Journal Home > Volume 12 , Issue 6

Inflammatory bowel disease (IBD) is characterized by recurrent attacks and long courses, and the number of patients has expanded rapidly year by year. Additionally, current conventional strategies exist serious adverse effects. In this case, it is an urgent issue to find out an effective and safe treatment. Functional oligosaccharides possess safe and excellent physiological activities, and have attracted enormous attention due to their great therapeutic potential for IBD. This review emphasizes the attenuating effects of distinct functional oligosaccharides on IBD and their structure, and summarizes the main mechanisms from the aspects of regulating intestinal flora structure, repairing intestinal barrier, modulating immune function and mediating related signaling pathways in order to reveal the relationship between functional oligosaccharides, immune regulation, intestinal epithelial cells, gut flora and IBD treatment. Oligosaccharides possess excellent protective effects on IBD, and can be considered as safe and functional ingredients in the health food and pharmaceutical industry.


menu
Abstract
Full text
Outline
About this article

Therapeutic potential and mechanism of functional oligosaccharides in inflammatory bowel disease: a review

Show Author's information Xiaochun YangaDeyong ZengaChongyang LibWenchen YuaGuilin XiebYingchun Zhanga( )Weihong Lua,b,c( )
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
Sichuan Gongda Southwest Food Research Co., Ltd., Bazhong 636063, China
The Intelligent Equipment Research Center for the Exploitation of Characteristic Food & Medicine Resources, Chongqing Research Institute of Harbin Institute of Technology, Chongqing 401135, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Abstract

Inflammatory bowel disease (IBD) is characterized by recurrent attacks and long courses, and the number of patients has expanded rapidly year by year. Additionally, current conventional strategies exist serious adverse effects. In this case, it is an urgent issue to find out an effective and safe treatment. Functional oligosaccharides possess safe and excellent physiological activities, and have attracted enormous attention due to their great therapeutic potential for IBD. This review emphasizes the attenuating effects of distinct functional oligosaccharides on IBD and their structure, and summarizes the main mechanisms from the aspects of regulating intestinal flora structure, repairing intestinal barrier, modulating immune function and mediating related signaling pathways in order to reveal the relationship between functional oligosaccharides, immune regulation, intestinal epithelial cells, gut flora and IBD treatment. Oligosaccharides possess excellent protective effects on IBD, and can be considered as safe and functional ingredients in the health food and pharmaceutical industry.

Keywords: Pathogenesis, Signaling pathway, Action mechanism, Colitis, Oligosaccharides

References(168)

[1]

Y.L. Ye, Z. Pang, W.C. Chen, et al., The epidemiology and risk factors of inflammatory bowel disease, Int. J. Clin. Exp. Med. 8 (2015) 22529-22542.

[2]

C.L. Berre, A.N. Ananthakrishnan, S. Danese, et al., Ulcerative colitis and Crohn's disease have similar burden and goals for treatment, Clin. Gastroenterology H. 18 (2020) 14-23. https://doi.org/10.1016/j.cgh.2019.07.005.

[3]

Y.R. Yu, J.R. Rodriguez, Clinical presentation of Crohn's, ulcerative colitis, and indeterminate colitis: Symptoms, extraintestinal manifestations, and disease phenotypes, Semin. Pediatr. Surg. 26 (2017) 349-355. https://doi.org/10.1053/j.sempedsurg.2017.10.003.

[4]

J.W. Windsor, G.G. Kaplan, Evolving epidemiology of IBD, Curr. Gastroenterol. Rep. 21 (2019) 40. https://doi.org/10.1007/s11894-019-0705-6.

[5]

E.I. Benchimol, C.N. Bernstein, A. Bitton, et al., The impact of inflammatory bowel disease in Canada 2018: A scientific report from the Canadian gastro-intestinal epidemiology consortium to Crohn's and Colitis Canada, J. Can. Assoc. Gastroenterol. 2 (2019) S1-S5. https://doi.org/10.1093/jcag/gwy052.

[6]

W.Y. Mak, M. Zhao, S.C. Ng, et al., The epidemiology of inflammatory bowel disease: East meets west, J. Gastroenterol. Hepatol. 35 (2019) 380-389. https://doi.org/10.1111/jgh.14872.

[7]

M. Fornai, R.M. van den Wijngaard, L. Antonioli, et al., Neuronal regulation of intestinal immune functions in health and disease, Neurogastroenterol. Motil. 30 (2018) e13406. https://doi.org/10.1111/nmo.13406.

[8]

W.T. Uniken Venema, M.D. Voskuil, G. Dijkstra, et al., The genetic background of inflammatory bowel disease: From correlation to causality, J. Pathol. 241 (2017) 146-158. https://doi.org/10.1002/path.4817.

[9]

R.B. Sartor, Mechanisms of disease: Pathogenesis of Crohn's disease and ulcerative colitis, Nat. Clin. Pract. Gastr. 3 (2006) 390-407. https://doi.org/10.1038/ncpgasthep0528.

[10]

A.N. Ananthakrishnan, Epidemiology and risk factors for IBD, Nat. Rev. Gastroenterol. Hepatol. 12 (2015) 205-217. https://doi.org/10.1038/nrgastro.2015.34.

[11]

A. Jacobson, D. Yang, M. Vella, et al., The intestinal neuro-immune axis: Crosstalk between neurons, immune cells, and microbes, Mucosal. Immunol. 14 (2021) 555-565. https://doi.org/10.1038/s41385-020-00368-1.

[12]

J.H. Tao, J.A. Duan, S. Jiang, et al., Polysaccharides from Chrysanthemum morifolium Ramat ameliorate colitis rats by modulating the intestinal microbiota community, Oncotarget. 8 (2017) 80790-80803. https://doi.org/10.18632/oncotarget.20477.

[13]

Z.M. Song, F. Liu, Y.M. Chen, et al., CTGF-mediated ERK signaling pathway influences the inflammatory factors and intestinal flora in ulcerative colitis, Biomed. Pharmacother. 111 (2019) 1429-1437. https://doi.org/10.1016/j.biopha.2018.12.063.

[14]

P. Liu, Y. Wang, G. Yang, et al., The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis, Pharmacolo. Res. 165 (2021) 105420. https://doi.org/10.1016/j.phrs.2021.105420.

[15]

A.N. Ananthakrishnan, Environmental triggers for inflammatory bowel disease, Curr. Gastro. Rep. 15 (2013). https://doi.org/10.1007/s11894-012-0302-4.

