Journal Home > Volume 12 , Issue 4

Postprandial metabolism plays major roles in many pathological conditions. The n-6/n-3 polyunsaturated fatty acid (PUFA) ratio is closely related to various physiological disorders. This study aimed to investigate the effects of high fat meals with different n-6/n-3 PUFA ratios on postprandial metabolism in normal control (NC) and hypertriglyceridemia (HTG) rats. The postprandial response of triglyceride (TG) in HTG groups was higher than that in NC groups after different n-6/n-3 PUFA ratio meals. The HTG groups showed higher postprandial total cholesterol (TC) responses than NC groups after 1:1 and 20:1 ratio meals. The 5:1 n-6/n-3 PUFA ratio elicited lower postprandial responses of tumor necrosis factor α (TNF-α) than 1:1 and 10:1 ratios in HTG groups. The postprandial malondialdehyde (MDA) response was lower after a 5:1 n-6/n-3 PUFA ratio meal than 1:1 and 20:1 ratio meals in HTG groups. The 1:1 ratio resulted in a lower postprandial reactive oxygen species (ROS) level than 5:1 and 10:1 n-6/n-3 PUFA ratios in NC groups. The results showed that a low n-6/n-3 PUFA ratio improved postprandial dysmetabolism induced by a high fat meal in NC and HTG rats. A high n-6/n-3 PUFA ratio increased the difference in postprandial metabolism between NC and HTG rats.


menu
Abstract
Full text
Outline
About this article

Different n-6/n-3 polyunsaturated fatty acid ratios affect postprandial metabolism in normal and hypertriglyceridemic rats

Show Author's information Ligang YangaChao YangaZhixiu SongbMin WanaHui XiaaXian YangaDengfeng XuaDa PanaHechun LiuaShaokang WangaGuiju Suna( )
Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
Second Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Abstract

Postprandial metabolism plays major roles in many pathological conditions. The n-6/n-3 polyunsaturated fatty acid (PUFA) ratio is closely related to various physiological disorders. This study aimed to investigate the effects of high fat meals with different n-6/n-3 PUFA ratios on postprandial metabolism in normal control (NC) and hypertriglyceridemia (HTG) rats. The postprandial response of triglyceride (TG) in HTG groups was higher than that in NC groups after different n-6/n-3 PUFA ratio meals. The HTG groups showed higher postprandial total cholesterol (TC) responses than NC groups after 1:1 and 20:1 ratio meals. The 5:1 n-6/n-3 PUFA ratio elicited lower postprandial responses of tumor necrosis factor α (TNF-α) than 1:1 and 10:1 ratios in HTG groups. The postprandial malondialdehyde (MDA) response was lower after a 5:1 n-6/n-3 PUFA ratio meal than 1:1 and 20:1 ratio meals in HTG groups. The 1:1 ratio resulted in a lower postprandial reactive oxygen species (ROS) level than 5:1 and 10:1 n-6/n-3 PUFA ratios in NC groups. The results showed that a low n-6/n-3 PUFA ratio improved postprandial dysmetabolism induced by a high fat meal in NC and HTG rats. A high n-6/n-3 PUFA ratio increased the difference in postprandial metabolism between NC and HTG rats.

Keywords: Polyunsaturated fatty acid, n-6 Fatty acids, n-3 Fatty acids;, Postprandial metabolism, Hypertriglyceridemia

References(63)

[1]

A. Ortega, L.M. Varela, B. Bermudez, et al., Dietary fatty acids linking postprandial metabolic response and chronic diseases, Food Funct. 3 (2012) 22-27. https://doi.org/10.1039/c1fo10085h.

[2]

S. Ansar, J. Koska, P.D. Reaven, Postprandial hyperlipidemia, endothelial dysfunction and cardiovascular risk: focus on incretins, Cardiovasc. Diabetol. 10 (2011) 61. https://doi.org/10.1186/1475-2840-10-61.

[3]

D. Lairon, J. Lopez-Miranda, C. Williams, Methodology for studying postprandial lipid metabolism, Eur. J. Clin. Nutr. 61 (2007) 1145-1161. https://doi.org/10.1038/sj.ejcn.1602749.

[4]

D.P.S. Lee, J.H.M. Low, J.R. Chen, et al., The influence of different foods and food ingredients on acute postprandial triglyceride response: a systematic literature review and meta-analysis of randomized controlled trials, Adv. Nutr. 11 (2020) 1529-1543. https://doi.org/10.1093/advances/nmaa074.

