Journal Home > Volume 12 , Issue 6

Stachyose is a prebiotic that traditionally extracted from plants, such as vegetable. It has been demonstrated to alleviate intestinal inflammation by regulating gut microbiota, but the mechanism has been unclear. This research aims to detect the potential mechanism of stachyose in alleviating the severity of ulcerative colitis (UC). The results indicated that the administration of stachyose could recover the body weight, protect against the colonic tissue damage, reduce the pro-inflammatory cytokines levels, and reverse the histological abnormalities in UC mice. Oral stachyose could restore DSS-induced disturbance in intestinal bacteria. Besides, the metabolome result of serum samples showed that stachyose treatment significantly altered serum metabolites against inflammatory responses in colitis mice. Also, a significant correlation can be found between 23 metabolite biomarkers and 18 differential genera. Our results provided a strong foundation for the future study of the protective role of stachyose in maintaining intestinal homeostasis.


menu
Abstract
Full text
Outline
About this article

Stachyose modulates gut microbiota and alleviates DSS-induced ulcerative colitis in mice

Show Author's information Chen Wanga,b,c,1Junying Baib,c,1Botao Wangb,dLeilei Yub,cFengwei Tianb,c,eJianxin Zhaob,cHao Zhangb,c,e,fHuayi SuoaWei Chenb,c,eQixiao Zhaib,c( )
College of Food Science, Southwest University, Chongqing 400715, China
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
Bloomage Biotechnology Co., Ltd., Jinan 250000, China
National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China

1 These authors contributed equally to this work.

Peer review under responsibility of KeAi Communications Co., Ltd.

Abstract

Stachyose is a prebiotic that traditionally extracted from plants, such as vegetable. It has been demonstrated to alleviate intestinal inflammation by regulating gut microbiota, but the mechanism has been unclear. This research aims to detect the potential mechanism of stachyose in alleviating the severity of ulcerative colitis (UC). The results indicated that the administration of stachyose could recover the body weight, protect against the colonic tissue damage, reduce the pro-inflammatory cytokines levels, and reverse the histological abnormalities in UC mice. Oral stachyose could restore DSS-induced disturbance in intestinal bacteria. Besides, the metabolome result of serum samples showed that stachyose treatment significantly altered serum metabolites against inflammatory responses in colitis mice. Also, a significant correlation can be found between 23 metabolite biomarkers and 18 differential genera. Our results provided a strong foundation for the future study of the protective role of stachyose in maintaining intestinal homeostasis.

Keywords: Gut microbiota, Colitis, Metabonomics, Prebiotic, Stachyose

References(62)

[1]

P.D. Cani, Human gut microbiome: hopes, threats and promises, Gut. 67(9) (2018) 1716-1725. http://dx.doi.org/10.1136/gutjnl-2018-316723.

[2]

M. Rastelli, P.D. Cani, C. Knauf, The gut microbiome influences host endocrine functions, Endocr. Rev. 40(5) (2019) 1271-1284. https://doi.org/10.1210/er.2018-00280.

[3]

Z. Shi, X. Wu, C. Santos Rocha, et al., Short-term western diet intake promotes IL-23-mediated skin and joint inflammation accompanied by changes to the gut microbiota in mice, J. Invest. Dermatol. 141(7) (2021) 1780-1791. https://doi.org/10.1016/j.jid.2020.11.032.

[4]

S. Khan, S. Waliullah, V. Godfrey, et al., Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice, Sci. Transl. Med. 12(567) (2020). https://doi.org/10.1126/scitranslmed.aay6218.

[5]

I. Ordás, L. Eckmann, M. Talamini, et al., Ulcerative colitis, Lancet (London, England) 380(9853) (2012) 1606-1619. https://doi.org/10.1016/S0140-6736(12)60150-0.

[6]

B. Barberio, S. Facchin, I. Patuzzi, et al., A specific microbiota signature is associated to various degrees of ulcerative colitis as assessed by a machine learning approach, Gut Microbes 14(1) (2022) 2028366. https://doi.org/10.1080/19490976.2022.2028366.

