Journal Home > Volume 12 , Issue 5

Microbial communities during winemaking are diverse and change throughout the fermentation process. Microorganisms not only drive alcohol fermentation, flavor and aroma, but also enhance wine functional components such as extraction of polyphenols from the berries, production of γ-aminobutyric acid, hydroxytyrosol and melatonin. Polyphenols such as resveratrol, catechin and quercetin determine the functional quality of the wine. Moderate wine consumption, particularly red wine has been associated with functional benefits to human health, which includes anti-inflammation, promoting healthy aging, prevention of cardiovascular diseases, cancers, type 2 diabetes and metabolic syndrome. Indeed, the management of microbiota allows the production of wine with distinct features and functional components that benefits human health. This review scrutinizes the possible contributions of wine microbiota to the production of wine with enhanced functional components and highlights the contributions of Saccharomyces and non-Saccharomyces yeasts and bacteria to enhance wine functional components during winemaking. Thus, contributing to the dissemination of the benefits of light to moderate wine intake to human health.


menu
Abstract
Full text
Outline
About this article

Microbiota for production of wine with enhanced functional components

Show Author's information Armachius Jamesa,b,cTing Yaoa,cHengming KedYousheng Wanga,c( )
Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
Tanzania Agricultural Research Institute, Makutupora Centre P.O. Box 1676, Dodoma, Tanzania
Rizhao HUAWEI Institute of Comprehensive Health Industries, Shandong KEEPFIT Biotech. Co., Ltd., Rizhao 276800, China
Department of Biochemistry and Biophysics and Lineberger Comprehensive Centre, The University of North Carolina, Chapel Hill 27599, USA

Abstract

Microbial communities during winemaking are diverse and change throughout the fermentation process. Microorganisms not only drive alcohol fermentation, flavor and aroma, but also enhance wine functional components such as extraction of polyphenols from the berries, production of γ-aminobutyric acid, hydroxytyrosol and melatonin. Polyphenols such as resveratrol, catechin and quercetin determine the functional quality of the wine. Moderate wine consumption, particularly red wine has been associated with functional benefits to human health, which includes anti-inflammation, promoting healthy aging, prevention of cardiovascular diseases, cancers, type 2 diabetes and metabolic syndrome. Indeed, the management of microbiota allows the production of wine with distinct features and functional components that benefits human health. This review scrutinizes the possible contributions of wine microbiota to the production of wine with enhanced functional components and highlights the contributions of Saccharomyces and non-Saccharomyces yeasts and bacteria to enhance wine functional components during winemaking. Thus, contributing to the dissemination of the benefits of light to moderate wine intake to human health.

Keywords: Wine, Resveratrol, Polyphenols, Oenococcus oeni, Non-Saccharomyces yeast

References(155)

[1]

H. Albergaria, N. Arneborg, Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes: role of physiological fitness and microbial interactions, Appl. Microbiol. Biotechnol. 100 (2016) 2035-2046. https://doi.org/10.1007/s00253-015-7255-0.

[2]

K.M. Sumby, P.R. Grbin, V. Jiranek, Implications of new research and technologies for malolactic fermentation in wine, Appl. Microbiol. Biotechnol. 98 (2014) 8111-8132. https://doi.org/10.1007/s00253-014-5976-0.

[3]

V. Capozzi, C. Garofalo, M.A. Chiriatti, et al., Microbial terroir and food innovation: the case of yeast biodiversity in wine, Microbiol. Res. 181 (2015) 75-83. https://doi.org/10.1016/j.micres.2015.10.005.

[4]

T.T. Genç, Effects of various environmental conditions on pulcherrimin production and extracellular enzyme profiles of Metschnikowia pulcherrima, SAR J. - Sci. Res. 3 (2020) 10-16.

[5]

J.J.M. Tolosa, S.M. Prieto, Non-saccharomyces yeasts: an enzymatic unexplored world to be exploited, Enzym. Food Biotechnol. (2019) 433-450. https://doi.org/10.1016/B978-0-12-813280-7.00025-6.

[6]

A. Barata, M. Malfeito-Ferreira, V. Loureiro, The microbial ecology of wine grape berries, Int. J. Food Microbiol. 153 (2012) 243-259. https://doi.org/10.1016/j.ijfoodmicro.2011.11.025.

[7]

H. Abdo, C.R. Catacchio, M. Ventura, et al., The establishment of a fungal consortium in a new winery, Sci. Rep. 10 (2020) 1-12. https://doi.org/10.1038/s41598-020-64819-2.

[8]

J.E. Welke, Fungal and mycotoxin problems in grape juice and wine industries, Curr. Opin. Food Sci. 29 (2019) 7-13. https://doi.org/10.1016/j.cofs.2019.06.009.

[9]

I. Magyar, J. Soós, Botrytized wines - current perspectives, Int. J. Wine Res. 8 (2016) 29-39. https://doi.org/10.2147/IJWR.S100653.

[10]

O. Vyviurska, I. Špánik, Assessment of Tokaj varietal wines with comprehensive two-dimensional gas chromatography coupled to high resolution mass spectrometry, Microchem. J. 152 (2020) 104385. https://doi.org/10.1016/j.microc.2019.104385.

[11]
J.F. Donahue, Culinary and Medicinal Uses of Wine and Olive Oil, in: G.L. Irby (Ed.), A Companion to Sci. Technol. Med. Anc. Greece Rome, John Wiley & Sons, Inc., 2016: pp. 605-617. https://doi.org/10.1002/9781118373057.ch37.
DOI
[12]
R.S. Jackson, Wine, food, and health, in: Wine Sci., Elsevier, 2020: pp. 947-978. https://doi.org/10.1016/b978-0-12-816118-0.00012-x.
DOI
[13]

M.I. Queipo-Ortuño, M. Boto-Ordóñez, M. Murri, et al., Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers, Am. J. Clin. Nutr. 95 (2012) 1323-1334. https://doi.org/10.3945/ajcn.111.027847.

