Journal Home > Volume 12 , Issue 6

Red honeybush tea (RHT) is a tea product developed from Cyclopia spp. which is endemic to South Africa. Aside refreshment, RHT has over the years been used traditionally in the treatment of various diseases including type 2 diabetes. This study investigated the in vivo antioxidant and anti-diabetic activity of RHT concentrated hot water extract in type 2 diabetes (T2D) model of rats. T2D was induced starting with feeding 10% fructose solution ad libitum for 2 weeks followed by a single intraperitoneal injection of streptozotocin (40 mg/kg body weight (BW)). Five weeks of treatment of RHT led to significant (P < 0.05) elevation in serum insulin, pancreatic β-cell function, HDL-c levels with concomitant decrease in AST, ALT, ALP, urea, CK-MB, fructosamine, total cholesterol, triglycerides, LDL-c, and insulin resistance in diabetic rats. RHT also significantly (P < 0.05) decreased MDA levels and enhanced level of GSH, activity of SOD, catalase, GR in most of organs (pancreas, liver, kidneys, and heart). Significantly (P < 0.05) improved morphological changes in the islets and β-cells were observed in rats treated with RHT. The data of this study suggest that RHT demonstrates an outstanding antioxidant and anti-diabetic effects in STZ-induced T2D model of rats.


menu
Abstract
Full text
Outline
About this article

Red honeybush (Cyclopia genistoides) tea mitigates oxidative imbalance and hyperlipidemia, while improving glucose homeostasis in type 2 diabetic rats

Show Author's information Xin XiaoaOchuko L. Erukainurea,bMd. Shahidul Islama( )
Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa

Peer review under responsibility of KeAi Communications Co., Ltd.

Abstract

Red honeybush tea (RHT) is a tea product developed from Cyclopia spp. which is endemic to South Africa. Aside refreshment, RHT has over the years been used traditionally in the treatment of various diseases including type 2 diabetes. This study investigated the in vivo antioxidant and anti-diabetic activity of RHT concentrated hot water extract in type 2 diabetes (T2D) model of rats. T2D was induced starting with feeding 10% fructose solution ad libitum for 2 weeks followed by a single intraperitoneal injection of streptozotocin (40 mg/kg body weight (BW)). Five weeks of treatment of RHT led to significant (P < 0.05) elevation in serum insulin, pancreatic β-cell function, HDL-c levels with concomitant decrease in AST, ALT, ALP, urea, CK-MB, fructosamine, total cholesterol, triglycerides, LDL-c, and insulin resistance in diabetic rats. RHT also significantly (P < 0.05) decreased MDA levels and enhanced level of GSH, activity of SOD, catalase, GR in most of organs (pancreas, liver, kidneys, and heart). Significantly (P < 0.05) improved morphological changes in the islets and β-cells were observed in rats treated with RHT. The data of this study suggest that RHT demonstrates an outstanding antioxidant and anti-diabetic effects in STZ-induced T2D model of rats.

Keywords: Antioxidants, Type 2 diabetes, Red honeybush tea (Cyclopia genistoides), Anti-diabetes

References(97)

[1]
International Diabetes Federation (IDF). IDF diabetes atlas. 9th ed. Brussels (belgium), 2019. http://www.diabetesatlas.org/.
[2]
Institute for Health Metrics and Evaluation (IHME). Findings from the global burden of disease study 2017. Seattle, WA: IHME, 2018. http://www.healthdata.org/.
[3]
World Health Organization (WHO). Classification of diabetes mellitus. Geneva (Switzerland), 2019. https://creativecommons.org/licenses/by-nc-sa/3.0/igo.
[4]

S. Chatterjee, K. Khunti, M.J. Davies, Type 2 diabetes, The Lancet 389 (2017) 2239-2251. https://doi.org/10.1016/S0140-6736(17)30058-2.