[16]

S. Aniwan, S.H. Park, E.V. Loftus, Epidemiology, natural history, and risk stratification of Crohn's disease, Gastroentero. Clin. of North Am. 46 (2017) 463-480. https://doi.org/10.1016/j.gtc.2017.05.003.

[17]

K.L. Isaacs, J.D. Lewis, W.J. Sandborn, et al., State of the art: IBD therapy and clinical trials in IBD, Inflamm. Bowel Dis. 11 (2005) S3-S12. https://doi.org/10.1097/01.MIB.0000184852.84558.b2.

[18]

L. Pastorelli, T.T. Pizarro, F. Cominelli, et al., Emerging drugs for the treatment of ulcerative colitis, Expert Opin. Emerg. Drugs. 14 (2009) 505-521. https://doi.org/10.1517/14728210903146882.

[19]

T.P. van Staa, T. Card, R.F. Logan, et al., 5-Aminosalicylate use and colorectal cancer risk in inflammatory bowel disease: A large epidemiological study, Gut 54 (2005) 1573-1578. https://doi.org/10.1136/gut.2005.070896.

[20]

H. Ahmad, V.L. Kumar, Pharmacotherapy of ulcerative colitis-current status and emerging trends, J. Basic Clin. Physiol. Pharmacol. 29 (2018) 581-592. https://doi.org/10.1515/jbcpp-2016-0014.

[21]

R. Keil, M. Wasserbauer, Z. Zádorová, et al., Clinical monitoring: Infliximab biosimilar CT-P13 in the treatment of Crohn's disease and ulcerative colitis, Scand. J. Gastro. 51 (2016) 1062-1068. https://doi.org/10.3109/00365521.2016.1149883.

[22]

R. Karagozian, R. Burakoff, The role of mesalamine in the treatment of ulcerative colitis, Ther. Clin. Risk Manag. 3 (2007) 893-903.

[23]

C.T. Xu, S.Y. Meng, B.R. Pan, Drug therapy for ulcerative colitis, World J. Gastroenterol. 10 (2004) 2311-2317. https://doi.org/10.3748/wjg.v10.i16.2311.

[24]

E.I. Benchimol, C.H. Seow, A.H. Steinhart, et al., Traditional corticosteroids for induction of remission in Crohn's disease, Cochrane. Database Syst. Rev. 2 (2007) D6792. https://doi.org/10.1002/14651858.CD006792.pub2.

[25]

C.D. Stone, The economic burden of inflammatory bowel disease: Clear problem, unclear solution, Dig. Dis. Sci. 57 (2012) 3042-3044. https://doi.org/10.1007/s10620-012-2417-8.

[26]

Y. Wang, N. Zhang, J. Kan, et al., Structural characterization of water-soluble polysaccharide from Arctium lappa and its effects on colitis mice, Carbohydr. Polym. 213 (2019) 89-99. https://doi.org/10.1016/j.carbpol.2019.02.090.

[27]

R. Zhang, S. Yuan, J. Ye, et al., Polysaccharide from flammuliana velutipes improves colitis via regulation of colonic microbial dysbiosis and inflammatory responses, Int. J. Biol. Macromol. 149 (2020) 1252-1261. https://doi.org/10.1016/j.ijbiomac.2020.02.044.

[28]

G. Huang, L. Ye, G. Du, et al., Effects of curcumin plus soy oligosaccharides on intestinal flora of rats with ulcerative colitis, Cell. Mol. Biol. 63 (2017) 20-25. https://doi.org/10.14715/cmb/2017.63.7.3.

[29]

D. Huang, Q. Xia, F. Li, et al., Attenuation of intestinal inflammation of polysaccharides from the seeds of Plantago asiatica L. As affected by ultrasonication, J. Food Biochem. 42 (2018) e12656. https://doi.org/10.1111/jfbc.12656.

[30]

Q. Xu, Y.L. Chao, Q.B. Wan, Health benefit application of functional oligosaccharides, Carbohydr. Polym. 77 (2009) 435-441. https://doi.org/10.1016/j.carbpol.2009.03.016.

[31]

C. de Freitas, E. Carmona, M. Brienzo, Xylooligosaccharides production process from lignocellulosic biomass and bioactive effects, Bioact. Carbohydr. Diet. Fibre 18 (2019) 100184. https://doi.org/10.1016/j.bcdf.2019.100184.

[32]

P. Zambelli, L. Fernandez-Arrojo, D. Romano, et al., Production of fructooligosaccharides by mycelium-bound transfructosylation activity present in Cladosporium cladosporioides and Penicilium sizovae, Process Biochem. 49 (2014) 2174-2180. https://doi.org/10.1016/j.procbio.2014.09.021.

[33]
J. Arrizón, J. Urias-Silvas, G. Sandoval G, et al., Production and bioactivity of fructan-type oligosaccharides, JohnWiley & Sons, Ltd, Chichester, 2014.
DOI
[34]

P. Phengnoi, T. Charoenwongpaiboon, K. Wangpaiboon, et al., Levansucrase from Bacillus amyloliquefaciens KK9 and its Y237S variant producing the high bioactive levan-type fructooligosaccharides, Biomolecules 10 (2020) 692. https://doi.org/10.3390/biom10050692.

[35]

F.J. Moreno, A. Montilla, M. Villamiel, et al., Analysis, structural characterization, and bioactivity of oligosaccharides derived from lactose, Electrophoresis 35 (2014) 1519-1534. https://doi.org/10.1002/elps.201300567.

[36]

L. Santibáñez, A. Córdova, C. Astudillo-Castro, et al., Effect of the lactose hydrolysis on galacto-oligosaccharides mixtures subjected to nanofiltration: A detailed fractionation analysis, Sep. Purif. Technol. 222 (2019) 342-351. https://doi.org/10.1016/j.seppur.2019.04.020.

[37]

M. Zhang, S.L. Cai, J.W. Ma, Evaluation of cardio-protective effect of soybean oligosaccharides, Gene 555 (2015) 329-334. https://doi.org/10.1016/j.gene.2014.11.027.

[38]

C. Zhao, Y. Wu, X. Liu, et al., Functional properties, structural studies and chemo-enzymatic synthesis of oligosaccharides, Trends Food Sci. Tech. 66 (2017) 135-145. https://doi.org/10.1016/j.tifs.2017.06.008.