[14]

I. Roth, R. Casas, M. Ribó-Coll, et al., Consumption of aged white wine under a veil of flor reduces blood pressure-increasing plasma nitric oxide in men at high cardiovascular risk, Nutrients 11 (2019) 1266. https://doi.org/10.3390/nu11061266.

[15]

N.P. Jolly, C. Varela, I.S. Pretorius, Not your ordinary yeast: non-saccharomyces yeasts in wine production uncovered, FEMS Yeast Res. 14 (2014) 215-237. https://doi.org/10.1111/1567-1364.12111.

[16]

G. Perpetuini, F. Tittarelli, N. Battistelli, et al., Contribution of Pichia manshurica strains to aroma profile of organic wines, Eur. Food Res. Technol. 246 (2020) 1405-1417. https://doi.org/10.1007/S00217-020-03499-8.

[17]

B. Bagheri, F.F. Bauer, M.E. Setati, The impact of Saccharomyces cerevisiae on a wine yeast consortium in natural and inoculated fermentations, Front. Microbiol. 8 (2017). https://doi.org/10.3389/fmicb.2017.01988.

[18]

B. Bagheri, F.F. Bauer, G. Cardinali, et al., Ecological interactions are a primary driver of population dynamics in wine yeast microbiota during fermentation, Sci. Rep. 10 (2020) 1-12. https://doi.org/10.1038/s41598-020-61690-z.

[19]

M. Ciani, F. Comitini, I. Mannazzu, et al., Controlled mixed culture fermentation: a new perspective on the use of non-Saccharomyces yeasts in winemaking, FEMS Yeast Res. 10 (2010) 123-133. https://doi.org/10.1111/j.1567-1364.2009.00579.x.

[20]

Y. Liu, S. Rousseaux, R. Tourdot-Maréchal, et al., Wine microbiome: a dynamic world of microbial interactions, Crit. Rev. Food Sci. Nutr. 57 (2017) 856-873. https://doi.org/10.1080/10408398.2014.983591.

[21]

G. Yan, B. Zhang, L. Joseph, et al., Effects of initial oxygenation on chemical and aromatic composition of wine in mixed starters of Hanseniaspora vineae and Saccharomyces cerevisiae, Food Microbiol. 90 (2020) 103460. https://doi.org/10.1016/j.fm.2020.103460.

[22]

M. Kačániová, S. Kunová, J. Sabo, et al., Identification of yeasts with mass spectrometry during wine production, Fermentation 6 (2020) 5. https://doi.org/10.3390/fermentation6010005.

[23]

C. Berbegal, G. Spano, M. Tristezza, et al., Microbial resources and innovation in the wine production sector, South African J. Enol. Vitic. 38 (2017) 156-166. https://doi.org/10.21548/38-2-1333.

[24]

L. Roudil, P. Russo, C. Berbegal, et al., Non-Saccharomyces commercial starter cultures: scientific trends, recent patents and innovation in the wine sector, Recent Pat. Food. Nutr. Agric. 11 (2019) 27-39. https://doi.org/10.2174/2212798410666190131103713.

[25]

Y. Yang, X. Zhang, Q. Yin, et al., A mechanism of glucose tolerance and stimulation of GH1 β-glucosidases, Sci. Rep. 5 (2015) 1-12. https://doi.org/10.1038/srep17296.

[26]

S. Phongprathet, K. Vichitphan, J. Han, et al., Hanseniaspora thailandica BC9 β-glucosidase for the production of β-D-hexyl glucoside, J. Microbiol. Biotechnol. 28 (2018) 579-587. https://doi.org/10.4014/jmb.1712.12037.

[27]

W. Zhang, X. Zhuo, L. Hu, et al., Effects of crude β-glucosidases from Issatchenkia terricola, Pichia kudriavzevii, Metschnikowia pulcherrima on the flavor complexity and characteristics of wines, Microorganisms 8 (2020) 953. https://doi.org/10.3390/microorganisms8060953.

[28]

J. Swangkeaw, S. Vichitphan, C.E. Butzke, et al., Characterization of β-glucosidases from Hanseniaspora sp. and Pichia anomala with potentially aroma-enhancing capabilities in juice and wine, World J. Microbiol. Biotechnol. 27 (2011) 423-430. https://doi.org/10.1007/s11274-010-0474-8.

[29]

H. Yang, G. Cai, J. Lu, et al., The production and application of enzymes related to the quality of fruit wine, Crit. Rev. Food Sci. Nutr. (2020). https://doi.org/10.1080/10408398.2020.1763251.

[30]

J. Yang, J. Lee, Current research related to wine sensory perception since 2010, Beverages 6 (2020) 47. https://doi.org/10.3390/beverages6030047.

[31]

S. de Ovalle, I. Cavello, B.M. Brena, et al., Production and characterization of a β-glucosidase from Issatchenkia terricola and its use for hydrolysis of aromatic precursors in Cabernet Sauvignon wine, LWT-Food Sci. Technol. 87 (2018) 515-522. https://doi.org/10.1016/j.lwt.2017.09.026.

[32]

L.M. Gaspar, A. Machado, R. Coutinho, et al., Development of potential yeast protein extracts for red wine clarification and stabilization, Front. Microbiol. 10 (2019) 2310. https://doi.org/10.3389/FMICB.2019.02310.

[33]

H.W. Du Plessis, Maret Du Toit, J.W. Hoff, et al., Characterisation of non-saccharomyces yeasts using different methodologies and evaluation of their compatibility with malolactic fermentation, South African J. Enol. Vitic. 38 (2017) 46-63.

[34]

M.G. Merín, L.M. Mendoza, M.E. Farías, et al., Isolation and selection of yeasts from wine grape ecosystem secreting cold-active pectinolytic activity, Int. J. Food Microbiol. 147 (2011) 144-148. https://doi.org/10.1016/j.ijfoodmicro.2011.04.004.