[5]

F. Folli, D. Corradi, P. Fanti, et al., The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro-and macrovascular complications: avenues for a mechanistic-based therapeutic approach. Curr. Diabetes Rev. 7 (2011) 313-324. https://doi.org/10.2174/157339911797415585.

[6]

O. Aouacheri, S. Saka, M. Krim, et al., The investigation of the oxidative stress-related parameters in type 2 diabetes mellitus, Can. J. Diabetes. 39 (2015) 44-49. https://doi.org/10.1016/j.jcjd.2014.03.002.

[7]

C. Bommer, V. Sagalova, E. Heesemann, et al., Global economic burden of diabetes in adults: projections from 2015 to 2030, Diabetes care 41 (2018) 963-970. https://doi.org/10.2337/dc17-1962.

[8]

A. Chaudhury, C. Duvoor, V.S. Reddy Dendi, et al., Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management, Front. Endocrinol. 8 (2017) 1-12. https://doi.org/10.3389/fendo.2017.00006.

[9]

Ekor M., The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety, Front. Pharmacol. 4 (2014) 1-10. https://doi.org/10.3389/fphar.2013.00177.

[10]

S. Windvogel, Rooibos (Aspalathus linearis) and honeybush (Cyclopia spp.): from bush teas to potential therapy for cardiovascular disease, Intech Open. 2019. https://doi.org/10.5772/intechopen.86410.

[11]

A. Kokotkiewicz, M. Luczkiewicz, Honeybush (Cyclopia sp.)–a rich source of compounds with high antimutagenic properties, Fitoterapia 80 (2009) 3-11. https://doi.org/10.1016/j.fitote.2008.11.001.

[12]

O.R. Ajuwon, A.O. Ayeleso, G.A. Adefolaju, The potential of south african herbal tisanes, rooibos and honeybush in the management of type 2 diabetes mellitus, Molecules 23 (2018) 3207-3232. https://doi.org/10.3390/molecules23123207.

[13]

B.E. van Wyk, B. Gorelik, The history and ethnobotany of cape herbal teas, S. Afr. J. Bot. 110 (2017) 18-38. https://doi.org/10.1016/j.sajb.2016.11.011.

[14]

E. Joubert, M. Joubert, C. Bester, et al., Honeybush (Cyclopia spp.): from local cottage industry to global markets—the catalytic and supporting role of research, S. Afr. J. Bot. 77(2011) 887-907. https://doi.org/10.1016/j.sajb.2011.05.014.

[15]

B.E. Van Wyk, The potential of south african plants in the development of new medicinal products, S. Afr. J. Bot. 77 (2011) 812-829. https://doi.org/10.1016/j.sajb.2011.08.011.

[16]

D.L. McKay, J.B. Blumberg, A review of the bioactivity of south african herbal teas: rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia), Phytother. Res. 21 (2007) 1-16. https://doi.org/10.1002/ptr.1992.

[17]

J.L. Marnewick, Rooibos and honeybush: recent advances in chemistry, biological activity and pharmacognosy, ACS Publications (2009) 277-280. https://doi.org/10.1021/bk-2009-1021.ch016.

[18]

X. Xing, D. Li, D. Chen, et al., Mangiferin treatment inhibits hepatic expression of acyl-coenzyme a: diacylglycerol acyltransferase-2 in fructose-fed spontaneously hypertensive rats: a link to amelioration of fatty liver, Toxicol. Appl. Pharmacol. 280 (2014) 207-215. https://doi.org/10.1016/j.taap.2014.08.001.

[19]

C.A. Smith, Common names of South African plants, Botanical Research Institute. Pretoria (South Africa), 1966.

[20]
J.M. Watt, M.G. Breyer-Brandwijk, The Medicinal and Poisonous Plants of Southern and Eastern Africa being an Account of their Medicinal and other Uses, Chemical Composition, Pharmacological Effects and Toxicology in Man and Animal (Edn 2)., Edinburgh (UK), 1962, pp.xii + 1457, 16-17 pp.
[21]

T. Beelders, D.J. Brand, D. de Beer, et al., Benzophenone C- and O-glucosides from cyclopia genistoides (honeybush) inhibit mammalian α-glucosidase, J. Nat. Prod. 77 (2014) 2694-2699. https://doi.org/10.1021/np5007247.

