AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Recent advances in the coupling of CO2 and epoxides into cyclic carbonates under halogen-free condition

Feng Zhanga,bYanyan Wanga,bXiaochun ZhangcXiangping Zhangc( )Huizhen Liua,b( )Buxing Hana,b
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
State Key Laboratory of Multiphase Complex System, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
Show Author Information

HIGHLIGHTS

● Halogen-free catalysts for coupling reaction of CO2/epoxide were summarized.

● Bi- or multi-functional catalysts were more effective for CO2 cycloaddition.

● Halogen-free process could be achieved by the synergistic effect of functionalgroups.

● Lewis acid-base or Lewis acidnucleophile facilitate the ring-openingof epoxide.

● Two potential catalysts: metal-based porous catalysts and supported heterogeneous ILs.

Graphical Abstract

Abstract

The chemical transformation of CO2 and epoxides into cyclic carbonates has been receiving much attention and is one of the successful examples for CO2 utilization as carbon resource. Many catalysts containing halide anions have been explored and exhibit excellent catalytic activity. However, halogen salt is generally toxic and corrosive to reactors. From a green chemistry perspective, it is more attractive to develop a halogen-free catalyst with excellent performance. Herein, a review of recent research progress of halogen-free catalysts in the cycloaddition of CO2 and epoxide is presented. According to previous experimental and theoretical works, two possible strategies for achieving the halogen-free process were summarized. The relationship between catalytic activity and catalyst structure, the mechanism of CO2 activation should be both studied deeply combined with experimental results and DFT calculation, which can guide the design of new catalysts and realize halogen-free process under mild reaction conditions.

References

[1]

R.W. Dorner, D.R. Hardy, F.W. Williams, H.D. Willauer, Heterogeneous catalytic CO2 conversion to value-added hydrocarbons, Energy Environ. Sci. 3 (2010) 884–890.

[2]

I. Dimitriou, P. García-Gutiérrez, R.H. Elder, R.M. Cuéllar-Franca, A. Azapagic, R.W.K. Allen, Carbon dioxide utilisation for production of transport fuels: process and economic analysis, Energy Environ. Sci. 8 (2015) 1775–1789.

[3]

M. Younas, M. Sohail, L.K. Leong, M.J. Bashir, S. Sumathi, Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems, Int. J.Environ. Sci. Technol. 13 (2016) 1839-1860.

[4]

M. Mikkelsen, M. Jørgensen, F.C. Krebs, The teraton challenge. A review of fixation and transformation of carbon dioxide, Energy Environ. Sci. 3 (2010) 43–81.

[5]

M. He, Y. Sun, B. Han, Green carbon science: scientific basis for integrating carbon resource processing, utilization, and recycling, Angew. Chem. Int. Ed. 52 (2013) 9620–9633.

[6]

M. Aresta, A. Dibenedetto, A. Angelini, Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2, Chem. Rev. 114 (2014) 1709–1742.

[7]

F.D. Meylan, V. Moreau, S. Erkman, CO2 utilization in the perspective of industrial ecology, an overview, J. CO2 Util. 12 (2015) 101–108.

[8]

R.R. Shaikh, S. Pornpraprom, V. D’Elia, Catalytic strategies for the cycloaddition of pure, diluted, and waste CO2 to epoxides under ambient conditions, ACS Catal. 8 (2018) 419–450.

[9]

J.H. Clements, Reactive applications of cyclic alkylene carbonates, Ind. Eng. Chem. Res. 42 (2003) 663–674.

[10]

V. Laserna, G. Fiorani, C.J. Whiteoak, E. Martin, E. Escudero-Adán, A.W. Kleij, Carbon dioxide as a protecting group: highly efficient and selective catalytic access to cycliccis-diol scaffolds, Angew. Chem. Int. Ed. 53 (2014) 10416–10419.

[11]

Q.-W. Song, Z.-H. Zhou, L.-N. He, Efficient, selective and sustainable catalysis of carbon dioxide, Green Chem. 19 (2017) 3707–3728.

[12]

B. Zou, C. Hu, Halogen-free processes for organic carbonate synthesis from CO2, Current Opinion in Green and Sustainable Chemistry 3 (2017) 11–16.

[13]

K. Motokura, S. Itagaki, Y. Iwasawa, A. Miyaji, T. Baba, Silica-supported aminopyridinium halides for catalytic transformations of epoxides to cyclic carbonates under atmospheric pressure of carbon dioxide, Green Chem. 11 (2009) 1876–1880.

[14]

M. Liu, X. Wang, Y. Jiang, J. Sun, M. Arai, Hydrogen bond activation strategy for cyclic carbonates synthesis from epoxides and CO2: current state-of-the art of catalyst development and reaction analysis, Chem. Rev. 61 (2018) 214–269.