[39]

Y. Ma, X. Peng, J. Yang, et al., Impacts of functional oligosaccharide on intestinal immune modulation in immunosuppressive mice, Saudi J. Biol Sci. 27 (2020) 233-241. https://doi.org/10.1016/j.sjbs.2019.08.019.

[40]

W. Sorndech, K.N. Nakorn, S. Tongta, et al., Isomalto-oligosaccharides: Recent insights in production technology and their use for food and medical applications, LWT-Food Sci. Technol. 95 (2018) 135-142. https://doi.org/10.1016/j.lwt.2018.04.098.

[41]

Q. Wu, X. Pi, W. Liu, et al., Fermentation properties of isomaltooligosaccharides are affected by human fecal enterotypes, Anaerobe 48 (2017) 206-214. https://doi.org/10.1016/j.anaerobe.2017.08.016.

[42]

C. Walsh, J.A. Lane, D. van Sinderen, et al., Human milk oligosaccharides: Shaping the infant gut microbiota and supporting health, J. Funct. Foods 72 (2020) 104074. https://doi.org/10.1016/j.jff.2020.104074.

[43]

W. Mu, Q. Chen, X. Wang, et al., Current studies on physiological functions and biological production of lactosucrose, Appl. Microbiol. Biotechnol. 97 (2013) 7073-7080. https://doi.org/10.1007/s00253-013-5079-3.

[44]

D. Kothari, A. Goyal, Gentio-oligosaccharides from Leuconostoc mesenteroides NRRL B-1426 dextransucrase as prebiotics and as a supplement for functional foods with anti-cancer properties, Food Funct. 6 (2015) 604-611. https://doi.org/10.1039/c4fo00802b.

[45]

T. Nakakuki, Present status and future prospects of functional oligosaccharide development in Japan, J. Appl. Glycosci. 52 (2005) 267-271. https://doi.org/10.5458/jag.52.267.

[46]

Y. Mizunoe, M. Kobayashi, Y. Sudo, et al., Trehalose protects against oxidative stress by regulating the Keap1-Nrf2 and autophagy pathways, Redox Biol. 15 (2018) 115-124. https://doi.org/10.1016/j.redox.2017.09.007.

[47]

H.J. Lee, Y.S. Yoon, S.J. Lee, Mechanism of neuroprotection by trehalose: Controversy surrounding autophagy induction, Cell Death Dis. 9 (2018) 712. https://doi.org/10.1038/s41419-018-0749-9.

[48]

M. Naveed, L. Phil, M. Sohail, et al., Chitosan oligosaccharide (COS): An overview, Int. J. Biol. Macromol. 129 (2019) 827-843. https://doi.org/10.1016/j.ijbiomac.2019.01.192.

[49]

Z. Zhao, W. Liu, X. Pi, In vitro effects of stachyose on the human gut microbiota, Starch-Stärke 73 (2021) 2100029. https://doi.org/10.1002/star.202100029.

[50]

M. Banti M., Raffinose family oligosaccharides, occurrence in food materials, nutritional implication and methods of analysis, a review, World J. Food Sci. Technol. 5 (2021) 37-44. https://doi.org/10.11648/j.wjfst.20210503.11.

[51]

S. Shyam, A. Ramadas, S.K. Chang, Isomaltulose: Recent evidence for health benefits, J. Funct. Foods. 48 (2018) 173-178. https://doi.org/10.1016/j.jff.2018.07.002.

[52]

M. Nooshkam, A. Babazadeh, H. Jooyandeh, Lactulose: Properties, techno-functional food applications, and food grade delivery, Trends Food Sci. Tech. 80 (2018) 23-34. https://doi.org/10.1016/j.tifs.2018.07.028.

[53]

L.Santibáñez, C. Henríquez, R. Corro-Tejeda, et al., Xylooligosaccharides from lignocellulosic biomass: A comprehensive review, Carbohydr. Polym. 251 (2021) 117118. https://doi.org/10.1016/j.carbpol.2020.117118.

[54]

C.T. Buruiana, B. Gómez, C. Vizireanu, et al., Manufacture and evaluation of xylooligosaccharides from corn stover as emerging prebiotic candidates for human health, LWT-Food Sci. Technol. 77 (2017) 449-459. https://doi.org/10.1016/j.lwt.2016.11.083.

[55]

V. Van Craeyveld, K. Swennen, E. Dornez, et al., Structurally different wheat-derived arabinoxylooligosaccharides have different prebiotic and fermentation properties in rats, J. Nutr. 138 (2008) 2348-2355. https://doi.org/10.3945/jn.108.094367.

[56]

A. Amaretti, E. Tamburini, T. Bernardi, et al., Substrate preference of Bifidobacterium adolescentis MB 239: Compared growth on single and mixed carbohydrates, Appl. Microbiol. Biotechnol. 73 (2006) 654-662. https://doi.org/10.1007/s00253-006-0500-9.

[57]

P. Gullón, P. Moura, M.P. Esteves, et al., Assessment on the fermentability of xylooligosaccharides from rice husks by probiotic bacteria, J. Agric. Food Chem. 56 (2008) 7482-7487. https://doi.org/10.1021/jf800715b.

[58]

P. Moura, R. Barata, F. Carvalheiro, et al., In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains, LWT-Food Sci. Technol. 40 (2007) 963-972. https://doi.org/10.1016/j.lwt.2006.07.013.

[59]

M.A. Kabel, L. Kortenoeven, H.A. Schols, et al., In vitro fermentability of differently substituted xylo-oligosaccharides, J. Agric. Food Chem. 50 (2002) 6205-6210. https://doi.org/10.1021/jf020220r.

[60]

B.Y. Mao, J. Gu, D.Y. Li, et al., Effects of different doses of fructooligosaccharides (FOS) on the composition of mice fecal microbiota, especially the Bifidobacterium composition, Nutrients 10 (2018) 1105. https://doi.org/10.3390/nu10081105.

[61]

J. Gu, B.Y. Mao, S.M. Cui, et al., Metagenomic insights into the effects of fructooligosaccharides (FOS) on the composition of luminal and mucosal microbiota in C57BL/6J mice, especially the Bifidobacterium composition, Nutrients 11 (2019) 2431. https://doi.org/10.3390/nu11102431.

[62]

S. Wang, J. Pan, Z. Zhang, et al., Investigation of dietary fructooligosaccharides from different production methods: Interpreting the impact of compositions on probiotic metabolism and growth, J. Funct. Foods 69 (2020) 103955. https://doi.org/10.1016/j.jff.2020.103955.