[22]

N. Miller, C.J. Malherbe, E. Joubert, In vitro α-glucosidase inhibition by honeybush (Cyclopia genistoides) food ingredient extract—potential for dose reduction of acarbose through synergism, Food Funct. 11 (2020) 6476-6486. https://doi.org/10.1039/D0FO01306D.

[23]

M. Hubbe, E. Joubert, In vitro superoxide anion radical scavenging ability of honeybush tea (Cyclopia), Royal Society of Chemistry, Stellenbosch (South Africa) 255 (2000) 242-244.

[24]

S. Murakami, Y. Miura, M. Hattori, et al., Cyclopia extracts enhance th1-, th2-, and th17-type t cell responses and induce Foxp3+ cells in murine cell culture, Planta. Medica. 84 (2018) 311-319. https://doi.org/10.1055/s-0043-121270.

[25]

S. Lo, J. Russell, A. Taylor, Determination of glycogen in small tissue samples, J. Appl. Physiol. 28 (1970) 234-236. https://doi.org/10.1152/jappl.1970.28.2.234.

[26]

G.L. Ellman, Tissue sulfhydryl groups, Arch. Biochem. Biophys. 82 (1959) 70-77. https://doi.org/10.1016/0003-9861(59)90090-6.

[27]

P. Kakkar, B. Das, P. Viswanathan, A modified spectrophotometric assay of superoxide dismutase, NISCAIR-CSIR. 21 (1984) 130-132. https://hdl.handle.net/123456789/19932.

[28]

B. Chance, A. Maehly, Assay of catalases and peroxidases, Methods Enzymol. 2 (1955) 764-775. https://doi.org/10.1016/S0076-6879(55)02300-8.

[29]

P. Chowdhury, M. Soulsby, Lipid peroxidation in rat brain is increased by simulated weightlessness and decreased by a soy-protein diet, Ann. Clin. Lab. Sci. 32 (2002) 188-192.

[30]

I.K. Smith, T.L. Vierheller, C.A. Thorne, Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis(2-nitrobenzoic acid), Anal. Biochem. 175 (1988) 408-413. https://doi.org/10.1016/0003-2697(88)90564-7.

[31]

V.A. Fonseca, Defining and characterizing the progression of type 2 diabetes, Diabetes Care 32 (2009) S151-S156. https://doi.org/10.2337/dc09-S301.

[32]

R.D. Wilson, M.S. Islam, Fructose-fed streptozotocin-injected rat: an alternative model for type 2 diabetes, Pharmacol. Rep. 64 (2012) 129-139. https://doi.org/10.1016/S1734-1140(12)70739-9.

[33]

O.L. Erukainure, V.F. Salau, V. Bharuth, et al., Hyperglycemia alters lipid metabolism and ultrastructural morphology of cerebellum in brains of diabetic rats: Therapeutic potential of raffia palm (Raphia hookeri G. Mann & H. Wendl) wine., Neurochem. Int. 140 (2020) 104849. https://doi.org/10.1016/j.neuint.2020.104849.

[34]

C.I. Chukwuma, R. Mopuri, S. Nagiah, et al., Erythritol reduces small intestinal glucose absorption, increases muscle glucose uptake, improves glucose metabolic enzymes activities and increases expression of glut-4 and irs-1 in type 2 diabetic rats, Eur. J. Nutr. 57 (2018) 2431-2444. https://doi.org/10.1007/s00394-017-1516-x.

[35]

B.L. Furman, Streptozotocin‐induced diabetic models in mice and rats, Curr. Protoc. Pharmacol. 70 (2015) 5.47.41-45.47.20. https://doi.org/10.1002/0471141755.ph0547s70.