[15]

F. Castro-Gomez, G. Salassa, A.W. Kleij, C. Bo, A DFT study on the mechanism of the cycloaddition reaction of CO2 to epoxides catalyzed by Zn(salphen) complexes, Chemistry 19 (2013) 6289–6298.

[16]

J.-Q. Wang, K. Dong, W.-G. Cheng, J. Sun, S.-J. Zhang, Insights into quaternary ammonium salts-catalyzed fixation carbon dioxide with epoxides, Catal. Sci. Technol. 2 (2012) 1480–1484.

[17]

J.Q. Wang, J. Sun, W.G. Cheng, K. Dong, X.P. Zhang, S.J. Zhang, Experimental and theoretical studies on hydrogen bond-promoted fixation of carbon dioxide and epoxides in cyclic carbonates, Phys. Chem. Chem. Phys. 14 (2012) 11021–11026.

[18]

S. Zhong, L. Liang, B. Liu, J. Sun, ZnBr2/DMF as simple and highly active Lewis acid–base catalysts for the cycloaddition of CO2 to propylene oxide, J. CO2 Util. 6 (2014) 75–79.

[19]

Z.-Z. Yang, Y.-N. Zhao, L.-N. He, J. Gao, Z.-S. Yin, Highly efficient conversion of carbon dioxide catalyzed by polyethylene glycol-functionalized basic ionic liquids, Green Chem. 14 (2012) 519–527.

[20]

M. North, R. Pasquale, Mechanism of cyclic carbonate synthesis from epoxides and CO2, Angew. Chem. Int. Ed. 48 (2009) 2946–2948.

[21]

Z.-Z. Yang, L.-N. He, C.-X. Miao, S. Chanfreau, Lewis basic ionic liquids-catalyzed conversion of carbon dioxide to cyclic carbonates, Adv. Synth. Catal. 352 (2010) 2233–2240.

[22]

K.M.K. Yu, I. Curcic, J. Gabriel, H. Morganstewart, S.C. Tsang, Catalytic coupling of CO2 with epoxide over supported and unsupported amines, J. Phys. Chem. 114 (2010) 3863–3872.

[23]

F. Adam, M.S. Batagarawa, Tetramethylguanidine–silica nanoparticles as an efficient and reusable catalyst for the synthesis of cyclic propylene carbonate from carbon dioxide and propylene oxide, Appl. Catal. Gen. 454 (2013) 164–171.

[24]

C.M. Miralda, E.E. Macias, M. Zhu, P. Ratnasamy, M.A. Carreon, Zeolitic imidazole framework-8 catalysts in the conversion of CO2 to chloropropene carbonate, ACS Catal. 2 (2011) 180–183.

[25]

M. Tu, R.J. Davis, Cycloaddition of CO2 to epoxides over solid base catalysts, J. Catal. 199 (2001) 85–91.

[26]

D. Ma, K. Liu, J. Li, Z. Shi, Bifunctional metal-free porous organic framework heterogeneous catalyst for efficient CO2 conversion under mild and cocatalyst-free conditions, ACS Sustain. Chem. Eng. 6 (2018) 15050–15055.

[27]

F.D. Bobbink, P.J. Dyson, Synthesis of carbonates and related compounds incorporating CO2 using ionic liquid-type catalysts: state-of-the-art and beyond, J. Catal. 343 (2016) 52–61.

[28]

T. Yano, H. Matsui, T. Koike, H. Ishiguro, H. Fujihara, M. Yoshihara, T. Maeshima, Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereochemistry, Chem. Commun. (12) (1997) 1129–1130.

[29]

B.M. Bhanage, S.-i. Fujita, Y. Ikushima, M. Arai, Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides, and methanol using heterogeneous basic metal oxide catalysts with high activity and selectivity, Appl. Catal. Gen. 219 (2001) 259–266.

[30]

K. Yamaguchi, K. Ebitani, T. Yoshida, H. Yoshida, K. Kaneda, Mg−Al mixed oxides as highly active acid−Base catalysts for cycloaddition of carbon dioxide to epoxides, J. Am. Chem. Soc. 121 (1999) 4526–4527.

[31]

S. Roy, B. Banerjee, A. Bhaumik, S.M. Islam, CO2 fixation at atmospheric pressure: porous ZnSnO3 nanocrystals as a highly efficient catalyst for the synthesis of cyclic carbonates, RSC Adv. 6 (2016) 31153–31160.