[35]

I. Belda, L.B. Conchillo, J. Ruiz, et al., Selection and use of pectinolytic yeasts for improving clarification and phenolic extraction in winemaking, Int. J. Food Microbiol. 223 (2016) 1-8. https://doi.org/10.1016/j.ijfoodmicro.2016.02.003.

[36]

S. Rollero, A.J.J. Zietsman, F. Buffetto, et al., Kluyveromyces marxianus secretes a pectinase in shiraz grape must that impacts technological properties and aroma profile of wine, J. Agric. Food Chem. 66 (2018) 11739-11747. https://doi.org/10.1021/acs.jafc.8b03977.

[37]

R. Tofalo, F. Patrignani, R. Lanciotti, et al., Aroma profile of montepulciano d'abruzzo wine fermented by single and co-culture starters of autochthonous Saccharomyces and non-Saccharomyces yeasts, Front. Microbiol. 7 (2016) 610. https://doi.org/10.3389/FMICB.2016.00610/BIBTEX.

[38]

V. Englezos, K. Rantsiou, F. Cravero, et al., Starmerella bacillaris and Saccharomyces cerevisiae mixed fermentations to reduce ethanol content in wine, Appl. Microbiol. Biotechnol. 100 (2016) 5515-5526. https://doi.org/10.1007/S00253-016-7413-Z.

[39]

A. Contreras, C. Hidalgo, S. Schmidt, et al., The application of non-Saccharomyces yeast in fermentations with limited aeration as a strategy for the production of wine with reduced alcohol content, Int. J. Food Microbiol. 205 (2015) 7-15. https://doi.org/10.1016/j.ijfoodmicro.2015.03.027.

[40]

L. Canonico, M. Solomon, F. Comitini, et al., Volatile profile of reduced alcohol wines fermented with selected non-Saccharomyces yeasts under different aeration conditions, Food Microbiol. 84 (2019) 103247. https://doi.org/10.1016/j.fm.2019.103247.

[41]

A. Vilela, Lachancea thermotolerans, the non-Saccharomyces yeast that reduces the volatile acidity of wines, Fermentation 4 (2018) 56. https://doi.org/10.3390/FERMENTATION4030056.

[42]

M.L. Raymond Eder, A.L. Rosa, Genetic, physiological, and industrial aspects of the fructophilic non-Saccharomyces yeast species, Starmerella bacillaris, Fermentation 7 (2021) 87. https://doi.org/10.3390/FERMENTATION7020087.

[43]

M. Fernández de Ullivarri, L.M. Mendoza, R.R. Raya, Characterization of the killer toxin KTCf20 from Wickerhamomyces anomalus, a potential biocontrol agent against wine spoilage yeasts, Biol. Control 121 (2018) 223-228. https://doi.org/10.1016/j.biocontrol.2018.03.008.

[44]

L. Oro, M. Ciani, F. Comitini, Antimicrobial activity of Metschnikowia pulcherrima on wine yeasts, J. Appl. Microbiol. 116 (2014) 1209-1217. https://doi.org/10.1111/jam.12446.

[45]

M.L. Villalba, J. Susana Sáez, S. del Monaco, et al., TdKT, a new killer toxin produced by Torulaspora delbrueckii effective against wine spoilage yeasts, Int. J. Food Microbiol. 217 (2016) 94-100. https://doi.org/10.1016/j.ijfoodmicro.2015.10.006.

[46]

S. Windholtz, P. Redon, S. Lacampagne, et al., Non-Saccharomyces yeasts as bioprotection in the composition of red wine and in the reduction of sulfur dioxide, LWT-Food Sci. Technol. 149 (2021) 111781. https://doi.org/10.1016/J.LWT.2021.111781.

[47]

Y.T. Lai, C.W. Hsieh, Y.C. Lo, et al., Isolation and identification of aroma-producing non-Saccharomyces yeast strains and the enological characteristic comparison in wine making, LWT-Food Sci. Technol. 154 (2022) 112653. https://doi.org/10.1016/J.LWT.2021.112653.

[48]

I. Karabegović, M. Malićanin, B. Danilović, et al., Potential of non-Saccharomyces yeast for improving the aroma and sensory profile of Prokupac red wine, OENO One 55 (2021) 181-195. https://doi.org/10.20870/OENO-ONE.2021.55.2.3859.

[49]

Á. Benito, F. Calderón, S. Benito, Mixed alcoholic fermentation of Schizosaccharomyces pombe and Lachancea thermotolerans and its influence on mannose-containing polysaccharides wine composition, AMB Express. 9 (2019). https://doi.org/10.1186/S13568-019-0738-0.

[50]

A.E. Mylona, J.M. Del Fresno, F. Palomero, et al., Use of Schizosaccharomyces strains for wine fermentation-effect on the wine composition and food safety, Int. J. Food Microbiol. 232 (2016) 63-72. https://doi.org/10.1016/j.ijfoodmicro.2016.05.023.

[51]
L. Liguori, P. Russo, D. Albanese, et al., Production of Low-Alcohol Beverages: Current Status and Perspectives, in: Food Process. Increased Qual. Consum., Elsevier, 2018: pp. 347–382. https://doi.org/10.1016/B978-0-12-811447-6.00012-6.
DOI
[52]

A. Saliba, L. Ovington, C.C. Moran, et al., Consumer attitudes to low alcohol wine: an Australian sample, Wine Vitic. J. 28 (2013) 58-61.

[53]
F. Zamora, Dealcoholised wines and low-alcohol wines, in: Wine Safety, Consum. Prefer. Hum. Heal., Springer International Publishing, 2016: pp. 163-182. https://doi.org/10.1007/978-3-319-24514-0_8.
DOI
[54]
T. Bucher, K. Deroover, C. Stockley, Production and marketing of low-alcohol wine, in: Adv. Grape Wine Biotechnol., IntechOpen, 2019. https://doi.org/10.5772/intechopen.87025.
DOI
[55]

C. Varela, F. Sengler, M. Solomon, et al., Volatile flavour profile of reduced alcohol wines fermented with the non-conventional yeast species Metschnikowia pulcherrima and Saccharomyces uvarum, Food Chem. 209 (2016) 57-64. https://doi.org/10.1016/j.foodchem.2016.04.024.