[5]

K. Nakamura, T. Miyoshi, K. Yunoki, et al., Postprandial hyperlipidemia as a potential residual risk factor, J. Cardiol. 67 (2016) 335-339. https://doi.org/10.1016/j.jjcc.2015.12.001.

[6]

D.C. Chan, J. Pang, G. Romic, et al., Postprandial hypertriglyceridemia and cardiovascular disease: current and future therapies, Curr. Atheroscler. Rep. 15 (2013) 309. https://doi.org/10.1007/s11883-013-0309-9.

[7]

A.P. Simopoulos, The importance of the ratio of omega-6/omega-3 essential fatty acids, Biomed. Pharmacother. 56 (2002) 365-379. https://doi.org/10.1016/s0753-3322(02)00253-6.

[8]

G. Schmitz, J. Ecker, The opposing effects of n-3 and n-6 fatty acids, Prog. Lipid Res. 47 (2008) 147-155. https://doi.org/10.1016/j.plipres.2007.12.004.

[9]

I. Djuricic, P.C. Calder, Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: an update for 2021, Nutrients 13 (2021) 2421. https://doi.org/10.3390/nu13072421.

[10]

L.G. Yang, Z.X. Song, H. Yin, et al., Low n-6/n-3 PUFA ratio improves lipid metabolism, inflammation, oxidative stress and endothelial function in rats using plant oils as n-3 fatty acid source, Lipids 51 (2016) 49-59. https://doi.org/10.1007/s11745-015-4091-z.

[11]

A.P. Simopoulos, The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases, Exp. Biol. Med. (Maywood) 233 (2008) 674-688. https://doi.org/10.3181/0711-MR-311.

[12]

K. Kuhnt, C. Degen, A. Jaudszus, et al., Searching for health beneficial n-3 and n-6 fatty acids in plant seeds, Eur. J. Lipid Sci. Technol. 114 (2012) 153-160. https://doi.org/10.1002/ejlt.201100008.

[13]

Y.E. Finnegan, A.M. Minihane, E.C. Leigh-Firbank, et al., Plant- and marine-derived n-3 polyunsaturated fatty acids have differential effects on fasting and postprandial blood lipid concentrations and on the susceptibility of LDL to oxidative modification in moderately hyperlipidemic subjects, Am. J. Clin. Nutr. 77 (2003) 783-795. https://doi.org/10.1093/ajcn/77.4.783.

[14]

P. Maattanen, E. Lurz, S.R. Botts, et al., Plant- and fish-derived n-3 pufas suppress citrobacter rodentium-induced colonic inflammation, Mol. Nutr. Food Res. 64 (2020) 1900873. https://doi.org/10.1002/mnfr.201900873.

[15]

F. Wang, M. Hu, H. Zhu, et al., MyD88 determines the protective effects of fish oil and perilla oil against metabolic disorders and inflammation in adipose tissue from mice fed a high-fat diet, Nutr. Diabetes 11 (2021) 23. https://doi.org/10.1038/s41387-021-00159-y.

[16]

Z. Song, L. Yang, G. Shu, et al., Effects of the n-6/n-3 polyunsaturated fatty acids ratio on postprandial metabolism in hypertriacylglycerolemia patients, Lipids Health Dis. 12 (2013) 181. https://doi.org/10.1186/1476-511x-12-181.

[17]

Z. Hassanali, B.N. Ametaj, C.J. Field, et al., Dietary supplementation of n-3 PUFA reduces weight gain and improves postprandial lipaemia and the associated inflammatory response in the obese JCR: LA-cp rat, Diabetes Obes. Metab. 12 (2010) 139-147. https://doi.org/10.1111/j.1463-1326.2009.01130.x.

[18]

Y. Zhao, L. Liu, S. Yang, et al., Mechanisms of atherosclerosis induced by postprandial lipemia, Front. Cardiovasc. Med. 8 (2021) 636947. https://doi.org/10.3389/fcvm.2021.636947.

[19]

M.D.R. Sevilla-Gonzalez, C.A. Aguilar-Salinas, L. Munoz-Hernandez, et al., Identification of a threshold to discriminate fasting hypertriglyceridemia with postprandial values, Lipids Health Dis. 17 (2018) 156. https://doi.org/10.1186/s12944-018-0803-8.

[20]

J. Xu, Y.Q. Chen, S.P. Zhao, et al., Determination of optimal cut-off points after a high-fat meal corresponding to fasting elevations of triglyceride and remnant cholesterol in Chinese subjects, Lipids Health Dis. 18 (2019) 206. https://doi.org/10.1186/s12944-019-1146-9.