[32]

W.-L. Dai, S.-F. Yin, R. Guo, S.-L. Luo, X. Du, C.-T. Au, Synthesis of propylene carbonate from carbon dioxide and propylene oxide using Zn-Mg-Al composite oxide as high-efficiency catalyst, Catal. Lett. 136 (2009) 35–44.

[33]

A.I. Adeleye, D. Patel, D. Niyogi, B. Saha, Efficient and greener synthesis of propylene carbonate from carbon dioxide and propylene oxide, Ind. Eng. Chem. Res. 53 (2014) 18647–18657.

[34]

I.V. Kozhevnikov, Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions, Chem. Rev. 98 (1998) 171–198.

[35]

N. Mizuno, M. Misono, Heterogeneous catalysis, Chem. Rev. 98 (1998) 199–218.

[36]

F.W. Chen, T. Dong, X.F. Li, T.G. Xu, C.W. Hu, Tetrabutylammonium salts of tritransition-metal-substituted A-α-tungstogermanate: halogen-free and singlecomponent catalysts for the coupling reaction of carbon dioxide and epichlorohydrin, Chin. Chem. Lett. 22 (2011) 871–874.

[37]

H. Yasuda, L.-N. He, T. Sakakura, Cyclic carbonate synthesis from supercritical carbon dioxide and epoxide over lanthanide oxychloride, J. Catal. 209 (2002) 547–550.

[38]

F. Chen, T. Dong, Y. Chi, Y. Xu, C. Hu, Transition-metal-Substituted keggin-type germanotungstates for catalytic conversion of carbon dioxide to cyclic carbonate, Catal. Lett. 139 (2010) 38–41.

[39]

Y. Patil, P. Tambade, S.R. Jagtap, B. Bhanage, Cesium carbonate catalyzed efficient synthesis of quinazoline-2,4(1H, 3H)-diones using carbon dioxide and 2-aminobenzonitriles, Green Chem. Lett. Rev. 1 (2008) 127–132.

[40]

A. Ion, V. Parvulescu, P. Jacobs, D.D. Vos, Synthesis of symmetrical or asymmetrical urea compounds from CO2 via base catalysis, Green Chem. 9 (2007) 158–161.

[41]

S. Suleman, H.A. Younus, N. Ahmad, Z.A.K. Khattak, H. Ullah, S. Chaemchuen, F. Verpoort, CO2 insertion into epoxides using cesium salts as catalysts at ambient pressure, Catal. Sci. Technol. 9 (2019) 3868–3873.

[42]

C.-G. Li, Y. Lu, H. Wu, P. Wu, M. He, A hierarchically core/shell-structured titanosilicate with multiple mesopore systems for highly efficient epoxidation of alkenes, Chem. Commun. 51 (2015) 14905–14908.

[43]

Q. Lv, G. Li, H. Sun, Synthesis of hierarchical TS-1 with convenient separation and the application for the oxidative desulfurization of bulky and small reactants, Fuel 130 (2014) 70–75.

[44]

L.-H. Chen, X.-Y. Li, J.C. Rooke, Y.-H. Zhang, X.-Y. Yang, Y. Tang, F.-S. Xiao, B.-L. Su, Hierarchically structured zeolites: synthesis, mass transport properties and applications, J. Mater. Chem. 22 (2012) 17381–17403.

[45]

R. Srivastava, D. Srinivas, P. Ratnasamy, Synthesis of polycarbonate precursors over titanosilicate molecular sieves, Catal. Lett. 91 (2003) 133–139.

[46]

Z. Xie, M. Zhu, A. Nambo, J.B. Jasinski, M.A. Carreon, Microwave-assisted synthesized SAPO-56 as a catalyst in the conversion of CO2 to cyclic carbonates, Dalton Trans. 42 (2013) 6732–6735.

[47]

B. Sarmah, R. Srivastava, Activation and utilization of CO2 using ionic liquid or amine-functionalized basic nanocrystalline zeolites for the synthesis of cyclic carbonates and quinazoline-2,4(1H, 3H)-dione, Ind. Eng. Chem. Res. 56 (2017) 8202–8215.

[48]

M. Ahmed, A. Sakthivel, Preparation of cyclic carbonate via cycloaddition of CO2 on epoxide using amine-functionalized SAPO-34 as catalyst, J. CO2 Util. 22 (2017) 392–399.

[49]

R.L. Paddock, S.T. Nguyen, ChemInform abstract: chemical CO2 fixation: Cr(Ⅲ) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides, J. Am. Chem. Soc. 33 (2002) 11498–11499.

[50]

W. Clegg, R.W. Harrington, M. North, R. Pasquale, Cyclic carbonate synthesis catalysed by bimetallic aluminium–salen complexes, Chem. Eur J. 16 (2010) 6828–6843.