[56]

H.D. Goold, H. Kroukamp, T.C. Williams, et al., Yeast's balancing act between ethanol and glycerol production in low-alcohol wines, Microb. Biotechnol. 10 (2017) 264-278. https://doi.org/10.1111/1751-7915.12488.

[57]

X. Zhu, Y. Navarro, A. Mas, et al., A rapid method for selecting non-Saccharomyces strains with a low ethanol yield, Microorganisms 8 (2020) 658. https://doi.org/10.3390/microorganisms8050658.

[58]

Z. Godálová, L. Kraková, A. Puškárová, et al., Bacterial consortia at different wine fermentation phases of two typical central European grape varieties: Blaufränkisch (Frankovka modrá) and Grüner Veltliner (Veltlínske zelené), Int. J. Food Microbiol. 217 (2016) 110-116. https://doi.org/10.1016/j.ijfoodmicro.2015.10.015.

[59]

J. López-Seijas, B. García-Fraga, A.F. da Silva, et al., Evaluation of malolactic bacteria associated with wines from albariño variety as potential starters: screening for quality and safety, Foods 9 (2020) 99. https://doi.org/10.3390/foods9010099.

[60]

V. Renouf, O. Claisse, A. Lonvaud-Funel, Inventory and monitoring of wine microbial consortia, Appl. Microbiol. Biotechnol. 75 (2007) 149-164. https://doi.org/10.1007/s00253-006-0798-3.

[61]

P. Ruiz, P.M. Izquierdo, S. Seseña, et al., Analysis of lactic acid bacteria populations during spontaneous malolactic fermentation of Tempranillo wines at five wineries during two consecutive vintages, Food Control 21 (2010) 70-75. https://doi.org/10.1016/j.foodcont.2009.04.002.

[62]

M.L. Zepeda-Mendoza, N.K. Edwards, M.G. Madsen, et al., Influence of Oenococcus oeni and Brettanomyces bruxellensis on wine microbial taxonomic and functional potential profiles, Am. J. Enol. Vitic. 69 (2018) 321-333. https://doi.org/10.5344/ajev.2018.17092.

[63]

V. Ivanova-Petropulos, Z. Naceva, V. Sándor, et al., Fast determination of lactic, succinic, malic, tartaric, shikimic, and citric acids in red Vranec wines by CZE-ESI-QTOF-MS, Electrophoresis 39 (2018) 1597-1605. https://doi.org/10.1002/elps.201700492.

[64]

A. Vilela, Use of nonconventional yeasts for modulating wine acidity, Fermentation 5 (2019) 27. https://doi.org/10.3390/fermentation5010027.

[65]

N. Battistelli, G. Perpetuini, C. Perla, et al., Characterization of natural Oenococcus oeni strains for Montepulciano d'Abruzzo organic wine production, Eur. Food Res. Technol. 246 (2020) 1031-1039. https://doi.org/10.1007/S00217-020-03466-3.

[66]

V. Englezos, F. Torchio, P. Vagnoli, et al., Impact of Saccharomyces cerevisiae strain selection on malolactic fermentation by lactobacillus plantarum and Oenococcus oeni, Am. J. Enol. Vitic. 71 (2020) 157-165. https://doi.org/10.5344/ajev.2019.19061.

[67]

G. Fia, V. Millarini, L. Granchi, et al., Beta-glucosidase and esterase activity from Oenococcus oeni: screening and evaluation during malolactic fermentation in harsh conditions, LWT-Food Sci. Technol. 89 (2018) 262-268. https://doi.org/10.1016/j.lwt.2017.10.060.

[68]

A. Devi, A. Konerira Aiyappaa, A.L. Waterhouse, Adsorption and biotransformation of anthocyanin glucosides and quercetin glycosides by Oenococcus oeni and Lactobacillus plantarum in model wine solution, J. Sci. Food Agric. 100 (2020) 2110-2120. https://doi.org/10.1002/jsfa.10234.

[69]

A. James, Y. Wang, Characterization, health benefits and applications of fruits and vegetable probiotics, CyTA-J. Food 17 (2019) 770-780. https://doi.org/10.1080/19476337.2019.1652693.

[70]

A. Lovato, S. Zenoni, G.B. Tornielli, et al., Specific molecular interactions between Vitis vinifera and Botrytis cinerea are required for noble rot development in grape berries, Postharvest Biol. Technol. 156 (2019) 110924. https://doi.org/10.1016/j.postharvbio.2019.05.025.

[71]

B. Blanco-Ulate, K.C.H. Amrine, T.S. Collins, et al., Developmental and metabolic plasticity of white-skinned grape berries in response to Botrytis cinerea during noble rot, Plant Physiol. 169 (2015) 2422-2443. https://doi.org/10.1104/pp.15.00852.

[72]

S. Negri, A. Lovato, F. Boscaini, et al., The induction of noble rot (Botrytis cinerea) infection during postharvest withering changes the metabolome of grapevine berries (Vitis vinifera L., cv. Garganega), Front. Plant Sci. 8 (2017) 1002. https://doi.org/10.3389/fpls.2017.01002.

[73]

H. Li, A. James, X. Shen, et al., Roles of microbiota in the formation of botrytized grapes and wines, CyTA-J. Food 19 (2021) 656-667. https://doi.org/10.1080/19476337.2021.1958925.

[74]

M. Lorenzini, B. Simonato, F. Favati, et al., Filamentous fungi associated with natural infection of noble rot on withered grapes, Int. J. Food Microbiol. 272 (2018) 83-86. https://doi.org/10.1016/j.ijfoodmicro.2018.03.004.

[75]

J. Tronchoni, A. Gamero, F.N. Arroyo-López, et al., Differences in the glucose and fructose consumption profiles in diverse Saccharomyces wine species and their hybrids during grape juice fermentation, Int. J. Food Microbiol. 134 (2009) 237-243. https://doi.org/10.1016/j.ijfoodmicro.2009.07.004.