[7]

J. Kabeerdoss, P. Jayakanthan, S. Pugazhendhi, et al., Alterations of mucosal microbiota in the colon of patients with inflammatory bowel disease revealed by real time polymerase chain reaction amplification of 16S ribosomal ribonucleic acid, Indian. J. Med. Res. 142(1) (2015) 23-32. https://doi.org/10.4103/0971-5916.162091.

[8]

D.N. Frank, C.E. Robertson, C.M. Hamm, et al., Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases, Inflamm. Bowel. Dis. 17(1) (2011) 179-184. https://doi.org/10.1002/ibd.21339.

[9]

J. Bai, T. Li, W. Zhang, et al., Systematic assessment of oat β-glucan catabolism during in vitro digestion and fermentation, Food. Chem. 348 (2021) 129116. https://doi.org/10.1016/j.foodchem.2021.129116.

[10]

C. Tang, T. Kamiya, Y. Liu, et al., Inhibition of dectin-1 signaling ameliorates colitis by inducing Lactobacillus-mediated regulatory T Cell expansion in the intestine, Cell. Host. Microbe. 18(2) (2015) 183-197. https://doi.org/10.1016/j.chom.2015.07.003.

[11]

C. Guo, D. Guo, L. Fang, et al., Ganoderma lucidum polysaccharide modulates gut microbiota and immune cell function to inhibit inflammation and tumorigenesis in colon, Carbohyd. Polym. 267 (2021) 118231. https://doi.org/10.1016/j.carbpol.2021.118231.

[12]

H.D. Holscher, Dietary fiber and prebiotics and the gastrointestinal microbiota, Gut microbes 8(2) (2017) 172-184. https://doi.org/10.1080/19490976.2017.1290756.

[13]

E.M. Quigley, Prebiotics and probiotics: their role in the management of gastrointestinal disorders in adults, Nutr. Clin. Pract. 27(2) (2012) 195-200. https://doi.org/10.1177/0884533611423926.

[14]

D.W. Thomas, F.R. Greer, Probiotics and prebiotics in pediatrics, Pediatrics 126(6) (2010) 1217-1231. https://doi.org/10.1542/peds.2010-2548.

[15]

Y.L. Tsai, T.L. Lin, C.J. Chang, et al., Probiotics, prebiotics and amelioration of diseases, J. Biomed. Sci. 26(1) (2019) 3. https://doi.org/10.1186/s12929-018-0493-6.

[16]

J. Bai, J. Zhao, W. Al-Ansi, et al., Oat β-glucan alleviates DSS-induced colitis via regulating gut microbiota metabolism in mice, Food Funct. 12(19) (2021) 8976-8993. https://doi.org/10.1039/d1fo01446c.

[17]

C. Liu, B. Hu, Y. Cheng, et al., In-depth analysis of the mechanisms of aloe polysaccharides on mitigating subacute colitis in mice via microbiota informatics, Carbohydr. Polym. 265 (2021) 118041. https://doi.org/10.1016/j.carbpol.2021.118041.

[18]

X.F. Zhong, G.D. Huang, Y. Chen, et al., Optimization of extracting stachyose from Stachys floridana Schuttl. ex Benth by response surface methodology, J. Food. Sci. Technol. 50(5) (2013) 942-949. https://doi.org/10.1007/s13197-011-0413-1.

[19]

T. Li, X. Lu, X. Yang, Stachyose-enriched α-galacto-oligosaccharides regulate gut microbiota and relieve constipation in mice, J. Agr. Food. Chem. 61(48) (2013) 11825-11831. https://doi.org/10.1021/jf404160e.

[20]

G. Liu, J. Bei, L. Liang, et al., Stachyose improves inflammation through modulating gut microbiota of high-fat diet/streptozotocin-induced type 2 diabetes in rats, Mol. Nutr. Food. Res. 62(6) (2018) 1700954. https://doi.org/10.1002/mnfr.201700954.