[51]

A. Decortes, A.W. Kleij, Ambient fixation of carbon dioxide using a ZnII salphen catalyst, ChemCatChem 3 (2011) 831–834.

[52]

Y.-M. Shen, W.-L. Duan, M. Shi, Chemical fixation of carbon dioxide catalyzed by binaphthyldiamino Zn, Cu, and Co salen-type complexes, J. Org. Chem. 68 (2003) 1559–1562.

[53]

A. Ghosh, P. Ramidi, S. Pulla, S.Z. Sullivan, S.L. Collom, Y. Gartia, P. Munshi, A.S. Biris, B.C. Noll, B.C. Berry, Cycloaddition of CO2 to epoxides using a highly active Co(Ⅲ) complex of tetraamidomacrocyclic ligand, Catal. Lett. 137 (2010) 1–7.

[54]

M. Ulusoy, A. Kilic, M. Durgun, Z. Tasci, B. Cetinkaya, Silicon containing new salicylaldimine Pd(Ⅱ) and Co(Ⅱ) metal complexes as efficient catalysts in transformation of carbon dioxide (CO2) to cyclic carbonates, J. Org. Chem. 696 (2011) 1372–1379.

[55]

Y. Ren, O. Jiang, H. Zeng, Q. Mao, H. Jiang, Lewis acid–base bifunctional aluminum–salen catalysts: synthesis of cyclic carbonates from carbon dioxide and epoxides, RSC Adv. 6 (2016) 3243–3249.

[56]

W.Y. Gao, Y. Chen, Y. Niu, K. Williams, L. Cash, P.J. Perez, L. Wojtas, J. Cai, Y.S. Chen, S. Ma, Crystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditions, Angew. Chem. Int. Ed. 53 (2014) 2615–2619.

[57]

M.H. Beyzavi, R.C. Klet, S. Tussupbayev, J. Borycz, N.A. Vermeulen, C.J. Cramer, J.F. Stoddart, J.T. Hupp, O.K. Farha, A hafnium-based metal–organic framework as an efficient and multifunctional catalyst for facile CO2 fixation and regioselective and enantioretentive epoxide activation, J. Am. Chem. Soc. 136 (2014) 15861–15864.

[58]

W.-Y. Gao, L. Wojtas, S. Ma, A porous metal–metalloporphyrin framework featuring high-density active sites for chemical fixation of CO2 under ambient conditions, Chem. Commun. 50 (2014) 5316–5318.

[59]

W.Y. Gao, C.Y. Tsai, L. Wojtas, T. Thiounn, C.C. Lin, S. Ma, Interpenetrating metal-metalloporphyrin framework for selective CO2 uptake and chemical transformation of CO2, Inorg. Chem. 55 (2016) 7291–7294.

[60]

O.V. Zalomaeva, A.M. Chibiryaev, K.A. Kovalenko, O.A. Kholdeeva, B.S. Balzhinimaev, V.P. Fedin, Cyclic carbonates synthesis from epoxides and CO2 over metal–organic framework Cr-MIL-101, J. Catal. 298 (2013) 179–185.

[61]

H.H. Wang, L. Hou, Y.Z. Li, C.Y. Jiang, Y.Y. Wang, Z. Zhu, Porous MOF with highly efficient selectivity and chemical conversion for CO2, ACS Appl. Mater. Interfaces 9 (2017) 17969–17976.

[62]

J. Song, Z. Zhang, S. Hu, T. Wu, T. Jiang, B. Han, MOF-5/n-Bu4NBr: an efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions, Green Chem. 11 (2009) 1031–1036.

[63]

H.-Y. Cho, D.-A. Yang, J. Kim, S.-Y. Jeong, W.-S. Ahn, CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating, Catal. Today 185 (2012) 35–40.

[64]

D.-A. Yang, H.-Y. Cho, J. Kim, S.-T. Yang, W.-S. Ahn, CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method, Energy Environ. Sci. 5 (2012) 6465–6473.

[65]

J. Kim, S.-N. Kim, H.-G. Jang, G. Seo, W.-S. Ahn, CO2 cycloaddition of styrene oxide over MOF catalysts, Appl. Catal. Gen. 453 (2013) 175–180.

[66]

Y. Du, J.-Q. Wang, J.-Y. Chen, F. Cai, J.-S. Tian, D.-L. Kong, L.-N. He, A poly(ethylene glycol)-supported quaternary ammonium salt for highly efficient and environmentally friendly chemical fixation of CO2 with epoxides under supercritical conditions, Tetrahedron Lett. 47 (2006) 1271–1275.

