Journal Home > Volume 12 , Issue 5

Ferroptosis and neuroinflammation contribute to the development of Alzheimer's disease (AD). Isoforsythiaside (IFY) is a phenylethanoid glycoside isolated from the dried fruit of Forsythia suspensa (Thunb.) Vahl that has been confirmed to improve the memory and cognitive abilities of APP/PS1 mice in our previous study. The purpose of this study was to explore the anti-ferroptosis and anti-neuroinflammatory properties of IFY-mediated neuroprotection. In APP/PS1 mice, erastin-damaged HT22 cells, and LPS-exposed BV2 cells, the neuroprotective effects against ferroptosis and neuroinflammation were investigated using immunohistochemistry, label-free proteomics, western blot, ELISA, MTT, fluorescence, and TEM. IFY alleviated the expression levels of NO, IL-6, and IL-1β in LPS-exposed BV2 cells and improved the morphology of mitochondria in erastin-damaged HT22 cells. Additionally, IFY upregulated the expression levels of GPX4, FTH, FTL, p-GSK-3β, Nrf2, and NQO1, and downregulated the expression of TFR1, DMT1, p-Fyn, GFAP, p-IKKα+β, p-IκBα, p-NF-κB, and pro-inflammatory factors in the brains of APP/PS1 mice and erastin-damaged HT22 cells. In conclusion, IFY inhibits ferroptosis and neuroinflammation in erastin-damaged HT22 cells and APP/PS1 mice, at least partially by regulating the activation of Nrf2 and NF-κB signaling. IFY may prevent ferroptosis and neuroinflammation in AD and provide a new treatment strategy for AD.


menu
Abstract
Full text
Outline
About this article

Isoforsythiaside confers neuroprotection against Alzheimer’s disease by attenuating ferroptosis and neuroinflammation in vivo and in vitro

Show Author's information Chunyue Wanga,b,1Hongbo Jianga,1Honghan LiuaShanshan ChenaHangyu GuoaShuoshuo MaaWeiwei HanaYu LibDi Wanga,b( )
School of Life Sciences, Jilin University, Changchun 130012, China
Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China

1 These authors contributed equally to this work.

Peer review under responsibility of KeAi Communications Co., Ltd.

Abstract

Ferroptosis and neuroinflammation contribute to the development of Alzheimer's disease (AD). Isoforsythiaside (IFY) is a phenylethanoid glycoside isolated from the dried fruit of Forsythia suspensa (Thunb.) Vahl that has been confirmed to improve the memory and cognitive abilities of APP/PS1 mice in our previous study. The purpose of this study was to explore the anti-ferroptosis and anti-neuroinflammatory properties of IFY-mediated neuroprotection. In APP/PS1 mice, erastin-damaged HT22 cells, and LPS-exposed BV2 cells, the neuroprotective effects against ferroptosis and neuroinflammation were investigated using immunohistochemistry, label-free proteomics, western blot, ELISA, MTT, fluorescence, and TEM. IFY alleviated the expression levels of NO, IL-6, and IL-1β in LPS-exposed BV2 cells and improved the morphology of mitochondria in erastin-damaged HT22 cells. Additionally, IFY upregulated the expression levels of GPX4, FTH, FTL, p-GSK-3β, Nrf2, and NQO1, and downregulated the expression of TFR1, DMT1, p-Fyn, GFAP, p-IKKα+β, p-IκBα, p-NF-κB, and pro-inflammatory factors in the brains of APP/PS1 mice and erastin-damaged HT22 cells. In conclusion, IFY inhibits ferroptosis and neuroinflammation in erastin-damaged HT22 cells and APP/PS1 mice, at least partially by regulating the activation of Nrf2 and NF-κB signaling. IFY may prevent ferroptosis and neuroinflammation in AD and provide a new treatment strategy for AD.