[36]

M.A. Ibrahim, J.D. Habila, N.A. Koorbanally, et al., Butanol fraction of Parkia biglobosa (Jacq.) G. Don leaves enhance pancreatic β-cell functions, stimulates insulin secretion and ameliorates other type 2 diabetes-associated complications in rats, J. Ethnopharmacol. 183 (2016) 103-111. https://doi.org/10.1016/j.jep.2016.02.018.

[37]

M.S. Islam, Effects of the aqueous extract of white tea (Camellia sinensis) in a streptozotocin-induced diabetes model of rats, Phytomedicine 19 (2011) 25-31. https://doi.org/10.1016/j.phymed.2011.06.025.

[38]

U. Okon, D. Owo, N. Udokang, et al., Oral administration of aqueous leaf extract of ocimum gratissimum ameliorates polyphagia, polydipsia and weight loss in streptozotocin-induced diabetic rats, Am. J. Med. Sci. 2 (2012) 45-49. https://doi.org/10.5923/j.ajmms.20120203.04.

[39]

P.V. Röder, B. Wu, Y. Liu, et al., Pancreatic regulation of glucose homeostasis, Exp. Mol. Med. 48 (2016) e219. https://doi.org/10.1038/emm.2016.6.

[40]

J.J. Meier, R.C. Bonadonna, Role of reduced β-cell mass versus impaired β-cell function in the pathogenesis of type 2 diabetes, Diabetes Care 36 (2013) S113-S119. https://doi.org/10.2337/dcS13-2008.

[41]

N. Chellan, E. Joubert, H. Strijdom, et al., Aqueous extract of unfermented honeybush (Cyclopia maculata) attenuates stz-induced diabetes and β-cell cytotoxicity, Planta. Medica. 80 (2014) 622-629. https://doi.org/10.1055/s-0034-1368457.

[42]

H.L. Wang, C.Y. Li, B. Zhang, et al., Mangiferin facilitates islet regeneration and β-cell proliferation through upregulation of cell cycle and β-cell regeneration regulators, Int. J. Mol. Sci. 15 (2014) 9016-9035. https://doi.org/10.3390/ijms15059016.

[43]

M. Lauricella, S. Emanuele, G. Calvaruso, et al., Multifaceted health benefits of Mangifera indica L. (mango): the inestimable value of orchards recently planted in Sicilian rural areas, Nutrients 9 (2017) 525. https://doi.org/10.3390/nu9050521.

[44]

M. Gondi, U.P. Rao, Ethanol extract of mango (Mangifera indica L.) peel inhibits α-amylase and α-glucosidase activities, and ameliorates diabetes related biochemical parameters in streptozotocin (STZ)-induced diabetic rats, J. Food Sci. Technol. 52 (2015) 7883-7893. https://doi.org/10.3390/antiox7060073.

[45]

W. Augustyn, S. Combrinck, B. Botha, Comparison of mangiferin in mango leaf and honeybush infusion, Planta. Med. 77 (2011) PF81. https://doi.org/10.1055/s-0031-1282469.

[46]

R.M. Cohen, D.B. Sacks, Comparing multiple measures of glycemia: how to transition from biomarker to diagnostic test?, in: Comparing Multiple Measures of Glycemia: How to Transition from Biomarker to Diagnostic Test?, Clin. Chem. 58 (2012) 1615-1617. https://doi.org/10.1373/clinchem.2012.196139.

[47]

H. Malmström, G. Walldius, V. Grill, et al., Fructosamine is a useful indicator of hyperglycaemia and glucose control in clinical and epidemiological studies-cross-sectional and longitudinal experience from the amoris cohort, PLoS One 9 (2014) e111463. https://doi.org/10.1371/journal.pone.0111463.