[67]

X. Huang, Y. Chen, Z. Lin, X. Ren, Y. Song, Z. Xu, X. Dong, X. Li, C. Hu, B. Wang, Zn-BTC MOFs with active metal sites synthesized via a structure-directing approach for highly efficient carbon conversion, Chem. Commun. 50 (2014) 2624–2627.

[68]

X. Gao, M. Liu, J. Lan, L. Liang, X. Zhang, J. Sun, Lewis acid–base bifunctional crystals with a three-dimensional framework for selective coupling of CO2 and epoxides under mild and solvent-free conditions, Cryst. Growth Des. 17 (2017) 51–57.

[69]

H. He, Q.Q. Zhu, J.N. Zhao, H. Sun, J. Chen, C.P. Li, M. Du, Rational construction of an exceptionally stable MOF catalyst with metal-adeninate vertices toward CO2 cycloaddition under mild and cocatalyst-free conditions, Chemistry 25 (2019) 11474–11480.

[70]

R.R. Kuruppathparambil, T. Jose, R. Babu, G.-Y. Hwang, A.C. Kathalikkattil, D.-W. Kim, D.-W. Park, A room temperature synthesizable and environmental friendly heterogeneous ZIF-67 catalyst for the solvent less and co-catalyst free synthesis of cyclic carbonates, Appl. Catal. B Environ. 182 (2016) 562–569.

[71]

L. Yang, L. Yu, G. Diao, M. Sun, G. Cheng, S. Chen, Zeolitic imidazolate framework-68 as an efficient heterogeneous catalyst for chemical fixation of carbon dioxide, J. Mol. Catal. Chem. 392 (2014) 278–283.

[72]

W. Xu, H. Chen, K. Jie, Z. Yang, T. Li, S. Dai, Entropy-driven mechanochemical synthesis of polymetallic zeolitic imidazolate frameworks for CO2 fixation, Angew. Chem. Int. Ed. 58 (2019) 5018–5022.

[73]

Z. Huang, F. Li, B. Chen, T. Lu, Y. Yuan, G. Yuan, Well-dispersed g-C3N4 nanophases in mesoporous silica channels and their catalytic activity for carbon dioxide activation and conversion, Appl. Catal. B Environ. 136–137 (2013) 269–277.

[74]

L. Oar-Arteta, T. Wezendonk, X. Sun, F. Kapteijn, J. Gascon, Metal organic frameworks as precursors for the manufacture of advanced catalytic materials, Materials Chemistry Frontiers 1 (2017) 1709–1745.

[75]

S. Chaemchuen, X. Xiao, M. Ghadamyari, B. Mousavi, N. Klomkliang, Y. Yuan, F. Verpoort, Robust and efficient catalyst derived from bimetallic Zn/Co zeolitic imidazolate frameworks for CO2 conversion, J. Catal. 370 (2019) 38–45.

[76]

L. Hu, L. Chen, X. Peng, J. Zhang, X. Mo, Y. Liu, Z. Yan, Bifunctional metal-doped ZIF-8: a highly efficient catalyst for the synthesis of cyclic carbonates from CO2 cycloaddition, Microporous Mesoporous Mater. 299 (2020) 110123.

[77]

D.S. Su, J. Zhang, B. Frank, A. Thomas, X. Wang, J. Paraknowitsch, R. Schlögl, Metal-free heterogeneous catalysis for sustainable chemistry, ChemSusChem 3 (2010) 169–180.

[78]
A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Mueller, R. Schloegl, J.M. Carlsson, ChemInform abstract: graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts 40 (2009) 4893–4908.
[79]

A.D. Roberts, J.-S.M. Lee, S.Y. Wong, X. Li, H. Zhang, Nitrogen-rich activated carbon monoliths via ice-templating with high CO2 and H2 adsorption capacities, J. Mater. Chem. A. 5 (2017) 2811–2820.

[80]

M.B. Ansari, B.-H. Min, Y.-H. Mo, S.-E. Park, CO2 activation and promotional effect in the oxidation of cyclic olefins over mesoporous carbon nitrides, Green Chem. 13 (2011) 1416–1421.

[81]

J. Zhu, P. Xiao, H. Li, S.A.C. Carabineiro, Graphitic carbon nitride: synthesis, properties, and applications in catalysis, ACS Appl. Mater. Interfaces 6 (2014) 16449–16465.

[82]

H. Liang, J. Wang, Q. Li, C. Liang, Y. Feng, M. Kang, Supported ZnBr2 and carbon nitride bifunctional complex catalysts for the efficient cycloaddition of CO2 with diglycidyl ethers, New J. Chem. 42 (2018) 16127–16137.