[63]

Y. Koga, S. Tokunaga, J. Nagano, et al., Age-associated effect of kestose on Faecalibacterium prausnitzii and symptoms in the atopic dermatitis infants, Pediatr. Res. 80 (2016) 844-851. https://doi.org/10.1038/pr.2016.167.

[64]

M. Rossi, C. Corradini, A. Amaretti, et al., Fermentation of fructooligosaccharides and inulin by Bifidobacteria: A comparative study of pure and fecal cultures, Appl. Environ. Microbio. 71 (2005) 6150-6158. https://doi.org/10.1128/AEM.71.10.6150.

[65]

Y.J. Goh, T.R. Klaenhammer, Genetic mechanisms of prebiotic oligosaccharide metabolism in probiotic microbes, Annu. Rev. Food Sci. Technol. 6 (2015) 137-156. https://doi.org/10.1146/annurev-food-022814-015706.

[66]

V. Ambrogi, F. Bottacini, L. Cao, et al., Galacto-oligosaccharides as infant prebiotics: Production, application, bioactive activities and future perspectives, Crit Rev Food Sci Nutr. (2021) 1-14. https://doi.org/10.1080/10408398.2021.1953437.

[67]

P.K. Gopal, P.A.Sullivan, J.B. Smart, Utilisation of galacto-oligosaccharides as selective substrates for growth by lactic acid bacteria including Bixdobacterium lactis DR10 and Lactobacillus rhamnosus DR20, Int. Dairy J. 11 (2001) 19-25. https://doi.org/10.1016/S0958-6946(01)00026-7.

[68]

F. Depeint, G. Tzortzis, J. Vulevic, et al., Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 41171, in healthy humans: A randomized, double-blind, crossover, placebo-controlled intervention study, Am. J. Clin. Nutr. 87 (2008) 785-791. https://doi.org/10.1093/ajcn/87.3.785.

[69]

S. Kittibunchakul, T. Maischberger, K.J. Domig, et al., Fermentability of a novel galacto-oligosaccharide mixture by Lactobacillus spp. and Bifidobacterium spp., Molecules 23 (2018) 3352. https://doi.org/10.3390/molecules23123352.

[70]

A. Cardelle-Cobas, N. Corzo, A. Olano, et al., Galactooligosaccharides derived from lactose and lactulose: Influence of structure on Lactobacillus, Streptococcus and Bifidobacterium growth, Int. J Food Microbiol. 149 (2011) 81-87. https://doi.org/10.1016/j.ijfoodmicro.2011.05.026.

[71]

U.K. Jana, N. Kango, B. Pletschke, Hemicellulose-derived oligosaccharides: Emerging prebiotics in disease alleviation, Frontiers in Nutrition 8 (2021) 670817. https://doi.org/10.3389/fnut.2021.670817.

[72]

M. Ejby, F. Fredslund, J.M. Andersen, et al., An ATP binding cassette transporter mediates the uptake of α-(1,6)-linked dietary oligosaccharides in Bifidobacterium and correlates with competitive growth on these substrates, J. Biol. Chem. 291 (2016) 20220-20231. https://doi.org/10.1074/jbc.M116.746529.

[73]

M. Ejby, F. Fredslund, A. Vujicic-Zagar, et al., Structural basis for arabinoxylo-oligosaccharide capture by the probiotic Bifidobacterium animalis subsp. lactis Bl-04, Mol. Microbiol. 90 (2013) 1100-1112. https://doi.org/10.1111/mmi.12419.

[74]

M.C. Theilmann, F. Fredslund, B. Svensson, et al., Substrate preference of an ABC importer corresponds to selective growth on β-(1,6)-galactosides in Bifidobacterium animalis subsp. lactis, J. Biol. Chem. 294 (2019) 11701-11711. https://doi.org/10.1074/jbc.RA119.008843.

[75]

A.A. Arzamasov, D. van Sinderen, D.A. Rodionov, Comparative genomics reveals the regulatory complexity of bifidobacterial arabinose and arabino-oligosaccharide utilization, Frontiers in Microbiology 9 (2018) 776. https://doi.org/10.3389/fmicb.2018.00776.

[76]

J.M.Andersen, R. Barrangou, H.M. Abou, et al., Transcriptional analysis of oligosaccharide utilization by Bifidobacterium lactis Bl-04, BMC Genomics. 14 (2013) 312. https://doi.org/10.1186/1471-2164-14-312.

[77]

M. Saminathan, C.C. Sieo, R. Kalavathy, et al., Effect of prebiotic oligosaccharides on growth of Lactobacillus strains used as a probiotic for chickens, Afr. J. Microbiol. Res. 5 (2011) 57-64. https://doi.org/10.5897/AJMR10.700.

[78]

C. Amorim, S.C. Silvério, B.B. Cardoso, et al., In vitro assessment of prebiotic properties of xylooligosaccharides produced by Bacillus subtilis 3610, Carbohydr. Polym. 229 (2020) 115460. https://doi.org/10.1016/j.carbpol.2019.115460.

[79]

J. Lee, E.J. Park, Y. Yuki, et al., Profiles of microRNA networks in intestinal epithelial cells in a mouse model of colitis, Sci. Rep. 5 (2016) 18174. https://doi.org/10.1038/srep18174.

[80]

K.L. Sheng, S.M. He, M. Sun, et al., Synbiotic supplementation containing Bifidobacterium infantis and xylooligosaccharides alleviates dextran sulfate sodium-induced ulcerative colitis, Food Funct. 11 (2020) 3964-3974. https://doi.org/10.1039/d0fo00518e.

[81]

Y.Q. Fei, Y. Wang, Y.L. Pang, et al., Xylooligosaccharide modulates gut microbiota and alleviates colonic inflammation caused by high fat diet induced obesity, Front. Physiol. 10 (2020) 1601. https://doi.org/10.3389/fphys.2019.01601.

[82]

M.S. Geier, R.N. Butler, P.M. Giffard, et al., Prebiotic and synbiotic fructooligosaccharide administration fails to reduce the severity of experimental colitis in rats, Dis. Colon Rectum. 50 (2007) 1061-1069. https://doi.org/10.1007/s10350-007-0213-x.

[83]

N.M. Moreau, L.J. Martin, C.S. Toquet, et al., Restoration of the integrity of rat caeco-colonic mucosa by resistant starch, but not by fructo-oligosaccharides, in dextran sulfate sodium-induced experimental colitis, Brit. J. Nutr. 90 (2003) 75-85. https://doi.org/10.1079/BJN2003867.