[48]

A. Mohammed, N.A. Koorbanally, M.S. Islam, Anti-diabetic effect of Xylopia aethiopica (Dunal) A. Rich. (Annonaceae) fruit acetone fraction in a type 2 diabetes model of rats, J. Ethnopharmacol. 180 (2016) 131-139. https://doi.org/10.1016/j.jep.2016.01.009.

[49]

O.L. Erukainure, O. Sanni, O.M. Ijomone, et al., The antidiabetic properties of the hot water extract of kola nut (Cola nitida (Vent.) Schott & Endl.) in type 2 diabetic rats, J. Ethnopharmacol. 242 (2019) 112033. https://doi.org/10.1016/j.jep.2019.112033.

[50]

V. Fonseca, Clinical significance of targeting postprandial and fasting hyperglycemia in managing type 2 diabetes mellitus, Curr. Med. Res. Opin. 19 (2003) 635-631. https://doi.org/10.1185/030079903125002351.

[51]

N. Alqahtani, W.A.G. Khan, M.H. Alhumaidi, et al., Use of glycated hemoglobin in the diagnosis of diabetes mellitus and pre-diabetes and role of fasting plasma glucose, oral glucose tolerance test, Int. J. Pre. Med. 4 (2013) 1025-1029.

[52]

E. Bartoli, G. Fra, G.C. Schianca, The oral glucose tolerance test (OGTT) revisited, Eur. J. Intern. Med. 22 (2011) 8-12. https://doi.org/10.1016/j.ejim.2010.07.008.

[53]

M.A. Ibrahim, M.S. Islam, Anti-diabetic effects of the acetone fraction of senna singueana stem bark in a type 2 diabetes rat model, J. Ethnopharmacol 153 (2014) 392-399. https://doi.org/10.1016/j.jep.2014.02.042.

[54]

M. Magnone, P. Ameri, A. Salis, et al., Microgram amounts of abscisic acid in fruit extracts improve glucose tolerance and reduce insulinemia in rats and in humans, The FASEB Journal 29 (2015) 4783-4793. https://doi.org/10.1096/fj.15-277731.

[55]

K. Sakaguchi, K. Takeda, M. Maeda, et al., Glucose area under the curve during oral glucose tolerance test as an index of glucose intolerance, Diabetolo. Int. 7 (2016) 53-58. https://doi.org/10.1007/s13340-015-0212-4.

[56]

A.E. Schulze, D. de Beer, S.E. Mazibuko, et al., Assessing similarity analysis of chromatographic fingerprints of cyclopia subternata extracts as potential screening tool for in vitro glucose utilisation, Anal. Bioanal. Chem. 408 (2016) 639-649. https://doi.org/10.1007/s00216-015-9147-7.

[57]

P.D. Home, G. Pacini, Hepatic dysfunction and insulin insensitivity in type 2 diabetes mellitus: a critical target for insulin‐sensitizing agents, Diabetes Obes. Metab. 10 (2008) 699-718. https://doi.org/10.1111/j.1463-1326.2007.00761.x.

[58]

M. König, S. Bulik, H.G. Holzhütter, Quantifying the contribution of the liver to glucose homeostasis: a detailed kinetic model of human hepatic glucose metabolism, PLoS Comput. Biol. 8 (2012) e1002577. https://doi.org/10.1371/journal.pcbi.1002577.

[59]

U.J. Jung, M.K. Lee, K.S. Jeong, et al., The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice, J. Nutr. 134 (2004) 2499-2503. https://doi.org/10.1093/jn/134.10.2499.

[60]

O.L. Erukainure, O.A. Oyebode, O.M. Ijomone, et al., Raffia palm (Raphia hookeri G. Mann & H. Wendl) wine modulates glucose homeostasis by enhancing insulin secretion and inhibiting redox imbalance in a rat model of diabetes induced by high fructose diet and streptozotocin, J. Ethnopharmacol. 237 (2019) 159-170. https://doi.org/10.1016/j.jep.2019.03.039.