[83]

A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, J.M. Carlsson, Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts, J. Mater. Chem. 18 (2008) 4893–4908.

[84]

Q. Su, J. Sun, J. Wang, Z. Yang, W. Cheng, S. Zhang, Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates, Catal. Sci. Technol. 4 (2014) 1556–1562.

[85]

J. Xu, L. Zhang, R. Shi, Y. Zhu, Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis, J. Mater. Chem. 1 (2013) 14766–14772.

[86]

Z. Huang, F. Li, B. Chen, G. Yuan, Cycloaddition of CO2 and epoxide catalyzed by amino- and hydroxyl-rich graphitic carbon nitride, Catal. Sci. Technol. 6 (2016) 2942–2948.

[87]

J. Roeser, K. Kailasam, A. Thomas, Covalent triazine frameworks as heterogeneous catalysts for the synthesis of cyclic and linear carbonates from carbon dioxide and epoxides, Chem. Matre. 5 (2012) 1793–1799.

[88]

P. Katekomol, J. Roeser, M. Bojdys, J. Weber, A. Thomas, Covalent triazine frameworks prepared from 1,3,5-tricyanobenzene, Chem. Mater. 25 (2013) 1542–1548.

[89]

X. Lan, Y. Li, C. Du, T. She, Q. Li, G. Bai, Porous carbon nitride frameworks derived from covalent triazine framework anchored Ag nanoparticles for catalytic CO2 conversion, Chem. Eur J. 25 (2019) 8560–8569.

[90]

Y.-M. Li, L. Yang, L. Sun, L. Ma, W.-Q. Deng, Z. Li, Chemical fixation of carbon dioxide catalyzed via covalent triazine frameworks as metal free heterogeneous catalysts without cocatalyst, J. Mater. Chem. A. 7 (2019) 26071–26076.

[91]

R. Sharma, A. Bansal, C.N. Ramachandran, P. Mohanty, A multifunctional triazinebased nanoporous polymer as a versatile organocatalyst for CO2 utilization and C–C bond formation, Chem. Commun. 55 (2019) 11607–11610.

[92]

X. Ma, B. Zou, M. Cao, S.-L. Chen, C. Hu, Nitrogen-doped porous carbon monolith as a highly efficient catalyst for CO2 conversion, J. Mater. Chem. A. 2 (2014) 18360–18366.

[93]

M.J. Ajitha, C.H. Suresh, NHC catalyzed CO2 fixation with epoxides: probable mechanisms reveal ter molecular pathway, Tetrahedron Lett. 52 (2011) 5403–5406.

[94]

H. Zhou, Y.-M. Wang, W.-Z. Zhang, J.-P. Qu, X.-B. Lu, N-Heterocyclic carbene functionalized MCM-41 as an efficient catalyst for chemical fixation of carbon dioxide, Green Chem. 13 (2011) 644–650.

[95]

Y. Kayaki, M. Yamamoto, T. Ikariya, N-heterocyclic carbenes as efficient organocatalysts for CO2 fixation reactions, Angew. Chem. Int. Ed. 48 (2009) 4194–4197.

[96]

Y.-B. Wang, Y.-M. Wang, W.-Z. Zhang, X.-B. Lu, ChemInform abstract: fast CO2 sequestration, activation, and catalytic transformation using N-heterocyclic olefins, J. Am. Chem. Soc. 135 (2013) 11996–12003.

[97]

Y.-B. Wang, D.-S. Sun, H. Zhou, W.-Z. Zhang, X.-B. Lu, Alkoxide-functionalized imidazolium betaines for CO2 activation and catalytic transformation, Green Chem. 16 (2014) 2266–2272.

[98]

Y. Tsutsumi, K. Yamakawa, M. Yoshida, T. Ema, T. Sakai, Bifunctional organocatalyst for activation of carbon dioxide and epoxide to produce cyclic carbonate: betaine as a new catalytic motif, Org. Lett. 12 (2010) 5728–5731.

[99]

H. Zhou, G.-X. Wang, W.-Z. Zhang, X.-B. Lu, CO2 adducts of phosphorus ylides: highly active organocatalysts for carbon dioxide transformation, ACS Catal. 5 (2015) 6773–6779.

[100]

V. Caló, A. Nacci, A. Monopoli, A. Fanizzi, Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts, Org. Lett. 4 (2002) 2561–2563.

[101]

A.-H. Liu, Y.-L. Dang, H. Zhou, J.-J. Zhang, X.-B. Lu, CO2 adducts of carbodicarbenes: robust and versatile organocatalysts for chemical transformation of carbon dioxide into heterocyclic compounds, ChemCatChem 10 (2018) 2686–2692.