[84]

F. Lara-Villoslada, O. de Haro, D. Camuesco, et al., Short-chain fructooligosaccharides, in spite of being fermented in the upper part of the large intestine, have anti-inflammatory activity in the TNBS model of colitis, Eur. J. Nutr. 45 (2006) 418-425. https://doi.org/10.1007/s00394-006-0610-2.

[85]

F. Capitán-Cañadas, B. Ocón, C.J. Aranda, et al., Fructooligosaccharides exert intestinal anti-inflammatory activity in the CD4+ CD62L+ T cell transfer model of colitis in C57BL/6J mice, Eur. J. Nutr. 55 (2016) 1445-1454. https://doi.org/10.1007/s00394-015-0962-6.

[86]

M.J. Liao, Y.F. Zhang, Y.L. Qiu, et al., Fructooligosaccharide supplementation alleviated the pathological immune response and prevented the impairment of intestinal barrier in DSS-induced acute colitis mice, Food Funct. 12 (2021) 9844-9854. https://doi.org/10.1039/D1FO01147B.

[87]

C. Cherbut, C. Michel, G. Lecannu, The prebiotic characteristics of fructooligosaccharides are necessary for reduction of TNBS-induced colitis in rats, J. Nutr. 133 (2003) 21-27. https://doi.org/10.1093/jn/133.1.21.

[88]

Z.Q. Dai, S.M. Feng, A.N. Liu, et al., Anti-inflammatory effects of newly synthesized α-galacto-oligosaccharides on dextran sulfate sodium-induced colitis in C57BL/6J mice, Food Res. Int. 109 (2018) 350-357. https://doi.org/10.1016/j.foodres.2018.04.054.

[89]

H.Q. Chu, X. Tao, Z.G. Sun, et al., Galactooligosaccharides protects against DSS-induced murine colitis through regulating intestinal flora and inhibiting NF-κB pathway, Life Sci. 242 (2020) 117220. https://doi.org/https://doi.org/10.1016/j.lfs.2019.117220.

[90]

N.G. He, Y.Y. Wang, Z.H. Zhou, et al., Preventive and prebiotic effect of α-galacto-oligosaccharide against dextran sodium sulfate-induced colitis and gut microbiota dysbiosis in mice, J. Agric. Food Chem. 69 (2021) 9597-9607. https://doi.org/10.1021/acs.jafc.1c03792.

[91]

G. López-García, A. Cilla, R. Barberá, et al., Effect of a milk-based fruit beverage enriched with plant sterols and/or galactooligosaccharides in a murine chronic colitis model, Foods. 8 (2019) 114. https://doi.org/10.3390/foods8040114.

[92]

R. Holma, P. Juvonen, M.Z. Asmaw, et al., Galacto-oligosaccharides stimulate the growth of Bidobacteria but fail to attenuate inflammation in experimental colitis in rats, Scand. J. Gastro. 37 (2002) 1042-1047. https://doi.org/10.1080/003655202320378239.

[93]

A. Nath, G. Haktanirlar, Á. Varga, et al., Biological activities of lactose-derived prebiotics and symbiotic with probiotics on gastrointestinal system, Medicina 54 (2018) 18. https://doi.org/10.3390/medicina54020018.

[94]

Y.D. Hai, Hong Y., Wang Q., et al., Lactulose mediates suppression of dextran sulfate sodium-induced colon inflammation, Journal of Medical Colleges of PLA. 28 (2013) 65-79. https://doi.org/10.1016/S1000-1948(13)60019-2.

[95]

X. Chen, X. Zhai, J.Z. Shi, et al., Lactulose mediates suppression of dextran sodium sulfate-induced colon inflammation by increasing hydrogen production, Dig. Dis. Sci. 58 (2013) 1560-1568. https://doi.org/10.1007/s10620-013-2563-7.

[96]

F. Algieri, A. Rodríguez-Nogales, N. Garrido-Mesa, et al., Intestinal anti-inflammatory effects of oligosaccharides derived from lactulose in the trinitrobenzenesulfonic acid model of rat colitis, J. Agric. Food Chem. 62 (2014) 4285-4297. https://doi.org/10.1021/jf500678p.

[97]

S.S. van Leeuwen, E.M. Te Poele, A.C. Chatziioannou, et al., Goat milk oligosaccharides: Their diversity, quantity, and functional properties in comparison to human milk oligosaccharides, J. Agric. Food Chem. 68 (2020) 13469-13485. https://doi.org/10.1021/acs.jafc.0c03766.

[98]

F. Lara-Villoslada, E. Debras, A. Nieto, et al., Oligosaccharides isolated from goat milk reduce intestinal inflammation in a rat model of dextran sodium sulfate-induced colitis, Clin. Nutr. 25 (2006) 477-488. https://doi.org/10.1016/j.clnu.2005.11.004.

[99]

A. Daddaoua, V. Puerta, P. Requena, et al., Goat milk oligosaccharides are anti-inflammatory in rats with hapten-induced colitis, J. Nutr. 136 (2006) 672-676. https://doi.org/https://doi.org/10.1093/jn/136.3.672.

[100]

C. Muanprasat, M. Yousef, R. Pichyangkura, et al., Chitosan oligosaccharides ameliorate inflammation in two experimental models of colitis through inhibition of intestinal epithelial cell NF-κB signaling and apoptosis, FASEB J. 26 (2012) 1363-1367. https://doi.org/10.1096/fasebj.26.1_supplement.1107.5.

[101]

M. Yousef, R. Pichyangkura, S. Soodvilai, et al., Chitosan oligosaccharide as potential therapy of inflammatory bowel disease: Therapeutic efficacy and possible mechanisms of action, Pharmacol. Res. 66 (2012) 66-79. https://doi.org/10.1016/j.phrs.2012.03.013.

[102]

L. Shi, B. Fang, Y.H. Yong, et al., Chitosan oligosaccharide-mediated attenuation of LPS-induced inflammation in IPEC-J2 cells is related to the TLR4/NF-κB signaling pathway, Carbohydr. Polym. 219 (2019) 269-279. https://doi.org/10.1016/j.carbpol.2019.05.036.

[103]

Y.J. Wang, R. Wen, D.D. Liu, et al., Exploring effects of chitosan oligosaccharides on the DSS-induced intestinal barrier impairment in vitro and in vivo, Molecules 26 (2021) 2199. https://doi.org/10.3390/molecules26082199.