[61]

K. Moodley, K. Joseph, Y. Naidoo, et al., Antioxidant, antidiabetic and hypolipidemic effects of Tulbaghia violacea Harv. (wild garlic) rhizome methanolic extract in a diabetic rat model, BMC Complement. Med. Ther. 15 (2015) 408. https://doi.org/10.1186/s12906-015-0932-9.

[62]

G. Kelley, K. Kelley, Effects of aerobic exercise on lipids and lipoproteins in adults with type 2 diabetes: a meta-analysis of randomized-controlled trials, Public Health. 121 (2007) 643-655. https://doi.org/10.1016/j.puhe.2007.02.014.

[63]

R. VinodMahato, P. Gyawali, P.P. Raut, et al., Association between glycaemic control and serum lipid profile in type 2 diabetic patients: glycated haemoglobin as a dual biomarker, Biomed. Res. 22 (2011) 375-382.

[64]

A.E. Schulze, T. Beelders, I.S. Koch, et al., Honeybush herbal teas (Cyclopia spp.) contribute to high levels of dietary exposure to xanthones, benzophenones, dihydrochalcones and other bioactive phenolics, J. Food Compost. Anal. 44 (2015) 139-148. https://doi.org/10.1016/j.jfca.2015.08.002.

[65]

X. Wang, J. Hasegawa, Y. Kitamura, et al., Effects of hesperidin on the progression of hypercholesterolemia and fatty liver induced by high-cholesterol diet in rats, J. Pharmacol. Sci. 117 (2011) 129-138. https://doi.org/10.1254/jphs.11097fp.

[66]

U.J. Jung, M.K. Lee, Y.B. Park, et al., Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mrna levels in type-2 diabetic mice, Int. J. Biochem. Cell Biol. 38 (2006) 1134-1145. https://doi.org/10.1016/j.biocel.2005.12.002.

[67]

R. Hamzah, A. Lawal, F. Madaki, et al., Methanolic extract of Celosia argentea var. crista leaves modulates glucose homeostasis and abates oxidative hepatic injury in diabetic rats, Comp. Clin. Path. 27 (2018) 1065-1071. https://doi.org/10.1007/s00580-018-2702-9.

[68]

O.A. Oyebode, O.L. Erukainure, O. Sanni, et al., Crassocephalum rubens (Juss. Ex Jacq.) S. Moore improves pancreatic histology, insulin secretion, liver and kidney functions and ameliorates oxidative stress in fructose-streptozotocin induced type 2 diabetic rats, Drug Chem. Toxicol. 45 (2020) 1-10. https://doi.org/10.1080/01480545.2020.1716783.

[69]

J. Das, J. Ghosh, A. Roy, et al., Mangiferin exerts hepatoprotective activity against d-galactosamine induced acute toxicity and oxidative/nitrosative stress via Nrf2–NFκB pathways, Toxicol. Appl. Pharmacol. 260 (2012) 35-47. https://doi.org/10.1016/j.taap.2012.01.015.

[70]

E.S. Ryu, M.J. Kim, H.S. Shin, et al., Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease, Am. J. Physiol. Renal. Physiol. 304 (2013) F471-F480. https://doi.org/10.1152/ajprenal.00560.2012.

[71]

R.J. Johnson, T. Nakagawa, D. Jalal, et al, Uric acid and chronic kidney disease: which is chasing which?, Nephrol. Dial. Transplant. 28 (2013) 2221-2228. https://doi.org/10.1093/ndt/gft029.

[72]

S. Saha, S. Mahalanobish, S. Dutta, et al., Mangiferin ameliorates collateral neuropathy in t BHP induced apoptotic nephropathy by inflammation mediated kidney to brain crosstalk, Food Funct. 10 (2019) 5981-5999. https://doi.org/10.1039/C9FO00329K.