Keywords: Alzheimer's disease, Ferroptosis, Neuroinflammation, Isoforsythiaside

References(65)

[1]

P. Maher, A. Currais, D. Schubert, Using the oxytosis/ferroptosis pathway to understand and treat age-associated neurodegenerative diseases, Cell Chem. Biol. 27 (2020) 1456-1471. http://dx.doi.org/10.1016/j.chembiol.2020.10.010.

[2]

W. Hou, Y. Xie, X. Song, et al., Autophagy promotes ferroptosis by degradation of ferritin, Autophagy 12 (2016) 1425-1428. http://dx.doi.org/10.1080/15548627.2016.1187366.

[3]

Y. Song, B. Wang, X. Zhu, et al., Human umbilical cord blood-derived MSCs exosome attenuate myocardial injury by inhibiting ferroptosis in acute myocardial infarction mice, Cell Biol. Toxicol. 37 (2021) 51-64. http://dx.doi.org/10.1007/s10565-020-09530-8.

[4]

S. Masaldan, A.I. Bush, D. Devos, et al., Striking while the iron is hot: Iron metabolism and ferroptosis in neurodegeneration, Free Radic.Biol. Med. 133 (2019) 221-233. http://dx.doi.org/10.1016/j.freeradbiomed.2018.09.033.

[5]

G. Ates, J. Goldberg, A. Currais, et al., CMS121, a fatty acid synthase inhibitor, protects against excess lipid peroxidation and inflammation and alleviates cognitive loss in a transgenic mouse model of Alzheimer's disease, Redox. Biol. 36 (2020) 101648. http://dx.doi.org/10.1016/j.redox.2020.101648.

[6]

S. Ayton, S. Portbury, P. Kalinowski, et al., Regional brain iron associated with deterioration in Alzheimer's disease: a large cohort study and theoretical significance, Alzheimers Dement. 17 (2021) 1244-1256. http://dx.doi.org/10.1002/alz.12282.

[7]

M. Maiorino, M. Conrad, F. Ursini, GPx4, lipid peroxidation, and cell death: discoveries, rediscoveries, and open issues, Antioxid. Redox. Signal. 29 (2018) 61-74. http://dx.doi.org/10.1089/ars.2017.7115.

[8]

C. Patricio Alvarado-Diaz, M. Tulio Nunez, L. Devoto, et al., Endometrial expression and in vitro modulation of the iron transporter divalent metal transporter-1: implications for endometriosis, Fertil. Steril. 106 (2016) 393-401. http://dx.doi.org/10.1016/j.fertnstert.2016.04.002.

[9]

B. Ding, C. Lin, Q. Liu, et al., Tanshinone IIA attenuates neuroinflammation via inhibiting RAGE/NF-kappa B signaling pathway in vivo and in vitro, J. Neuroinflamm. 17 (2020) 302. http://dx.doi.org/10.1186/s12974-020-01981-4.

[10]

U.C.S. Yadav, K.V. Ramana, Regulation of NF-kappa B-induced inflammatory signaling by lipid peroxidation-derived aldehydes, Oxidative Med. Cell Longev. 2013 (2013) 690545. http://dx.doi.org/10.1155/2013/690545.

[11]

P. Cole-Ezea, D. Swan, D. Shanley, et al., Glutathione peroxidase 4 has a major role in protecting mitochondria from oxidative damage and maintaining oxidative phosphorylation complexes in gut epithelial cells, Free Radic. Biol. Med. 53 (2012) 488-497. http://dx.doi.org/10.1016/j.freeradbiomed.2012.05.029.

[12]

D.N. Hauser, A.A. Dukes, A.D. Mortimer, et al., Dopamine quinone modifies and decreases the abundance of the mitochondrial selenoprotein glutathione peroxidase 4, Free Radic. Biol. Med. 65 (2013) 419-427. http://dx.doi.org/10.1016/j.freeradbiomed.2013.06.030.

[13]

C. Li, X. Deng, X. Xie, et al., Activation of glutathione peroxidase 4 as a novel anti-inflammatory strategy, Front. Pharmacol. 9 (2018) 1120. http://dx.doi.org/10.3389/fphar.2018.01120.