[104]

M.L. Xi, J. Li, G. Hao, et al., Stachyose increases intestinal barrier through Akkermansia muciniphila and reduces gut inflammation in germ-free mice after human fecal transplantation, Food Research International 137 (2020) 109288. https://doi.org/10.1016/j.foodres.2020.109288.

[105]

L.W. He, F.R. Zhang, Z.Y. Jian, et al., Stachyose modulates gut microbiota and alleviates dextran sulfate sodium-induced acute colitis in mice, Saudi J. Gastro. 26 (2020) 153. https://doi.org/10.4103/sjg.SJG_580_19.

[106]

R.X. Liu, Y.C. Li, B. Zhang, The effects of konjac oligosaccharide on TNBS-induced colitis in rats, Int. Immunopharmacol. 40 (2016) 385-391. https://doi.org/10.1016/j.intimp.2016.08.040.

[107]

P. Di Benedetto, P. Ruscitti, Z. Vadasz, et al., Macrophages with regulatory functions, a possible new therapeutic perspective in autoimmune diseases, Autoimmun. Rev. 18 (2019) 102369. https://doi.org/10.1016/j.autrev.2019.102369.

[108]

J.Q. Tang, J. Liu, Q.J. Yan, et al., Konjac glucomannan oligosaccharides prevent intestinal inflammation through SIGNR1-mediated regulation of alternatively activated macrophages, Mol. Nutr. Food Res. 65 (2021) 2001010. https://doi.org/10.1002/mnfr.202001010.

[109]

R.F. Tester, F.H. Al-Ghazzewi, Beneficial health characteristics of native and hydrolysed konjac (Amorphophallus konjac) glucomannan, J. Sci. Food Agric. 96 (2016) 3283-3291. https://doi.org/10.1002/jsfa.7571.

[110]

P. Suwannaporn, K. Thepwong, R. Tester, et al., Tolerance and nutritional therapy of dietary fibre from konjac glucomannan hydrolysates for patients with inflammatory bowel disease (IBD), Bioac. Carbohydr. Diet. Fibre 2 (2013) 93-98. https://doi.org/10.1016/j.bcdf.2013.09.005.

[111]

L. Gong, H. Wang, T. Wang, et al., Feruloylated oligosaccharides modulate the gut microbiota in vitro via the combined actions of oligosaccharides and ferulic acid, J. Funct. Foods 60 (2019) 103453. https://doi.org/10.1016/j.jff.2019.103453.

[112]

J. Ou, Z. Sun, Feruloylated oligosaccharides: Structure, metabolism and function, J. Funct. Foods. 7 (2014) 90-100. https://doi.org/10.1016/j.jff.2013.09.028.

[113]

J.Y. Ou, J.Q. Huang, Y. Song, et al., Feruloylated oligosaccharides from maize bran modulated the gut microbiota in rats, Plant Foods Hum. Nutr. 71 (2016) 123-128. https://doi.org/10.1007/s11130-016-0547-4.

[114]

Y. Song, M.S. Wu, G. Tao, et al., Feruloylated oligosaccharides and ferulic acid alter gut microbiome to alleviate diabetic syndrome, Food Res. Int. 137 (2020) 109410. https://doi.org/10.1016/j.foodres.2020.109410.

[115]

X.C. Xia, L.Q. Zhu, Z.W. Lei, et al., Feruloylated oligosaccharides alleviate dextran sulfate sodium-induced colitis in vivo, J. Agric. Food Chem. 67 (2019) 9522-9531. https://doi.org/10.1021/acs.jafc.9b03647.

[116]

Y. Zhou, Z. Ruan, X. Zhou, et al., Lactosucrose attenuates intestinal inflammation by promoting Th2 cytokine production and enhancing CD86 expression in colitic rats, Biosci. Biotechnol. Biochem. 79 (2015) 643-651. https://doi.org/10.1080/09168451.2014.991680.

[117]

Y. Zhou, Z. Ruan, X.L. Zhou, et al., A diet with lactosucrose supplementation ameliorates trinitrobenzene sulfonic acid-induced colitis in rats, Food Funct. 6 (2015) 161-171. https://doi.org/10.1039/C4FO00381K.

[118]

Z. Ruan, Y.F. Lv, X.F. Fu, et al., Metabolomic analysis of amino acid metabolism in colitic rats supplemented with lactosucrose, Amino Acids 45 (2013) 877-887. https://doi.org/10.1007/s00726-013-1535-8.

[119]

W. Wang, P. Liu, C. Hao, et al., Neoagaro-oligosaccharide monomers inhibit inflammation in LPS-stimulated macrophages through suppression of MAPK and NF-κB pathways, Sci. Rep. 7 (2017). https://doi.org/10.1038/srep44252.

[120]

Y. Higashimura, Y. Naito, T. Takagi, et al., Oligosaccharides from agar inhibit murine intestinal inflammation through the induction of heme oxygenase-1 expression, J. Gastro. 48 (2013) 897-909. https://doi.org/10.1007/s00535-012-0719-4.

[121]

T. Enoki, S. Okuda, Y. Kudo, et al., Oligosaccharides from agar inhibit pro-inflammatory mediator release by inducing heme oxygenase 1, Biosci. Biotechnol. Biochem. 74 (2014) 766-770. https://doi.org/10.1271/bbb.90803.

[122]

Z.X. Xu, W.C. Chen, Q.C. Deng, et al., Flaxseed oligosaccharides alleviate DSS-induced colitis through modulation of gut microbiota and repair of the intestinal barrier in mice, Food Funct. 11 (2020) 8077-8088. https://doi.org/10.1039/D0FO01105C.

[123]

L.K. Vigsn S, J. Holck, A.S. Meyer, et al., In vitro fermentation of sugar beet arabino-oligosaccharides by fecal microbiota obtained from patients with ulcerative colitis to selectively stimulate the growth of Bifidobacterium spp. and Lactobacillus spp, Appl. Environ. Microbiol. 77 (2011) 8336-8344. https://doi.org/10.1128/AEM.05895-11.

[124]

K.M. Lu, J. Zhou, J. Deng, et al., Periplaneta americana oligosaccharides exert anti-inflammatory activity through immunoregulation and modulation of gut microbiota in acute colitis mice model, Molecules 26 (2021) 1718. https://doi.org/10.3390/molecules26061718.