[102]

G.T. Rochelle, Amine scrubbing for CO2 capture, Science 325 (2009) 1652–1654.

[103]

S. van Loo, E.P. van Elk, G.F. Versteeg, The removal of carbon dioxide with activated solutions of methyl-diethanol-amine, J. Petrol. Sci. Eng. 55 (2007) 135–145.

[104]

M. Abu Tahari, A. Yarmo, Adsorption of CO2 on silica dioxide catalyst impregnated with various alkylamine, AIP Conf. Proc. 1614 (2014) p334.

[105]

S.A. Lermontov, T. Velikokhat’ko, S. Zavorin, Triethylamine as an effective catalyst for the reaction of CO2 with epichlorohydrin, Russ. Chem. Bull. 47 (1998) 1405–1406.

[106]

K.R. Roshan, B.M. Kim, A.C. Kathalikkattil, J. Tharun, Y.S. Won, D.W. Park, The unprecedented catalytic activity of alkanolamine CO2 scrubbers in the cycloaddition of CO2 and oxiranes: a DFT endorsed study, Chem. Commun. 50 (2014) 13664–13667.

[107]

W. Cho, M.S. Shin, S. Hwang, H. Kim, M. Kim, J.G. Kim, Y. Kim, Tertiary amines: a new class of highly efficient organocatalysts for CO2 fixations, J. Ind. Eng. Chem. 44 (2016) 210–215.

[108]

H.-G. Kim, H.J. Son, C.-S. Lim, Metal- and halide-free solid-type multifunctional alkanolamines as catalysts for cycloaddition of CO2, Kor. J. Chem. Eng. 36 (2019) 197–202.

[109]

S. Motokucho, Y. Takenouchi, R. Satoh, H. Morikawa, H. Nakatani, Novel polyurethane-catalyzed cyclic carbonate synthesis using CO2 and epoxide, ACS Sustain. Chem. Eng. 8 (2020) 4337–4340.

[110]

T. Ohkawara, K. Suzuki, K. Nakano, S. Mori, K. Nozaki, Facile estimation of catalytic activity and selectivities in copolymerization of propylene oxide with carbon dioxide mediated by metal complexes with planar tetradentate ligand, J. Am. Chem. Soc. 136 (2014) 10728–10735.

[111]

J.A. Castro-Osma, M. North, X. Wu, Synthesis of cyclic carbonates catalysed by chromium and aluminium salphen complexes, Chemistry 22 (2016) 2100–2107.

[112]

X. Wu, C. Chen, Z. Guo, M. North, A.C. Whitwood, Metal- and halide-free catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide, ACS Catal. 9 (2019) 1895–1906.

[113]

Z. Yue, M. Pudukudy, S. Chen, Y. Liu, W. Zhao, J. Wang, S. Shan, Q. Jia, A non-metal Acen-H catalyst for the chemical fixation of CO2 into cyclic carbonates under solvent- and halide-free mild reaction conditions, Appl. Catal. Gen. 601 (2020) 117646.

[114]

C. Qi, H. Jiang, Histidine-catalyzed synthesis of cyclic carbonates in supercritical carbon dioxide, Sci. China Chem. 53 (2010) 1566–1570.

[115]

C. Qi, J. Ye, W. Zeng, H. Jiang, Polystyrene-supported amino acids as efficient catalyst for chemical fixation of carbon dioxide, Adv. Synth. Catal. 352 (2010) 1925–1933.

[116]

F. Wu, X.-Y. Dou, L.-N. He, C.-X. Miao, Natural amino acid-based ionic liquids as efficient catalysts for the synthesis of cyclic carbonates from CO2 and epoxides under solvent-free conditions, Lett. Org. Chem. 7 (2010) 73–78.

[117]

J. Tharun, K.R. Roshan, A.C. Kathalikkattil, D.-H. Kang, H.-M. Ryu, D.-W. Park, Natural amino acids/H2O as a metal- and halide-free catalyst system for the synthesis of propylene carbonate from propylene oxide and CO2 under moderate conditions, RSC Adv. 4 (2014) 41266–41270.

[118]

Y. Jiang, J. Li, P. Jiang, Y. Li, Y. Leng, Amino acid-paired dipyridine polymer as efficient metal- and halogen-free heterogeneous catalysts for cycloaddition of CO2 and epoxides into cyclic carbonates, Catal. Commun. 111 (2018) 1–5.

[119]

Y. Zhou, W. Zhang, L. Ma, Y. Zhou, J. Wang, Amino acid anion paired mesoporous poly(ionic liquids) as metal-/halogen-free heterogeneous catalysts for carbon dioxide fixation, ACS Sustain. Chem. Eng. 7 (2019) 9387–9398.