[14]

C. Li, X. Deng, W. Zhang, et al., Novel allosteric activators for ferroptosis regulator glutathione peroxidase 4, J. Med. Chem. 62 (2019) 266-275. http://dx.doi.org/10.1021/acs.jmedchem.8b00315.

[15]

Y. Liu, Y. Zhang, X. Zheng, et al., Galantamine improves cognition, hippocampal inflammation, and synaptic plasticity impairments induced by lipopolysaccharide in mice, J. Neuroinflamm. 15 (2018) 112. http://dx.doi.org/10.1186/s12974-018-1141-5.

[16]

Y. An, H. Zhang, S. Huang, et al., PL201, a reported rhamnoside against alzheimer's disease pathology, Alleviates Neuroinflammation and Stimulates Nrf2 Signaling, Front. Immunol. 11 (2020) 162. http://dx.doi.org/10.3389/fimmu.2020.00162.

[17]

M.H. Keuters, V. Keksa-Goldsteine, H. Dhungana, et al., An arylthiazyne derivative is a potent inhibitor of lipid peroxidation and ferroptosis providing neuroprotection in vitro and in vivo, Sci. Rep. 11 (2021) 3518. http://dx.doi.org/10.1038/s41598-021-81741-3.

[18]

S. Li, C. Zhou, Y. Zhu, et al., Ferrostatin-1 alleviates angiotensin II (Ang II)-induced inflammation and ferroptosis in astrocytes, Int. Immunopharmacol. 90 (2021) 107179. http://dx.doi.org/10.1016/j.intimp.2020.107179.

[19]

I.G. Onyango, G.V. Jauregui, M. Carna, et al., Neuroinflammation in Alzheimer's disease, Biomedicines 9 (2021) 524. http://dx.doi.org/10.3390/biomedicines9050524.

[20]

H. Qu, Y. Zhang, X. Chai, et al., Isoforsythiaside, an antioxidant and antibacterial phenylethanoid glycoside isolated from Forsythia suspensa, Bioorganic Chem. 40 (2012) 87-91. http://dx.doi.org/10.1016/j.bioorg.2011.09.005.

[21]

L. Pan, X.K. Ma, P.F. Zhao, et al., Forsythia suspensa extract attenuates breast muscle oxidative injury induced by transport stress in broilers, Poult. Sci. 97 (2018) 1554-1563. http://dx.doi.org/10.3382/ps/pey012.

[22]

C. Wang, J. Hao, X. Liu, et al., Isoforsythiaside attenuates Alzheimer's Disease via regulating mitochondrial function through the PI3K/AKT pathway, Int. J. Mol. Sci. 21 (2020) 5687. http://dx.doi.org/10.3390/ijms21165687.

[23]

O. Trott, A.J. Olson, Software news and update autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2010) 455-461. http://dx.doi.org/10.1002/jcc.21334.

[24]

C. Wang, X. Cai, R. Wang, et al., Neuroprotective effects of verbascoside against Alzheimer's disease via the relief of endoplasmic reticulum stress in a beta-exposed U251 cells and APP/PS1 mice, J. Neuroinflamm. 17 (2020) 309. http://dx.doi.org/10.1186/s12974-020-01976-1.

[25]

M. Caspers, K.J. Czogalla, K. Liphardt, et al., Two enzymes catalyze vitamin K 2,3-epoxide reductase activity in mouse: VKORC1 is highly expressed in exocrine tissues while VKORC1L1 is highly expressed in brain, Thromb. Res. 135 (2015) 977-983. http://dx.doi.org/10.1016/j.thromres.2015.01.025.

[26]

L. Dai, L.J. Schurgers, P.G. Shiels, et al., Early vascular ageing in chronic kidney disease: impact of inflammation, vitamin K, senescence and genomic damage, Nephrol. Dial. Transplant. 35 (2020) 31-37. http://dx.doi.org/10.1093/ndt/gfaa006.