[76]

Y.S. Hong, C. Cilindre, G. Liger-Belair, et al., Metabolic influence of Botrytis cinerea infection in champagne base wine, J. Agric. Food Chem. 59 (2011) 7237-7245. https://doi.org/10.1021/jf200664t.

[77]

Z. Perutka, M. Šufeisl, M. Strnad, et al., High‐proline proteins in experimental hazy white wine produced from partially botrytized grapes, Biotechnol. Appl. Biochem. 66 (2019) 398-411. https://doi.org/10.1002/bab.1736.

[78]

V.M. Kupfer, E.I. Vogt, T. Ziegler, et al., Comparative protein profile analysis of wines made from Botrytis cinerea infected and healthy grapes reveals a novel biomarker for gushing in sparkling wine, Food Res. Int. 99 (2017) 501-509. https://doi.org/10.1016/j.foodres.2017.06.004.

[79]

S. Ployon, A. Attina, J. Vialaret, et al., Laccases 2 & 3 as biomarkers of Botrytis cinerea infection in sweet white wines, Food Chem. 315 (2020) 126233. https://doi.org/10.1016/j.foodchem.2020.126233.

[80]

A. Vignault, J. Gombau, M. Jourdes, et al., Oenological tannins to prevent Botrytis cinerea damage in grapes and musts: kinetics and electrophoresis characterization of laccase, Food Chem. 316 (2020) 126334. https://doi.org/10.1016/j.foodchem.2020.126334.

[81]

S. Zimdars, J. Hitschler, A. Schieber, et al., Oxidation of wine polyphenols by secretomes of wild Botrytis cinerea strains from white and red grape varieties and determination of their specific laccase activity, J. Agric. Food Chem. 65 (2017) 10582-10590. https://doi.org/10.1021/acs.jafc.7b04375.

[82]

R.F. Pastor, P. Restani, C. Di Lorenzo, et al., Resveratrol, human health and winemaking perspectives, Crit. Rev. Food Sci. Nutr. 59 (2019) 1237-1255. https://doi.org/10.1080/10408398.2017.1400517.

[83]

M. Riebel, A. Sabel, H. Claus, et al., Antioxidant capacity of phenolic compounds on human cell lines as affected by grape-tyrosinase and Botrytis-laccase oxidation, Food Chem. 229 (2017) 779-789. https://doi.org/10.1016/j.foodchem.2017.03.003.

[84]

K. Gindro, S. Schnee, D. Righi, et al, Generation of antifungal stilbenes using the enzymatic secretome of Botrytis cinerea, J. Nat. Prod. 80 (2017) 887-898. https://doi.org/10.1021/acs.jnatprod.6b00760.

[85]
H. Claus, Laccases of Botrytis cinerea, in: Biol. Microorg. Grapes, Must Wine, Springer International Publishing, 2017: pp. 339-356. https://doi.org/10.1007/978-3-319-60021-5_14.
DOI
[86]
A.J. Buglass, D.J. Caven-Quantrill, Instrumental assessment of the sensory quality of wine, in: Instrum. Assess. Food Sens. Qual., Elsevier, 2013: pp. 466-546. https://doi.org/10.1533/9780857098856.3.466.
DOI
[87]
H.H. Kassemeyer, Fungi of grapes, in: Biol. Microorg. Grapes, Must Wine, Springer International Publishing, 2017: pp. 103-134. https://doi.org/10.1007/978-3-319-60021-5_4.
DOI
[88]

G. Chiva-Blanch, S. Arranz, R.M. Lamuela-Raventos, et al., Effects of wine, alcohol and polyphenols on cardiovascular disease risk factors: evidences from human studies, Alcohol 48 (2013) 270-277. https://doi.org/10.1093/alcalc/agt007.

[89]

G. Chiva-Blanch, M. Urpi-Sarda, E. Ros, et al., Effects of red wine polyphenols and alcohol on glucose metabolism and the lipid profile: a randomized clinical trial, Clin. Nutr. 32 (2013) 200-206. https://doi.org/10.1016/j.clnu.2012.08.022.

[90]

G. Giovinazzo, F. Grieco, Functional properties of grape and wine polyphenols, Plant Foods Hum. Nutr. 70 (2015) 454-462. https://doi.org/10.1007/s11130-015-0518-1.

[91]
G. Giovinazzo, F. Grieco, Tapping into health: wine as functional beverage, in: Alcohol. Beverages Vol. 7 Sci. Beverages, Elsevier, 2019: pp. 279-302. https://doi.org/10.1016/B978-0-12-815269-0.00009-X.
DOI
[92]

J. Li, Q. Deng, Y. Zhang, et al., Three novel dietary phenolic compounds from pickled raphanus sativus l. inhibit lipid accumulation in obese mice by modulating the gut microbiota composition, Mol. Nutr. Food Res. 65 (2021) 2000780. https://doi.org/10.1002/MNFR.202000780.

[93]

J. Li, S.Y. Huang, Q. Deng, et al., Extraction and characterization of phenolic compounds with antioxidant and antimicrobial activities from pickled radish, Food Chem. Toxicol. 136 (2020) 111050. https://doi.org/10.1016/J.FCT.2019.111050.

[94]

R.C.M. Lizardo, H.D. Cho, Y.S. Won, et al., Fermentation with mono- and mixed cultures of Lactobacillus plantarum and L. casei enhances the phytochemical content and biological activities of cherry silverberry (Elaeagnus multiflora Thunb.) fruit, J. Sci. Food Agric. 100 (2020) 3687-3696. https://doi.org/10.1002/JSFA.10404.

[95]

A. James, H. Ke, T. Yao, et al., The role of probiotics in purine metabolism, hyperuricemia and gout: mechanisms and interventions, Food Rev. Int. (2021) 1-17. https://doi.org/10.1080/87559129.2021.1904412.