[120]

H. Wang, G. Gurau, R.D. Rogers, Ionic liquid processing of cellulose, Chem. Soc. Rev. 41 (2012) 1519–1537.

[121]

K. Li, X. Wu, Q. Gu, X. Zhao, M. Yuan, W. Ma, W. Ni, Z. Hou, Inclusion complexes of organic salts with β-cyclodextrin as organocatalysts for CO2 cycloaddition with epoxides, RSC Adv. 7 (2017) 14721–14732.

[122]

J. Sun, W. Cheng, Z. Yang, J. Wang, T. Xu, J. Xin, S. Zhang, Superbase/cellulose: an environmentally benign catalyst for chemical fixation of carbon dioxide into cyclic carbonates, Green Chem. 16 (2014) 3071–3078.

[123]

W. Cheng, F. Xu, J. Sun, K. Dong, C. Ma, S. Zhang, Superbase/saccharide: an ecologically benign catalyst for efficient fixation of CO2 into cyclic carbonates, Synth. Commun. 46 (2016) 497–508.

[124]

D.J. Heldebrant, C.R. Yonker, P.G. Jessop, L. Phan, Organic liquid CO2 capture agents with high gravimetric CO2 capacity, Energy Environ. Sci. 1 (2008) 487–493.

[125]

T. Ema, K. Fukuhara, T. Sakai, M. Ohbo, F.-Q. Bai, J.-y. Hasegawa, Quaternary ammonium hydroxide as a metal-free and halogen-free catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide, Catal. Sci. Technol. 5 (2015) 2314–2321.

[126]

S.-S. Wu, X.-W. Zhang, W.-L. Dai, S.-F. Yin, W.-S. Li, Y.-Q. Ren, C.-T. Au, ZnBr2–Ph4PI as highly efficient catalyst for cyclic carbonates synthesis from terminal epoxides and carbon dioxide, Appl. Catal. Gen. 341 (2008) 106–111.

[127]

D.J. Heldebrant, P.G. Jessop, C.A. Thomas, C.A. Eckert, C.L. Liotta, The reaction of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) with carbon dioxide, J. Org. Chem. 70 (2005) 5335–5338.

[128]

C. Wang, H. Luo, D.E. Jiang, H. Li, S. Dai, Carbon dioxide capture by superbase-derived protic ionic liquids, Angew. Chem. Int. Ed. 49 (2010) 5978–5981.

[129]

C. Wang, H. Luo, X. Luo, H. Li, S. Dai, Equimolar CO2 capture by imidazolium-based ionic liquids and superbase systems, Green Chem. 12 (2010) 2019–2023.

[130]

R.A. Shiels, C.W. Jones, Homogeneous and heterogeneous 4-(N, N-dialkylamino) pyridines as effective single component catalysts in the synthesis of propylene carbonate, J. Mol. Catal. Chem. 261 (2007) 160–166.

[131]

K.R. Roshan, R.A. Palissery, A.C. Kathalikkattil, R. Babu, G. Mathai, H.-S. Lee, D.-W. Park, A computational study of the mechanistic insights into base catalysed synthesis of cyclic carbonates from CO2: bicarbonate anion as an active species, Catal. Sci. Technol. 6 (2016) 3997–4004.

[132]

Y. Zhou, S. Hu, X. Ma, S. Liang, T. Jiang, B. Han, Synthesis of cyclic carbonates from carbon dioxide and epoxides over betaine-based catalysts, J. Mol. Catal. Chem. 284 (2008) 52–57.

[133]

J. Sun, J. Ren, S. Zhang, W. Cheng, Water as an efficient medium for the synthesis of cyclic carbonate, Tetrahedron Lett. 50 (2009) 423–426.

[134]

A. Chen, C. Chen, Y. Xiu, X. Liu, J. Chen, L. Guo, R. Zhang, Z. Hou, Niobate salts of organic base catalyzed chemical fixation of carbon dioxide with epoxides to form cyclic carbonates, Green Chem. 17 (2015) 1842–1852.

Green Chemical Engineering
Pages 82-93
Cite this article:
Zhang F, Wang Y, Zhang X, et al. Recent advances in the coupling of CO2 and epoxides into cyclic carbonates under halogen-free condition. Green Chemical Engineering, 2020, 1(2): 82-93. https://doi.org/10.1016/j.gce.2020.09.008

213

Views

3

Downloads

69

Crossref

67

Web of Science

75

Scopus

0

CSCD

Altmetrics

Published: 28 September 2020
© 2020 Institute of Process Engineering, Chinese Academy of Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return