[73]

A.A. Nogueira, C.M. Strunz, J.Y. Takada, et al., Biochemical markers of muscle damage and high serum concentration of creatine kinase in patients on statin therapy, Biomark. Med. 13 (2019) 619-626. https://doi.org/10.2217/bmm-2018-0379.

[74]

T. Wallimann, M. Tokarska-Schlattner, U. Schlattner, The creatine kinase system and pleiotropic effects of creatine, Amino Acids. 40 (2011) 1271-1296. https://doi.org/10.1007/s00726-011-0877-3.

[75]

S. Prabhu, M. Jainu, K. Sabitha, et al., Role of mangiferin on biochemical alterations and antioxidant status in isoproterenol-induced myocardial infarction in rats, J. Ethnopharmacol. 107 (2006) 126-133. https://doi.org/10.1016/j.jep.2006.02.014.

[76]

W. Arozal, F.D. Suyatna, V. Juniantito, et al., The effects of mangiferin (Mangifera indica L) in doxorubicin-induced cardiotoxicity in rats, Drug Res. 65 (2015) 574-580. https://doi.org/10.1055/s-0034-1394457.

[77]

A.J. Núñez Selles, M. Daglia, L. Rastrelli, The potential role of mangiferin in cancer treatment through its immunomodulatory, anti‐angiogenic, apoptopic, and gene regulatory effects, BioFactors 42 (2016) 475-491. https://doi.org/10.1002/biof.1299.

[78]

P.S. Sellamuthu, P. Arulselvan, S. Kamalraj, et al., Protective nature of mangiferin on oxidative stress and antioxidant status in tissues of streptozotocin-induced diabetic rats, ISRN Pharmacol. 2013 (2013) 1-10. https://doi.org/10.1155/2013/750109.

[79]

X. Li, X. Hu, J. Wang, et al., Inhibition of autophagy via activation of pi3k/akt/mtor pathway contributes to the protection of hesperidin against myocardial ischemia/reperfusion injury, Int. J. Mol. Med. 42 (2018) 1917-1924. https://doi.org/10.3892/ijmm.2018.3794.

[80]

Y. Yin, Y. Xu, H. Ma, et al., Hesperetin ameliorates cardiac inflammation and cardiac fibrosis in streptozotocin-induced diabetic rats by inhibiting NF-κB signaling pathway, Biomed. Res. 28 (2017) 223-229.

[81]

N. Suryawanshi, A. Bhutey, A. Nagdeote, et al., Study of lipid peroxide and lipid profile in diabetes mellitus, Indian J. Clin. Biochem. 21 (2006) 126-130. https://doi.org/10.1007/bf02913080.

[82]

E. Birben, U.M. Sahiner, C. Sackesen, et al., Oxidative stress and antioxidant defense, World Allergy Organ. J. 5 (2012) 9-19. https://doi.org/10.1097/WOX.0b013e3182439613.

[83]

O.L. Erukainure, O.M. Ijomone, O.A. Oyebode, et al., Hyperglycemia-induced oxidative brain injury: therapeutic effects of Cola nitida infusion against redox imbalance, cerebellar neuronal insults, and upregulated Nrf2 expression in type 2 diabetic rats, Food Chem. Toxicol. 127 (2019) 206-217. https://doi.org/10.1016/j.fct.2019.03.044.

[84]

N. Mchunu, C.I. Chukwuma, M.A. Ibrahim, et al., Commercially available non‐nutritive sweeteners modulate the antioxidant status of type 2 diabetic rats, J. Food Biochem. 43 (2019) e12775. https://doi.org/10.1111/jfbc.12775.

[85]

O. Sanni, O.L. Erukainure, O. Oyebode, et al., Anti-hyperglycemic and ameliorative effect of concentrated hot water-infusion of phragmanthera incana leaves on type 2 diabetes and indices of complications in diabetic rats, J. Diabetes Metab. Disord. 18 (2019) 495-503. https://doi.org/10.1007/s40200-019-00456-5.