[21]

L. He, F. Zhang, Z. Jian, et al., Stachyose modulates gut microbiota and alleviates dextran sulfate sodium-induced acute colitis in mice, Saudi J. Gastroenterol. 26(3) (2020) 153-159. https://doi.org/10.4103/sjg.SJG_580_19.

[22]

M. Xi, J. Li, G. Hao, et al., Stachyose increases intestinal barrier through Akkermansia muciniphila and reduces gut inflammation in germ-free mice after human fecal transplantation, Food. Res. Int. 137 (2020) 109288. https://doi.org/10.1016/j.foodres.2020.109288.

[23]

R. Zhai, X. Xue, L. Zhang, et al., Strain-specific anti-inflammatory properties of two Akkermansia muciniphila strains on chronic colitis in mice, Front. Cell. Infect. Microbiol. 9 (2019) 239. https://doi.org/10.3389/fcimb.2019.00239.

[24]

S.S. Teh, R. Ahmad, W.N. Wan-Abdullah, et al., Enhanced growth of lactobacilli in soymilk upon immobilization on agrowastes, J. Food. Sci. 75(3) (2010) M155-M164. https://doi.org/10.1111/j.1750-3841.2010.01538.x.

[25]

M.D. Tenorio, I. Espinosa-Martos, G. Préstamo, et al., Soybean whey enhance mineral balance and caecal fermentation in rats, Eur. J. Nutr. 49(3) (2010) 155-163. https://doi.org/10.1007/s00394-009-0060-8.

[26]

M. Laffin, R. Fedorak, A. Zalasky, et al., A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal short-chain fatty acids in mice, Sci. Rep. 9(1) (2019) 12294. https://doi.org/10.1038/s41598-019-48749-2.

[27]

D.K. Mandaliya, S. Patel, S. Seshadri, The combinatorial effect of acetate and propionate on high-fat diet induced diabetic inflammation or metaflammation and T cell polarization, Inflammation 44(1) (2021) 68-79. https://doi.org/10.1007/s10753-020-01309-7.

[28]

J. Wang, C. Zhang, C. Guo, et al., Chitosan ameliorates DSS-induced ulcerative colitis mice by enhancing intestinal barrier function and improving microflora, Int. J. Mol. Sci. 20(22) (2019) 5751. https://doi.org/10.3390/ijms20225751

[29]

D. Xie, F. Li, D. Pang, et al., Systematic metabolic profiling of mice with dextran sulfate sodium-induced colitis, J. Inflamm. Res. 14 (2021) 2941-2953. https://doi.org/10.2147/JIR.S313374.

[30]

J. Zhang, H. Lei, X. Hu, et al., Hesperetin ameliorates DSS-induced colitis by maintaining the epithelial barrier via blocking RIPK3/MLKL necroptosis signaling, Eur. J. Pharmacol. 873 (2020) 172992. https://doi.org/10.1016/j.ejphar.2020.172992.

[31]

K. Uchiyama, N. Yagi, K. Mizushima, et al., Serum metabolomics analysis for early detection of colorectal cancer, J. Gastroenterol. 52(6) (2017) 677-694. https://doi.org/10.1007/s00535-016-1261-6.

[32]

L. Cui, X. Guan, W. Ding, et al., Scutellaria baicalensis Georgi polysaccharide ameliorates DSS-induced ulcerative colitis by improving intestinal barrier function and modulating gut microbiota, Int. J. Biol. Macromol. 166 (2021) 1035-1045. https://doi.org/10.1016/j.ijbiomac.2020.10.259.

[33]

Y. Qian, X. Zhao, J.L. Song, et al., Inhibitory effects of resistant starch (RS3) as a carrier for stachyose on dextran sulfate sodium-induced ulcerative colitis in C57BL/6 mice, Exp. Ther. Med. 6(5) (2013) 1312-1316. https://doi.org/10.3892/etm.2013.1280.