[125]

S. K-Da, S. Peerakietkhajorn, B. Siringoringo, et al., Oligosaccharides from Gracilaria fisheri ameliorate gastrointestinal dysmotility and gut dysbiosis in colitis mice, J. Funct. Foods 71 (2020) 104021. https://doi.org/10.1016/j.jff.2020.104021.

[126]

R. Zhou, X.Y. Shi, Y. Gao, et al., Anti-inflammatory activity of guluronate oligosaccharides obtained by oxidative degradation from alginate in lipopolysaccharide-activated murine macrophage RAW264.7 cells, J. Agric. Food Chem. 63 (2015) 160-168. https://doi.org/10.1021/jf503548a.

[127]

Y. Zhang, Z. Wu, J. Liu, et al., Identification of the core active structure of a Dendrobium officinale polysaccharide and its protective effect against dextran sulfate sodium-induced colitis via alleviating gut microbiota dysbiosis, Food Res. Int. 137 (2020) 109641. https://doi.org/10.1016/j.foodres.2020.109641.

[128]

Y.K. Yeung, Y. Kang, B.R. So, et al., Structural, antioxidant, prebiotic and anti-inflammatory properties of pectic oligosaccharides hydrolyzed from okra pectin by Fenton reaction, Food Hydrocoll. 118 (2021) 106779. https://doi.org/10.1016/j.foodhyd.2021.106779.

[129]

M. Kim, J. Jang, Y. Park, Production optimization, structural analysis, and prebiotic- and anti-inflammatory effects of gluco-oligosaccharides produced by Leuconostoc lactis SBC001, Microorganisms 9 (2021) 200. https://doi.org/10.3390/microorganisms9010200.

[130]

X. Xie, L. Zheng, H. Duan, et al., Structural characteristics of Gracilaria lemaneiformis oligosaccharides and their alleviation of dextran sulphate sodium-induced colitis by modulating the gut microbiota and intestinal metabolites in mice, Food Func. 12 (2021) 8635-8646. https://doi.org/10.1039/D1FO01201K.

[131]

H. Iwaya, J.S. Lee, S. Yamagishi, et al., The delay in the development of experimental colitis from isomaltosyloligosaccharides in rats is dependent on the degree of polymerization, PLoS ONE 7 (2012) e50658. https://doi.org/10.1371/journal.pone.0050658.

[132]

J. Wan, J. Zhang, H. Yin, et al., Ameliorative effects of alginate oligosaccharide on tumour necrosis factor-α-induced intestinal epithelial cell injury, Int. Immunopharmacol. 89 (2020) 107084. https://doi.org/10.1016/j.intimp.2020.107084

[133]

J. Zheng, S. Jiao, Q. Li, et al., Antrodia cinnamomea oligosaccharides suppress lipopolysaccharide-induced inflammation through promoting O-GlcNAcylation and repressing p38/Akt phosphorylation, Molecules 23 (2018) 51. https://doi.org/10.3390/molecules23010051.

[134]

Q. Xu, M. Liu, Q. Liu, et al., The inhibition of LPS-induced inflammation in RAW264.7 macrophages via the PI3K/Akt pathway by highly N-acetylated chitooligosaccharide, Carbohydr. Polym. 174 (2017) 1138-1143. https://doi.org/10.1016/j.carbpol.2017.07.051.

[135]

X.J. Hu, N.N. Xu, X. Yang, et al., Nigella a ameliorates inflammation and intestinal flora imbalance in DSS induced colitis mice, AMB Express 10 (2020) 179. https://doi.org/10.1186/s13568-020-01114-3.

[136]

A.W.F. Janssen, S. Kersten, The role of the gut microbiota in metabolic health, FASEB J. 29 (2015) 3111-3123. https://doi.org/10.1096/fj.14-269514.

[137]

Z.F. Dai, X.Y. Ma, R.L. Yang, et al., Intestinal flora alterations in patients with ulcerative colitis and their association with inflammation, Exp. Ther. Med. 22 (2021) 1322. https://doi.org/10.3892/etm.2021.10757.

[138]

N.N. He, Y. Yang, H.Y. Wang, et al., Unsaturated alginate oligosaccharides (UAOS) protects against dextran sulfate sodium-induced colitis associated with regulation of gut microbiota, J. Funct. Foods 83 (2021) 104536. https://doi.org/10.1016/j.jff.2021.104536.

[139]

J. Yoo, M. Groer, S. Dutra, et al., Gut microbiota and immune system interactions, Microorganisms 8 (2020) 1587. https://doi.org/10.3390/microorganisms8101587.

[140]

P.D. Venegas, M.K. de la Fuente, G. Landskron, et al., Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases, Front. Immunol. 10 (2019). https://doi.org/10.3389/fimmu.2019.00277.

[141]

M. Nepelska, A. Cultrone, F. Béguet-Crespel, et al., Butyrate produced by commensal bacteria potentiates phorbol esters induced AP-1 response in human intestinal epithelial cells, PLoS ONE. 7 (2012) e52869. https://doi.org/10.1371/journal.pone.0052869.

[142]

Y. Feng, Y. Wang, P. Wang, et al., Short-chain fatty acids manifest stimulative and protective effects on intestinal barrier function through the inhibition of NLRP3 inflammasome and autophagy, Cell. Physiol. Biochem. 49 (2018) 190-205. https://doi.org/10.1159/000492853.

[143]

P. Markowiak-Kopeć, K. Śliżewska, The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome, Nutrients 12 (2020) 1107. https://doi.org/10.3390/nu12041107.

[144]

E. Russo, F. Giudici, C. Fiorindi, et al., Immunomodulating activity and therapeutic effects of short chain fatty acids and tryptophan post-biotics in inflammatory bowel disease, Front. Immunol. 10 (2019) 2754. https://doi.org/10.3389/fimmu.2019.02754.

[145]

M. Sun, W. Wu, Z. Liu, et al., Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases, J. Gastro. 52 (2017) 1-8. https://doi.org/10.1007/s00535-016-1242-9.

[146]

T.V. Hung, T. Suzuki, Short-Chain fatty acids suppress inflammatory reactions in Caco-2 cells and mouse colons, J. Agric. Food Chem. 66 (2018) 108-117. https://doi.org/10.1021/acs.jafc.7b04233.

[147]

X.Y. Guo, X.J. Liu, J.Y. Hao, Gut microbiota in ulcerative colitis: Insights on pathogenesis and treatment, J. Dig. Dis. 21 (2020) 147-159. https://doi.org/10.1111/1751-2980.12849.