[96]
L. Martínez, M. Durán, E. Malovini, et al., A very promising molecule: resveratrol, induced synthesis, and health benefits, in: Psychiatry Neurosci. Updat., Springer International Publishing, 2019: pp. 153-164. https://doi.org/10.1007/978-3-319-95360-1_13.
DOI
[97]

L. Castaldo, A. Narváez, L. Izzo, et al., Red wine consumption and cardiovascular health, Molecules 24 (2019) 3626. https://doi.org/10.3390/molecules24193626.

[98]

A.P. Singh, R. Singh, S.S. Verma, et al., Health benefits of resveratrol: evidence from clinical studies, Med. Res. Rev. 39 (2019) 1851-1891. https://doi.org/10.1002/med.21565.

[99]

A. Damianaki, E. Bakogeorgou, M. Kampa, et al., Potent inhibitory action of red wine polyphenols on human breast cancer cells, J. Cell. Biochem. 78 (2000) 429-441. https://doi.org/10.1002/1097-4644(20000901)78:3<429::AID-JCB8>3.0.CO;2-M.

[100]

L. Mercolini, M.A. Saracino, F. Bugamelli, et al., HPLC-F analysis of melatonin and resveratrol isomers in wine using an SPE procedure, J. Sep. Sci. 31 (2008) 1007-1014. https://doi.org/10.1002/JSSC.200700458.

[101]

O. Viegas, C. Esteves, J. Rocha, et al., Simultaneous determination of melatonin and trans-resveratrol in wine by dispersive liquid–liquid microextraction followed by HPLC-FLD, Food Chem. 339 (2021) 128091. https://doi.org/10.1016/J.FOODCHEM.2020.128091.

[102]

A. Basli, S. Soulet, N. Chaher, et al., Wine polyphenols: potential agents in neuroprotection, Oxid. Med. Cell. Longev. (2012). https://doi.org/10.1155/2012/805762.

[103]

M. Dueñas, C. Cueva, I. Muñoz-González, et al., Studies on modulation of gut microbiota by wine polyphenols: from isolated cultures to omic approaches, Antioxidants 4 (2015) 1-21. https://doi.org/10.3390/antiox4010001.

[104]

H.Y. Chou, L.H. Liu, C.Y. Chen, et al., Bifunctional mechanisms of autophagy and apoptosis regulations in melanoma from Bacillus subtilis natto fermentation extract, Food Chem. Toxicol. 150 (2021) 112020. https://doi.org/10.1016/J.FCT.2021.112020.

[105]

A.S. dos Santos, T.M.R. de Albuquerque, J.L. de Brito Alves, et al., Effects of quercetin and resveratrol on in vitro properties related to the functionality of potentially probiotic Lactobacillus strains, Front. Microbiol. 10 (2019) 2229. https://doi.org/10.3389/fmicb.2019.02229.

[106]

A. Esteban-Fernández, I. Zorraquín-PenÌa, M.D. Ferrer, et al., Inhibition of oral pathogens adhesion to human gingival fibroblasts by wine polyphenols alone and in combination with an oral probiotic, J. Agric. Food Chem. 66 (2018) 2071-2082. https://doi.org/10.1021/acs.jafc.7b05466.

[107]

J.T. Božič, L. Butinar, A. Albreht, et al., The impact of Saccharomyces and non-Saccharomyces yeasts on wine colour: a laboratory study of vinylphenolic pyranoanthocyanin formation and anthocyanin cell wall adsorption, LWT-Food Sci. Technol. 123 (2020) 109072. https://doi.org/10.1016/j.lwt.2020.109072.

[108]

A. Wojdyło, J. Samoticha, J. Chmielewska, The influence of different strains of Oenococcus oeni malolactic bacteria on profile of organic acids and phenolic compounds of red wine cultivars Rondo and Regent growing in a cold region, J. Food Sci. 85 (2020) 1070-1081. https://doi.org/10.1111/1750-3841.15061.

[109]

M. Boto-Ordóñez, M. Urpi-Sarda, M.I. Queipo-Ortuño, et al., Microbial metabolomic fingerprinting in urine after regular dealcoholized red wine consumption in humans, J. Agric. Food Chem. 61 (2013) 9166-9175. https://doi.org/10.1021/jf402394c.

[110]

A. Jiménez-Girón, C. Ibáñez, A. Cifuentes, et al., Faecal metabolomic fingerprint after moderate consumption of red wine by healthy subjects, J. Proteome Res. 14 (2015) 897-905. https://doi.org/10.1021/pr500960g.

[111]

D.G. de Llano, I. Gil-Sánchez, A. Esteban-Fernández, et al., Reciprocal beneficial effects between wine polyphenols and probiotics: an exploratory study, Eur. Food Res. Technol. 243 (2017) 531-538. https://doi.org/10.1007/s00217-016-2770-5.

[112]

E. Fragopoulou, M. Choleva, S. Antonopoulou, et al., Wine and its metabolic effects. a comprehensive review of clinical trials, Metabolism 83 (2018) 102-119. https://doi.org/10.1016/j.metabol.2018.01.024.

[113]

X. Sun, X. Cheng, J. Zhang, et al., Letting wine polyphenols functional: estimation of wine polyphenols bioaccessibility under different drinking amount and drinking patterns, Food Res. Int. 127 (2020) 108704. https://doi.org/10.1016/j.foodres.2019.108704.

[114]

X. Xia, B. Sun, W. Li, et al., Anti-diabetic activity phenolic constituents from red wine against α-glucosidase and α-amylase, J. Food Process. Preserv. 41 (2017) e12942. https://doi.org/10.1111/jfpp.12942.

[115]

A.L. Gomes Domingos, H.H.M. Hermsdorff, J. Bressan, Melatonin intake and potential chronobiological effects on human health, Crit. Rev. Food Sci. Nutr. 59 (2019) 133-140. https://doi.org/10.1080/10408398.2017.1360837.