[27]

N. Kobayashi, S. Kon, Y. Henmi, et al., The Arf GTPase-activating protein SMAP1 promotes transferrin receptor endocytosis and interacts with SMAP2, Biochem. Biophys. Res. Commun. 453 (2014) 473-479. http://dx.doi.org/10.1016/j.bbrc.2014.09.108.

[28]

B.L. Giacobbo, J. Doorduin, H.C. Klein, et al., Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation, Mol. Neurobiol. 56 (2019) 3295-3312. http://dx.doi.org/10.1007/s12035-018-1283-6.

[29]

T. Masuda, J. Itoh, T. Koide, et al., Transforming growth factor-beta 1 in the cerebrospinal fluid of patients with distinct neurodegenerative diseases, J. Clin. Neurosci. 35 (2017) 47-49. http://dx.doi.org/10.1016/j.jocn.2016.09.018.

[30]

K. Zhang, H. Wang, M. Xu, et al., Role of MCP-1 and CCR2 in ethanol-induced neuroinflammation and neurodegeneration in the developing brain, J. Neuroinflamm. 15 (2018) 197. http://dx.doi.org/10.1186/s12974-018-1241-2.

[31]

J.K. Ryu, J.G. McLarnon, VEGF receptor antagonist Cyclo-VEGI reduces inflammatory reactivity and vascular leakiness and is neuroprotective against acute excitotoxic striatal insult, J. Neuroinflamm. 5 (2008) 18. http://dx.doi.org/10.1186/1742-2094-5-18.

[32]

Y. Shan, S. Tan, Y. Lin, et al., The glucagon-like peptide-1 receptor agonist reduces inflammation and blood-brain barrier breakdown in an astrocyte-dependent manner in experimental stroke, J. Neuroinflamm. 16 (2019) 242. http://dx.doi.org/10.1186/s12974-019-1638-6.

[33]

S. Dinicola, S. Proietti, A. Cucina, et al., Alpha-lipoic acid downregulates IL-1 beta and IL-6 by DNA hypermethylation in SK-N-BE neuroblastoma cells, Antioxidants 6 (2017) 74. http://dx.doi.org/10.3390/antiox6040074.

[34]

A. Ng, W.W. Tam, M.W. Zhang, et al., IL-1 beta, IL-6, TNF-alpha and CRP in elderly patients with depression or Alzheimer's disease: systematic review and meta-analysis, Sci. Rep. 8 (2018) 12. http://dx.doi.org/10.1038/s41598-018-30487-6.

[35]

E.J. Yang, K.S. Song, The ameliorative effects of capsidiol isolated from elicited Capsicum annuum on mouse splenocyte immune responses and neuroinflammation, Phytother. Res. 35 (2021) 1597-1608. http://dx.doi.org/10.1002/ptr.6927.

[36]

C. Zong, R. Hasegawa, M. Urushitani, et al., Role of microglial activation and neuroinflammation in neurotoxicity of acrylamide in vivo and in vitro, Arch. Toxicol. 93 (2019) 2007-2019. http://dx.doi.org/10.1007/s00204-019-02471-0.

[37]

J. Ji, K. Ding, T. Luo, et al., TRIM22 activates NF-kappa B signaling in glioblastoma by accelerating the degradation of I kappa B alpha, Cell Death Differ. 28 (2021) 367-381. http://dx.doi.org/10.1038/s41418-020-00606-w.

[38]

C. Ishikawa, J.L. Arbiser, N. Mori, Honokiol induces cell cycle arrest and apoptosis via inhibition of survival signals in adult T-cell leukemia, Biochimica. Et. Biophysica. Acta-General Subjects 1820 (2012) 879-887. http://dx.doi.org/10.1016/j.bbagen.2012.03.009.

[39]

S. Liao, J. Wu, R. Liu, et al., A novel compound DBZ ameliorates neuroinflammation in LPS-stimulated microglia and ischemic stroke rats: role of Akt(Ser473)/GSK3 beta (Ser9)-mediated Nrf2 activation, Redox Biol. 36 (2020) 101644. http://dx.doi.org/10.1016/j.redox.2020.101644.

