 223 (2020) 115752.

[41]

N.A. Kovdienko, P.G. Polishchuk, E.N. Muratov, A.G. Artemenko, V.E. Kuz'min, L. Gorb, F. Hill, J. Leszczynski, Application of random forest and multiple linear regression techniques to QSPR prediction of an aqueous solubility for military compounds, Mol. Inform. 29 (2010) 394–406.

[42]

G. Chen, Z. Song, Z. Qi, K. Sundmacher, Neural recommender system for the activity coefficient prediction and UNIFAC model extension of ionic liquid-solute systems, AIChE J. 67 (2021) e17171.

[43]

P. Chaudhari, N. Ade, L.M. Pérez, S. Kolis, C.V. Mashuga, Quantitative Structure-Property Relationship (QSPR) models for Minimum Ignition Energy (MIE) prediction of combustible dusts using machine learning, Powder Technol. 372 (2020) 227–234.

[44]

S. Chinta, R. Rengaswamy, Machine learning derived quantitative structure property relationship (QSPR) to predict drug solubility in binary solvent systems, Ind. Eng. Chem. Res. 58 (2019) 3082–3092.

[45]

N. Meftahi, M.L. Walker, B.J. Smith, Predicting aqueous solubility by QSPR modeling, J. Mol. Graph. Model. 106 (2021) 107901.

[46]

D.A. Saldana, L. Starck, P. Mougin, B. Rousseau, B. Creton, Prediction of flash points for fuel mixtures using machine learning and a novel equation, Energy Fuels 27 (2013) 3811–3820.

[47]

S. Yuan, Z. Jiao, N. Quddus, J.S. Kwon Ⅱ, C.V. Mashuga, Developing quantitative structure-property relationship models to predict the upper flammability limit using machine learning, Ind. Eng. Chem. Res. 58 (2019) 3531–3537.

[48]

S.P. David, M.O. Noel, C.G. Robert, B.O.M. John, Random forest models to predict aqueous solubility, J. Chem. Inf. Model. 47 (2007) 150–158.

[49]

Y. Mishina, R. Murata, Y. Yamauchi, T. Yamashita, H. Fujiyoshi, Boosted random forest, IEICE Trans. Info Syst. E98.D (2014) 1630–1636.

[50]

H. Saghafi, M.M. Ghiasi, A.H. Mohammadi, Analyzing the experimental data of CO2 equilibrium absorption in the aqueous solution of DEA plus MDEA with random forest and leverage method, Int. J. Greenh. Gas Con. 63 (2017) 329–337.

[51]

V. Venkatraman, B.K. Alsberg, Predicting CO2 capture of ionic liquids using machine learning, J. CO2 Util. 21 (2017) 162–168.

[52]

M. Aghaie, S. Zendehboudi, Estimation of CO2 solubility in ionic liquids using connectionist tools based on thermodynamic and structural characteristics, Fuel 279 (2020) 117984.

[53]

T. Wu, W.L. Li, M.Y. Chen, Y.M. Zhou, Q.Y. Zhang, Prediction of Henry's law constants of CO2 in imidazole ionic liquids using machine learning methods based on empirical descriptors, Chem. Pap. 75 (2020) 1619–1628.

[54]

F. Yusuf, T. Olayiwola, C. Afagwu, Application of Artificial Intelligence-based predictive methods in ionic liquid studies: a review, Fluid Phase Equlibr. 531 (2021) 112898.

[55]

L. Breiman, Random forests, Mach. Learn. 45 (2001) 5–32.

[56]

S. Sarmad, Y. Xie, J.P. Mikkola, X. Ji, Screening of deep eutectic solvents (DESs) as green CO2 sorbents: from solubility to viscosity, New J. Chem. 41 (2017) 290–301.

[57]

S. Zeng, X. Zhang, L. Bai, X. Zhang, H. Wang, J. Wang, D. Bao, M. Li, X. Liu, S. Zhang, Ionic-liquid-based CO2 capture systems: structure, interaction and process, Chem. Rev. 117 (2017) 9625–9673.

[58]

H. Ghaedi, M. Ayoub, S. Sufian, A.M. Shariff, S.M. Hailegiorgis, S.N. Khan, CO2 capture with the help of phosphonium-based deep eutectic solvents, J. Mol. Liq. 243 (2017) 564–571.

Green Chemical Engineering
Pages 431-440
Cite this article:
Wang J, Song Z, Chen L, et al. Prediction of CO2 solubility in deep eutectic solvents using random forest model based on COSMO-RS-derived descriptors. Green Chemical Engineering, 2021, 2(4): 431-440. https://doi.org/10.1016/j.gce.2021.08.002

217

Views

7

Downloads

72

Crossref

66

Web of Science

75

Scopus

1

CSCD

Altmetrics

Received: 24 June 2021
Revised: 20 July 2021
Accepted: 08 August 2021
Published: 10 August 2021
© 2021 Institute of Process Engineering, Chinese Academy of Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return