[116]
J. Marhuenda, S. Medina, P. Martínez-Hernández, et al., Melatonin and hydroxytyrosol protect against oxidative stress related to the central nervous system after the ingestion of three types of wine by healthy volunteers, in: Food Funct., Royal Society of Chemistry, 2017: pp. 64-74. https://doi.org/10.1039/c6fo01328g.
DOI
[117]

B. Salehi, F. Sharopov, P. Fokou, et al., Melatonin in medicinal and food plants: occurrence, bioavailability, and health potential for humans, Cells 8 (2019) 681. https://doi.org/10.3390/cells8070681.

[118]

M. Diana, J. Quílez, M. Rafecas, Gamma-aminobutyric acid as a bioactive compound in foods: a review, J. Funct. Foods 10 (2014) 407-420. https://doi.org/10.1016/j.jff.2014.07.004.

[119]

L. Diez-Gutiérrez, L. San Vicente, L.J. Luis, et al., Gamma-aminobutyric acid and probiotics: multiple health benefits and their future in the global functional food and nutraceuticals market, J. Funct. Foods 64 (2020) 103669. https://doi.org/10.1016/j.jff.2019.103669.

[120]

A. Boronat, J. Mateus, N. Soldevila-Domenech, et al., Cardiovascular benefits of tyrosol and its endogenous conversion into hydroxytyrosol in humans. a randomized, controlled trial, Free Radic. Biol. Med. 143 (2019) 471-481. https://doi.org/10.1016/j.freeradbiomed.2019.08.032.

[121]

R.M. de Pablos, A.M. Espinosa-Oliva, R. Hornedo-Ortega, et al., Hydroxytyrosol protects from aging process via AMPK and autophagy; a review of its effects on cancer, metabolic syndrome, osteoporosis, immune-mediated and neurodegenerative diseases, Pharmacol. Res. 143 (2019) 58-72. https://doi.org/10.1016/j.phrs.2019.03.005.

[122]

G. Dey, S. Sireswar, Tailoring functional beverages from fruits and vegetables for specific disease conditions-are we there yet? Crit. Rev. Food Sci. Nutr. (2020). https://doi.org/10.1080/10408398.2020.1769021.

[123]

C.J. Walkey, D.D. Kitts, Y. Liu, et al., Bioengineering yeast to enhance folate levels in wine, Process Biochem. 50 (2015) 205-210. https://doi.org/10.1016/J.PROCBIO.2014.12.017.

[124]

Y. Bouzas-Cid, E. Díaz-Losada, E. Trigo-Córdoba, et al., Effects of irrigation over three years on the amino acid composition of Albariño (Vitis vinifera L.) musts and wines in two different terroirs, Sci. Hortic. (Amsterdam) 227 (2018) 313-325. https://doi.org/10.1016/j.scienta.2017.05.005.

[125]

J.M. Mirás-Avalos, Y. Bouzas-Cid, E. Trigo-Córdoba, et al., Amino acid profiles to differentiate white wines from three autochtonous galician varieties, Foods 9 (2020) 114. https://doi.org/10.3390/foods9020114.

[126]
G. Gutiérrez-Gamboa, T. Garde-Cerdán, Y. Moreno-Simunovic, et al., Amino acid composition of grape juice and wine: principal factors that determine its content and contribution to the human diet, in: Nutr. Beverages Vol. 12 Sci. Beverages, Elsevier, 2019: pp. 369-391. https://doi.org/10.1016/B978-0-12-816842-4.00010-1.
DOI
[127]

M.A. Pozo-Bayón, E. G-Alegría, M.C. Polo, et al., Wine volatile and amino acid composition after malolactic fermentation: effect of Oenococcus oeni and Lactobacillus plantarum starter cultures, J. Agric. Food Chem. 53 (2005) 8729-8735. https://doi.org/10.1021/jf050739y.

[128]

M. Dimopoulou, T. Bardeau, P.Y. Ramonet, et al., Exopolysaccharides produced by Oenococcus oeni: from genomic and phenotypic analysis to technological valorization, Food Microbiol. 53 (2016) 10-17. https://doi.org/10.1016/j.fm.2015.07.011.

[129]

B. Foligné, J. Dewulf, J. Breton, et al., Probiotic properties of non-conventional lactic acid bacteria: immunomodulation by Oenococcus oeni, Int. J. Food Microbiol. 140 (2010) 136-145. https://doi.org/10.1016/j.ijfoodmicro.2010.04.007.

[130]

A. García-Ruiz, D. González de Llano, A. Esteban-Fernández, et al., Assessment of probiotic properties in lactic acid bacteria isolated from wine, Food Microbiol. 44 (2014) 220-225. https://doi.org/10.1016/j.fm.2014.06.015.

[131]

R. Apolinar-Valiente, I. Romero-Cascales, P. Williams, et al., Oligosaccharides of cabernet sauvignon, syrah and monastrell red wines, Food Chem. 179 (2015) 311-317. https://doi.org/10.1016/j.foodchem.2015.01.139.

[132]

D. Fracassetti, A.F. Francesco Lo Faro, S. Moiola, et al., Production of melatonin and other tryptophan derivatives by Oenococcus oeni under winery and laboratory scale, Food Microbiol. 86 (2020) 103265. https://doi.org/10.1016/j.fm.2019.103265.

[133]

E. Fernández-Cruz, M.A. Álvarez-Fernández, E. Valero, et al., Melatonin and derived L-tryptophan metabolites produced during alcoholic fermentation by different wine yeast strains, Food Chem. 217 (2017) 431-437. https://doi.org/10.1016/j.foodchem.2016.08.020.

[134]

Z. Que, T. Ma, Y. Shang, et al., Microorganisms: producers of melatonin in fermented foods and beverages, J. Agric. Food Chem. 68 (2020) 4799-4811. https://doi.org/10.1021/ACS.JAFC.0C01082/ASSET/IMAGES/ACS.JAFC.0C01082.SOCIAL.JPEG_V03.