[40]

S.-E. Yoo, L. Chen, R. Na, et al., Gpx4 ablation in adult mice results in a lethal phenotype accompanied by neuronal loss in brain, Free Radic. Biol. Med. 52 (2012) 1820-1827. http://dx.doi.org/10.1016/j.freeradbiomed.2012.02.043.

[41]

L. Zhao, Y. Peng, S. He, et al., Apatinib induced ferroptosis by lipid peroxidation in gastric cancer, Gastric. Cancer 24 (2021) 642-654. http://dx.doi.org/10.1007/s10120-021-01159-8.

[42]

S. Houari, E. Picard, T. Wurtz, et al., Disrupted iron storage in dental fluorosis, J. Dental Res. 98 (2019) 994-1001. http://dx.doi.org/10.1177/0022034519855650.

[43]

J. Liu, L. Gao, N. Zhan, et al., Hypoxia induced ferritin light chain (FTL) promoted epithelia mesenchymal transition and chemoresistance of glioma, J. Experim. Clin. Cancer Res. 39 (2020) 137. http://dx.doi.org/10.1186/s13046-020-01641-8.

[44]

J.L. Roh, E.H. Kim, H. Jang, et al., Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis, Redox Biol. 11 (2017) 254-262. http://dx.doi.org/10.1016/j.redox.2016.12.010.

[45]

X. Liu, K. Chen, L. Zhu, et al., Soyasaponin Ab protects against oxidative stress in HepG2 cells via Nrf2/HO-1/NQO1 signaling pathways, J. Funct. Foods 45 (2018) 110-117. http://dx.doi.org/10.1016/j.jff.2018.03.037.

[46]

A.M. Battaglia, R. Chirillo, I. Aversa, et al., Ferroptosis and cancer: mitochondria meet the "iron maiden" cell death, Cells 9 (2020) 1505. http://dx.doi.org/10.3390/cells9061505.

[47]

M.W. Park, H.W. Cha, J. Kim, et al., NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer's diseases, Redox Biol. 41 (2021) 101947. http://dx.doi.org/10.1016/j.redox.2021.101947.

[48]

Y. Yang, M. Luo, K. Zhang, et al., Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma, Nat Commun. 11 (2020) 433. http://dx.doi.org/10.1038/s41467-020-14324-x.

[49]

Y. Dong, M.A. Digman, G.J. Brewer, Age- and AD-related redox state of NADH in subcellular compartments by fluorescence lifetime imaging microscopy, Geroscience 41 (2019) 51-67. http://dx.doi.org/10.1007/s11357-019-00052-8.

[50]

A.V. Kudriavtseva, E.A. Anedchenko, N.Y. Oparina, et al., Expression of FTL and FTH genes encoding ferritin subunits in lung and renal carcinomas, Mol. Biol. 43 (2009) 972-981. http://dx.doi.org/10.1134/s0026893309060090.

[51]

J.Y. Li, N. Paragas, R.M. Ned, et al., Scara5 Is a ferritin receptor mediating non-transferrin iron delivery, Dev. Cell 16 (2009) 35-46. http://dx.doi.org/10.1016/j.devcel.2008.12.002.

[52]

J. Chen, J. Wang, C. Li, et al., Dexmedetomidine reverses MTX-induced neurotoxicity and inflammation in hippocampal HT22 cell lines via NCOA4-mediated ferritinophagy, Aging-US 13 (2021) 6182-6193.

[53]

X. Sun, Z. Ou, R. Chen, et al., Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells, Hepatology 63 (2016) 173-184. http://dx.doi.org/10.1002/hep.28251.

[54]

Z.Y. Yu, D. Ma, Z.C. He, et al., Heme oxygenase-1 protects bone marrow mesenchymal stem cells from iron overload through decreasing reactive oxygen species and promoting IL-10 generation, Experim. Cell Res. 362 (2018) 28-42. http://dx.doi.org/10.1016/j.yexcr.2017.10.029.