[34]

P. Khuituan, S. K-da, K. Bannob, et al., Prebiotic oligosaccharides from dragon fruits alter gut motility in mice, Biomed. Pharmacother. 114 (2019) 108821. https://doi.org/10.1016/j.biopha.2019.108821.

[35]

X.D. Pan, F.Q. Chen, T.X. Wu, et al., Prebiotic oligosaccharides change the concentrations of short-chain fatty acids and the microbial population of mouse bowel, J. Zhejiang. Univ. Sci. B. 10(4) (2009) 258-263. https://doi.org/10.1631/jzus.B0820261.

[36]

C.O. Torello, J. Souza-Queiroz, M.L. Queiroz, β-1,3-Glucan given orally modulates immunomyelopoietic activity and enhances the resistance of tumour-bearing mice, Clin. Exp. Pharmacol. Physiol. 39(3) (2012) 209-217. https://doi.org/10.1111/j.1440-1681.2011.05655.x.

[37]

Y. Chen, Y. Jin, C. Stanton, et al., Alleviation effects of Bifidobacterium breve on DSS-induced colitis depends on intestinal tract barrier maintenance and gut microbiota modulation, Eur. J. Nutr. 60(1) (2021) 369-387. https://doi.org/10.1007/s00394-020-02252-x.

[38]

D.L. Hickman, Minimal exposure times for irreversible euthanasia with carbon dioxide in mice and rats, J. Am. Assoc. Lab. Anim. Sci. 61(3) (2022) 283-286. https://doi.org/10.30802/AALAS-JAALAS-21-000113.

[39]

Q. Zhai, G. Wang, J. Zhao, et al., Protective effects of Lactobacillus plantarum CCFM8610 against acute cadmium toxicity in mice, Appl. Environ. Microbiol. 79(5) (2013) 1508-1515. https://doi.org/10.1128/AEM.03417-12.

[40]

Q. Xu, X. Li, E. Wang, et al., A cellular model for screening of lactobacilli that can enhance tight junctions, RSC. Adv. 6(113) (2016) 111812-111821. https://doi.org/10.1039/C6RA24148D.

[41]

L. Wang, M. Pan, D. Li, et al., Metagenomic insights into the effects of oligosaccharides on the microbial composition of cecal contents in constipated mice, J. Funct. Foods. 38 (2017) 486-496. https://doi.org/10.1016/j.jff.2017.09.045.

[42]

J. Zhu, L. Yu, X. Shen, et al., Protective effects of Lactobacillus plantarum CCFM8610 against acute toxicity caused by different food-derived forms of cadmium in mice, Int. J. Mol. Sci. 22(20) (2021) 11045. https://doi.org/10.3390/ijms222011045.

[43]

E. Louis, The immuno-inflammatory reaction in Crohn's disease and ulcerative colitis: characterisation, genetics and clinical application. Focus on TNF alpha, Acta Gastroenterol. Belg. 64(1) (2001) 1-5.

[44]

B.E. Sands, G.G. Kaplan, The role of TNF alpha in ulcerative colitis, J. Clin. Pharmacol. 47(8) (2007) 930-941. https://doi.org/10.1177/0091270007301623.

[45]

R. Al-Sadi, D. Ye, M. Boivin, et al., Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of claudin-2 gene, PLoS ONE 9(3) (2014) e85345. https://doi.org/10.1371/journal.pone.0085345.

[46]

M. Rawat, M. Nighot, R. Al-Sadi, et al., IL1B increases intestinal tight junction permeability by up-regulation of MIR200C-3p, which degrades occludin mRNA, Gastroenterology 159(4) (2020) 1375-1389. https://doi.org/10.1053/j.gastro.2020.06.038.

[47]

S.L. Gaffen, R. Jain, A.V. Garg, et al., The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing, Nat. Rev. Immunol. 14(9) (2014) 585-600. https://doi.org/10.1038/nri3707.

[48]

J.R. Turner, Intestinal mucosal barrier function in health and disease, Nat. Rev. Immunol. 9(11) (2009) 799-809. https://doi.org/10.1038/nri2653.