[135]

M.I. Rodriguez-Naranjo, A. Gil-Izquierdo, A.M. Troncoso, et al., Melatonin is synthesised by yeast during alcoholic fermentation in wines, Food Chem. 126 (2011) 1608-1613. https://doi.org/10.1016/J.FOODCHEM.2010.12.038.

[136]

M. Friedman, Antibacterial, antiviral, and antifungal properties of wines and winery byproducts in relation to their flavonoid content, J. Agric. Food Chem. 62 (2014) 6025-6042. https://doi.org/10.1021/jf501266s.

[137]

I. Zorraquín-Peña, D.G. de Llano, A. Tamargo, et al., Moderate wine consumption reduces faecal water cytotoxicity in healthy volunteers, Nutrients 12 (2020) 1-13. https://doi.org/10.3390/nu12092716.

[138]

C.I. Le Roy, P.M. Wells, J. Si, et al., Red wine consumption associated with increased gut microbiota α-diversity in 3 independent cohorts, Gastroenterology 158 (2020) 270-272. https://doi.org/10.1053/j.gastro.2019.08.024.

[139]

A.W. Jones, Alcohol, its absorption, distribution, metabolism, and excretion in the body and pharmacokinetic calculations, Wiley Interdiscip. Rev. Forensic Sci. 1 (2019) e1340. https://doi.org/10.1002/wfs2.1340.

[140]

S. Minzer, R. Estruch, R. Casas, Wine intake in the framework of a mediterranean diet and chronic non-communicable diseases: a short literature review of the last 5 years, Molecules 25 (2020) 5045. https://doi.org/10.3390/molecules25215045.

[141]

J.H. O'Keefe, S.K. Bhatti, A. Bajwa, et al., Alcohol and cardiovascular health: the dose makes the poison.or the remedy, Mayo Clin. Proc. 89 (2014) 382-393. https://doi.org/10.1016/j.mayocp.2013.11.005.

[142]

Y.R. Seo, J.S. Kim, S.S. Kim, et al., Association between alcohol consumption and metabolic syndrome determined by facial flushing in Korean women, Korean J. Fam. Med. 42 (2021) 24-30. https://doi.org/10.4082/kjfm.19.0141.

[143]

R. Schutte, M. Papageorgiou, M. Najlah, et al., Drink types unmask the health risks associated with alcohol intake – prospective evidence from the general population, Clin. Nutr. 39 (2020) 3168-3174. https://doi.org/10.1016/j.clnu.2020.02.009.

[144]
World Health Organization, Brief intervention for hazardous and harmful drinking: a manual for use in primary care, World Health Organization, 2001. https://apps.who.int/iris/handle/10665/67210 (accessed April 1, 2021).
[145]

M.Á. Pozo-Bayón, M. Monagas, B. Bartolomé, et al., Wine features related to safety and consumer health: an integrated perspective, Crit. Rev. Food Sci. Nutr. 52 (2012) 31-54. https://doi.org/10.1080/10408398.2010.489398.

[146]

L. Mariño-Repizo, F. Kero, V. Vandell, et al., A novel solid phase extraction - ultra high performance liquid chromatography-tandem mass spectrometry method for the quantification of ochratoxin A in red wines, Food Chem. 172 (2015) 663-668. https://doi.org/10.1016/j.foodchem.2014.09.094.

[147]

V. Di Stefano, R. Pitonzo, G. Avellone, et al., Determination of aflatoxins and ochratoxins in sicilian sweet wines by high-performance liquid chromatography with fluorometric detection and immunoaffinity cleanup, food anal, Methods 8 (2015) 569-577. https://doi.org/10.1007/s12161-014-9934-3.

[148]

F. Gentile, G.L. La Torre, A.G. Potortì, et al., Organic wine safety: UPLC-FLD determination of Ochratoxin A in Southern Italy wines from organic farming and winemaking, Food Control 59 (2016) 20-26. https://doi.org/10.1016/j.foodcont.2015.05.006.

[149]

V. Marcotrigiano, S. Cinquetti, R. Flamini, et al., Safety in wine production: a pilot study on the quality evaluation of prosecco wine in the framework of UE regulation, Int. J. Environ. Res. Public Health. 17 (2020) 3283. https://doi.org/10.3390/ijerph17093283.

[150]

P. Russo, C. Berbegal, C. De Ceglie, et al., Pesticide residues and stuck fermentation in wine: new evidences indicate the urgent need of tailored regulations, Fermentation 5 (2019) 23. https://doi.org/10.3390/fermentation5010023.

[151]
F.M. Campos, J.A. Couto, T. Hogg, Utilisation of natural and by-products to improve wine safety, in: Wine Safety, Consum. Prefer. Hum. Heal., Springer International Publishing, 2016: pp. 27-49. https://doi.org/10.1007/978-3-319-24514-0_2.
DOI
[152]
M.V. Moreno-Arribas, B.B. Sualdea, Wine safety, consumer preference, and human health, Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-24514-0.
DOI
[153]

C.S. Stockley, D.L. Johnson, Adverse food reactions from consuming wine, Aust. J. Grape Wine Res. 21 (2015) 568-581. https://doi.org/10.1111/ajgw.12171.

[154]

Y.Y. Guo, Y.P. Yang, Q. Peng, et al., Biogenic amines in wine: a review, Int. J. Food Sci. Technol. 50 (2015) 1523-1532. https://doi.org/10.1111/ijfs.12833.

[155]

K. Vukatana, K. Sevrani, E. Hoxha, Wine traceability: a data model and prototype in albanian context, Foods 5 (2016) 11. https://doi.org/10.3390/foods5010011.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 06 July 2022
Revised: 14 August 2022
Accepted: 02 October 2022
Published: 21 March 2023
Issue date: September 2023

Copyright

© 2023 Beijing Academy of Food Sciences.

Acknowledgements

Acknowledgement

This research was funded by the National Natural Science Foundation of China (31972127), Science and Technology Program of the Beijing Municipal Education Commission (KZ201910011013), the Natural Science Foundation of Rizhao (202143). The authors thank the Chinese Scholarship Council (CSC) for a research scholarship.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return