[55]

M. Dodson, R. Castro-Portuguez, D.D. Zhang, NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis, Redox Biol. 23 (2019) 101107. http://dx.doi.org/10.1016/j.redox.2019.101107.

[56]

A. Hammed, B. Matagrin, G. Spohn, et al., VKORC1L1, an enzyme rescuing the vitamin K 2,3-epoxide reductase activity in some extrahepatic tissues during anticoagulation therapy, J. Biol. Chem. 288 (2013) 28733-28742. http://dx.doi.org/10.1074/jbc.M113.457119.

[57]

B. Hou, Y. Zhang, P. Liang, et al., Inhibition of the NLRP3-inflammasome prevents cognitive deficits in experimental autoimmune encephalomyelitis mice via the alteration of astrocyte phenotype, Cell Death Dis. 11 (2020) 377. http://dx.doi.org/10.1038/s41419-020-2565-2.

[58]

G. Ates, J. Goldberg, A. Currais, et al., CMS121, a fatty acid synthase inhibitor, protects against excess lipid peroxidation and inflammation and alleviates cognitive loss in a transgenic mouse model of Alzheimer's disease, Redox Biol. 36 (2020) 101648. http://dx.doi.org/10.1016/j.redox.2020.101648.

[59]

N. Haghighatseir, H. Ashrafi, P. Rafiei, et al., Dexamethasone ameliorates Alzheimer's pathological condition via inhibiting Nf-kappa B and mTOR signaling pathways, Biointerface Res. Appl. Chem. 10 (2020) 5792-5796. http://dx.doi.org/10.33263/briac104.792796.

[60]

X. Liu, K. Wang, X. Wei, et al., Interaction of NF-kappa B and Wnt/beta-catenin signaling pathways in Alzheimer's disease and potential active drug treatments, Neurochem. Res. 46 (2021) 711-731. http://dx.doi.org/10.1007/s11064-021-03227-y.

[61]

A. Dhar, J. Gardner, K. Borgmann, et al., Novel role of TGF-beta in differential astrocyte-TIMP-1 regulation: Implications for HIV-1-dementia and neuroinflammation, J. Neurosci. Res. 83 (2006) 1271-1280. http://dx.doi.org/10.1002/jnr.20787.

[62]

S.W. Lai, J.H. Chen, H.Y. Lin, et al., Regulatory effects of neuroinflammatory responses through brain-derived neurotrophic factor signaling in microglial cells, Mol. Neurobiol. 55 (2018) 7487-7499. http://dx.doi.org/10.1007/s12035-018-0933-z.

[63]

A. Salami, G. Papenberg, R. Sitnikov, et al., Elevated neuroinflammation contributes to the deleterious impact of iron overload on brain function in aging, Neuroimage 230 (2021) 117792. http://dx.doi.org/10.1016/j.neuroimage.2021.117792.

[64]

T. Ishii, E. Warabi, G.E. Mann, Circadian control of BDNF-mediated Nrf2 activation in astrocytes protects dopaminergic neurons from ferroptosis, Free Radic. Biol. Med. 133 (2019) 169-178. http://dx.doi.org/10.1016/j.freeradbiomed.2018.09.002.

[65]

Z. Qu, J. Sun, W. Zhang, et al., Transcription factor NRF2 as a promising therapeutic target for Alzheimer's disease, Free Radic. Biol. Med. 159 (2020) 87-102. http://dx.doi.org/10.1016/j.freeradbiomed.2020.06.028.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 27 July 2021
Revised: 17 August 2021
Accepted: 29 October 2021
Published: 21 March 2023
Issue date: September 2023

Copyright

© 2023 Beijing Academy of Food Sciences.

Acknowledgements

Acknowledgements

This work was supported by the Jilin Scientific and Technological Development Program (20191102027YY, 20200708037YY and 20200708068YY), the Special Project for Health of Jilin Province (2020SCZT077), Science and Technology Research Project, Education Department of Jilin Province of China (JJKH20200322KJ) and Innovation Capacity Building Project of Jilin Provincial Development and Reform Commission (2021C035-6).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return