[148]

L.A. Godínez-Méndez, C.M. Gurrola-Díaz, J.S. Zepeda-Nuño, et al., In vivo healthy benefits of galacto-oligosaccharides from Lupinus albus (LA-GOS) in butyrate production through intestinal microbiota, Biomolecules 11 (2021) 1658. https://doi.org/10.3390/biom11111658.

[149]

K. Wang, L. Wu, C. Dou, et al., Research advance in intestinal mucosal barrier and pathogenesis of Crohn's disease, Gastro. Res. Pract. 2016 (2016) 1-6. https://doi.org/10.1155/2016/9686238.

[150]

L.S. Poritz, K.I. Garver, C. Green, et al., Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis, J. Surg. Res. 140 (2007) 12-19. https://doi.org/10.1016/j.jss.2006.07.050.

[151]

S.H. Lee, Intestinal permeability regulation by tight junction: Implication on inflammatory bowel diseases, Int. Res. 13 (2015) 11. https://doi.org/10.5217/ir.2015.13.1.11.

[152]

M. Zhu, X. Sun, M. Du, AMPK in regulation of apical junctions and barrier function of intestinal epithelium, Tissue Barriers 6 (2018) 1-13. https://doi.org/10.1080/21688370.2018.1487249.

[153]

S. Olivier, J. Leclerc, A. Grenier, et al., AMPK activation promotes tight junction assembly in intestinal epithelial Caco-2 cells, Int. J. Mol. Sci. 20 (2019) 5171. https://doi.org/10.3390/ijms20205171.

[154]

P. Rowart, J. Wu, M. Caplan, et al., Implications of AMPK in the formation of epithelial tight junctions, Int. J. Mol. Sci. 19 (2018) 2040. https://doi.org/10.3390/ijms19072040.

[155]

C. Muanprasat, P. Wongkrasant, S. Satitsri, et al., Activation of AMPK by chitosan oligosaccharide in intestinal epithelial cells: Mechanism of action and potential applications in intestinal disorders, Biochem. Pharmacol. 96 (2015) 225-236. https://doi.org/10.1016/j.bcp.2015.05.016.

[156]

P. Wongkrasant, P. Pongkorpsakol, J. Ariyadamrongkwan, et al., A prebiotic fructo-oligosaccharide promotes tight junction assembly in intestinal epithelial cells via an AMPK-dependent pathway, Biomedicine & Pharmacotherapy. 129 (2020) 110415. https://doi.org/10.1016/j.biopha.2020.110415.

[157]

C. Nopvichai, P. Pongkorpsakol, P. Wongkrasant, et al., Galactomannan pentasaccharide produced from copra meal enhances tight junction integration of epithelial tissue through activation of AMPK, Biomedicines 7 (2019) 81. https://doi.org/10.3390/biomedicines7040081.

[158]

X. Zhao, J. Liu, S. Ge, et al., Saikosaponin a inhibits breast cancer by regulating Th1/Th2 balance, Front. Pharmacol. 10 (2019). https://doi.org/10.3389/fphar.2019.00624.

[159]

F. Yang, D. Wang, Y. Li, et al., Th1/Th2 balance and Th17/Treg-mediated immunity in relation to murine resistance to dextran sulfate-induced colitis, J. Immunol. Res. 2017 (2017) 1-11. https://doi.org/10.1155/2017/7047201.

[160]

E.K. Kim, E. Choi, Pathological roles of MAPK signaling pathways in human diseases, Biochim. Biophys. Acta 1802 (2010) 396-405. https://doi.org/10.1016/j.bbadis.2009.12.009.

[161]

G. Wang, B. Xu, F. Shi, et al., Protective effect of methane-rich saline on acetic acid-induced ulcerative colitis via blocking the TLR4/NF-κB/MAPK pathway and promoting IL-10/JAK1/STAT3-mediated anti-inflammatory response, Oxid. Med. Cell. Longev. 2019 (2019) 1-12. https://doi.org/10.1155/2019/7850324.

[162]

H. Tan, W. Chen, Q. Liu, et al., Pectin oligosaccharides ameliorate colon cancer by regulating oxidative stress- and inflammation-activated signaling pathways, Front. Immunol. 9 (2018). https://doi.org/10.3389/fimmu.2018.01504.

[163]

M.A. Panaro, A. Corrado, T. Benameur, et al., The emerging role of curcumin in the modulation of TLR-4 signaling pathway: Focus on neuroprotective and anti-rheumatic properties, Int. J. Mol. Sci. 21 (2020) 2299. https://doi.org/10.3390/ijms21072299.

[164]

T. Liu, L. Zhang, D. Joo, et al., NF-κB signaling in inflammation, Signal Transduct. Target. Therapy. 2 (2017) 17023. https://doi.org/10.1038/sigtrans.2017.23.

[165]

D.E. Rothschild, D.K. Mcdaniel, V.M. Ringel-Scaia, et al., Modulating inflammation through the negative regulation of NF-κB signaling, J. Leukoc. Biol. 103 (2018) 1131-1150. https://doi.org/10.1002/JLB.3MIR0817-346RRR.

[166]

Z. Yao, L. Xu, L.M. Jin, et al., κ-Carrageenan oligosaccharides inhibit the inflammation of lipopolysaccharide-activated microglia via TLR4/NF-κB and p38/JNK MAPKs pathways, Neurochem. Res. 47 (2021) 259-304. https://doi.org/10.1007/s11064-021-03443-6.

[167]

Q.Y. Chen, X.Y. Duan, H. Fan, et al., Oxymatrine protects against DSS-induced colitis via inhibiting the PI3K/AKT signaling pathway, Int. Immunopharmacol. 53 (2017) 149-157. https://doi.org/10.1016/j.intimp.2017.10.025.

[168]

B.H. Liu, X.H. Piao, W. Niu, et al., Kuijieyuan decoction improved intestinal barrier injury of ulcerative colitis by affecting TLR4-dependent PI3K/AKT/NF-κB oxidative and inflammatory signaling and gut microbiota, Front. Pharmacol. 11 (2020) 1036. https://doi.org/10.3389/fphar.2020.01036.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 02 November 2021
Revised: 29 November 2021
Accepted: 29 December 2021
Published: 04 April 2023
Issue date: November 2023

Copyright

© 2023 Beijing Academy of Food Sciences.

Acknowledgements

This work was financially supported by Sichuan Science and Technology Program [2021YFSY0035] and Heilongjiang Touyan Team [HITTY-20190034].

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return