[49]

S.H. Lee, Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases, Intest. Res. 13(1) (2015) 11-18. https://doi.org/10.5217/ir.2015.13.1.11.

[50]

T. Suzuki, Regulation of intestinal epithelial permeability by tight junctions, Cell. Mol. Life. Sci. 70(4) (2013) 631-659. https://doi.org/10.1007/s00018-012-1070-x.

[51]

M.P. Francino, The gut microbiome and metabolic health, Curr. Nutr. Rep. 6(1) (2017) 16-23. https://doi.org/10.1007/s13668-017-0190-1.

[52]

L. Peng, X. Gao, L. Nie, et al., Astragalin attenuates dextran sulfate sodium (DSS)-induced acute experimental colitis by alleviating gut microbiota dysbiosis and inhibiting NF-κB activation in mice, Front. Immunol. (2020) 2058. https://doi.org/10.3389/fimmu.2020.02058.

[53]

M. Lang, M. Baumgartner, A. Rożalska, et al., Crypt residing bacteria and proximal colonic carcinogenesis in a mouse model of Lynch syndrome, Int. J. Cancer. 147(8) (2020) 2316-2326. https://doi.org/10.1002/ijc.33028.

[54]

Z. Shen, C. Zhu, Y. Quan, et al., Insights into Roseburia intestinalis which alleviates experimental colitis pathology by inducing anti-inflammatory responses, J. Gastroenterol. Hepatol. 33(10) (2018) 1751-1760. https://doi.org/10.1111/jgh.14144.

[55]

C. Zhu, K. Song, Z. Shen, et al., Roseburia intestinalis inhibits interleukin-17 excretion and promotes regulatory T cells differentiation in colitis, Mol. Med. Rep. 17(6) (2018) 7567-7574. https://doi.org/10.3892/mmr.2018.8833.

[56]

A.F. Di'Narzo, S.M. Houten, R. Kosoy, et al., Integrative analysis of the inflammatory bowel disease serum metabolome improves our understanding of genetic etiology and points to novel putative therapeutic targets, Gastroenterology 162(3) (2022) 828-843.e11. https://doi.org/10.1053/j.gastro.2021.11.015.

[57]

D. Li, Y. Feng, M. Tian, et al., Gut microbiota-derived inosine from dietary barley leaf supplementation attenuates colitis through PPARγ signaling activation, Microbiome 9(1) (2021) 83. https://doi.org/10.1186/s40168-021-01028-7.

[58]

R. Schicho, A. Nazyrova, R. Shaykhutdinov, et al., Quantitative metabolomic profiling of serum and urine in DSS-induced ulcerative colitis of mice by 1H NMR spectroscopy, J. Proteome. Res. 9(12) (2010) 6265-6273. https://doi.org/10.1021/pr100547y

[59]

L. Zhang, N.N. Jia, R.H. Yang, et al., Eicosapentaenoic acid reduces inflammation and apoptosis by SREBP1/TLR4/MYD88, Bratisl. Lek. Listy. 121(11) (2020) 822-829. https://doi.org/10.4149/BLL_2020_135.

[60]

L.F. Mager, R. Burkhard, N. Pett, et al., Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy, Science (New York, N.Y.) 369(6510) (2020) 1481-1489. https://doi.org/10.1126/science.abc3421.

[61]

F. Hugenholtz, W.M. de Vos, Mouse models for human intestinal microbiota research: a critical evaluation, Cell. Mol. Life. Sci. 75(1) (2018) 149-160. https://doi.org/10.1007/s00018-017-2693-8.

[62]

V. Singh, B.S. Yeoh, B. Chassaing, et al., Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer, Cell 175(3) (2018) 679-694.e22. https://doi.org/10.1016/j.cell.2018.09.004.

Publication history
Copyright
Rights and permissions

Publication history

Received: 10 May 2022
Revised: 07 June 2022
Accepted: 03 July 2022
Published: 04 April 2023
Issue date: November 2023

Copyright

© 2023 Beijing Academy of Food Sciences.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return