[86]

H. Waggiallah, M. Alzohairy, The effect of oxidative stress on human red cells glutathione peroxidase, glutathione reductase level, and prevalence of anemia among diabetics, N. Am. J. Med. Sci. 3 (2011) 344. https://doi.org/10.4297/najms.2011.3344.

[87]

K. Gawlik, J.W. Naskalski, D. Fedak, et al., Markers of antioxidant defense in patients with type 2 diabetes, Oxid. Med. Cell. Longev. 2016 (2016) 1-6. https://doi.org/10.1155/2016/2352361.

[88]

F.M. Kandemir, M. Ozkaraca, S. Küçükler, et al., Preventive effects of hesperidin on diabetic nephropathy induced by streptozotocin via modulating TGF-β1 and oxidative DNA damage, Toxin. Rev. 37 (2018) 287-293. https://doi.org/10.1080/15569543.2017.1364268.

[89]

P.B. Pal, K. Sinha, P.C. Sil, Mangiferin attenuates diabetic nephropathy by inhibiting oxidative stress mediated signaling cascade, TNFα related and mitochondrial dependent apoptotic pathways in streptozotocin-induced diabetic rats, PloS One 9 (2014) e107220. https://doi.org/10.1371/journal.pone.0107220.

[90]

O. Ighodaro, O. Akinloye, First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx): their fundamental role in the entire antioxidant defence grid, Alexandria J. Med. 54 (2018) 287-293. https://doi.org/10.1016/j.ajme.2017.09.001.

[91]

A. Petrova, L.M. Davids, F. Rautenbach, et al., Photoprotection by honeybush extracts, hesperidin and mangiferin against UVB-induced skin damage in SKH-1 mice, J. Photochem. Photobiol B: Biol. 103 (2011) 126-139. https://doi.org/10.1016/j.jphotobiol.2011.02.020.

[92]

A.R. Im, S.H. Yeon, J.S. Lee, et al., Protective effect of fermented cyclopia intermedia against UVB-induced damage in hacat human keratinocytes, BMC Complement. Med. Ther. 16 (2016) 1-10. https://doi.org/10.1186/s12906-016-1218-6.

[93]

S.K. Ku, J.S. Bae, Vicenin-2 and scolymoside inhibit high-glucose-induced vascular inflammation in vitro and in vivo, Can. J. Physiol. Pharmacol. 94 (2016) 287-295. https://doi.org/10.1139/cjpp-2015-0215.

[94]

X. Xiao, O.L. Erukainure, B. Beseni, et al., Sequential extracts of red honeybush (Cyclopia genistoides) tea: chemical characterization, antioxidant potentials, and anti‐hyperglycemic activities, J. Food Biochem. 44 (2020) e13478.

[95]

M.M. Elmazar, H.S. El-Abhar, M.F. Schaalan, et al., Phytol/Phytanic acid and insulin resistance: potential role of phytanic acid proven by docking simulation and modulation of biochemical alterations, PLoS One 8 (2013) e45638. https://doi.org/10.1371/journal.pone.0045638

[96]

J.P. Costa, T. Islam, P.S. Santos, et al., Evaluation of antioxidant activity of phytol using non- and pre-clinical models, Curr. Pharm. Biotech. 17 (2016) 1278-1284.

[97]

M.G. Traber, J. Atkinson, Vitamin E, antioxidant and nothing more, Free Rad. Biol. Med. 43 (2007) 4-15. https://doi.org/10.1016/j.freeradbiomed.2007.03.024

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 10 March 2021
Revised: 22 March 2021
Accepted: 09 May 2021
Published: 04 April 2023
Issue date: November 2023

Copyright

© 2023 Beijing Academy of Food Sciences.

Acknowledgements

Acknowledgements

This study was supported by a competitive research grant from the Research Office, University of KwaZulu-Natal (UKZN), Durban; an incentive grant for rated researchers and a grant support for women and young researchers from the National Research Foundation (NRF), Pretoria, South Africa.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return