[21]

M. Arca, C. Borghi, R. Pontremoli, et al., Hypertriglyceridemia and omega-3 fatty acids: their often overlooked role in cardiovascular disease prevention, Nutr. Metab. Cardiovasc. Dis. 28 (2018) 197-205. https://doi.org/10.1016/j.numecd.2017.11.001.

[22]

G.D. Kolovou, D.P. Mikhailidis, B.G. Nordestgaard, et al., Definition of postprandial lipaemia, Curr. Vasc. Pharmacol. 9 (2011) 292-301. https://doi.org/10.2174/157016111795495611.

[23]

D. Basu, K.E. Bornfeldt, Hypertriglyceridemia and atherosclerosis: using human research to guide mechanistic studies in animal models, Front. Endocrinol. (Lausanne) 11 (2020) 504. https://doi.org/10.3389/fendo.2020.00504.

[24]

T. Yamazaki, K. Kishimoto, O. Ezaki, The ddY mouse: a model of postprandial hypertriglyceridemia in response to dietary fat, J. Lipid Res. 53 (2012) 2024-2037. https://doi.org/10.1194/jlr.M023713.

[25]

T. Funatsu, H. Kakuta, T. Takasu, et al., Experimental model of postprandial hypertriglyceridemia in sucrose-fed rats and the effectiveness of atorvastatin in the model, Metabolism 52 (2003) 609-615. https://doi.org/10.1053/meta.2003.50097.

[26]

A. Folwaczny, E. Waldmann, J. Altenhofer, et al., Postprandial lipid metabolism in normolipidemic subjects and patients with mild to moderate hypertriglyceridemia: effects of test meals containing saturated fatty acids, mono-unsaturated fatty acids, or medium-chain fatty acids, Nutrients 13 (2021) 1737. https://doi.org/10.3390/nu13051737.

[27]

K.M. Botham, C.P.D. Wheeler-Jones, Postprandial lipoproteins and the molecular regulation of vascular homeostasis, Prog. Lipid Res. 52 (2013) 446-464. https://doi.org/10.1016/j.plipres.2013.06.001.

[28]

E.M. Ooi, G.F. Watts, T.W. Ng, et al., Effect of dietary Fatty acids on human lipoprotein metabolism: a comprehensive update, Nutrients 7 (2015) 4416-4425. https://doi.org/10.3390/nu7064416.

[29]

H.K. Kim, H. Choi, Stimulation of acyl-CoA oxidase by alpha-linolenic acid-rich perilla oil lowers plasma triacylglycerol level in rats, Life Sci 77 (2005) 1293-1306. https://doi.org/10.1016/j.lfs.2004.10.082.

[30]

H.K. Kim, H. Choi, Dietary alpha-linolenic acid lowers postprandial lipid levels with increase of eicosapentaenoic and docosahexaenoic acid contents in rat hepatic membrane, Lipids 36 (2001) 1331-1336. https://doi.org/10.1007/s11745-001-0849-7.

[31]

M. Monfort-Pires, J. Delgado-Lista, F. Gomez-Delgado, et al., Impact of the content of fatty acids of oral fat tolerance tests on postprandial triglyceridemia: systematic review and meta-analysis, Nutrients 8 (2016) 580. https://doi.org/10.3390/nu8090580.

[32]

M. Miller, M. Zhan, A. Georgopoulos, Effect of desirable fasting triglycerides on the postprandial response to dietary fat, J. Investig. Med. 51 (2003) 50-55. https://doi.org/10.2310/6650.2003.33544.

[33]

G.R. Warnick, K. Nakajima, Fasting versus nonfasting triglycerides: implications for laboratory measurements, Clin. Chem. 54 (2008) 14-16. https://doi.org/10.1373/clinchem.2007.098863.

[34]

B. Lamarche, S. Rashid, G.F. Lewis, HDL metabolism in hypertriglyceridemic states: an overview, Clin. Chim. Acta 286 (1999) 145-161. https://doi.org/10.1016/s0009-8981(99)00098-4.

[35]

P. Even, F. Mariotti, D. Hermier, Postprandial effects of a lipid-rich meal in the rat are modulated by the degree of unsaturation of 18C fatty acids, Metabolism 59 (2010) 231-240. https://doi.org/10.1016/j.metabol.2009.07.017.

[36]

G. Beaumier-Gallon, C. Dubois, H. Portugal, et al., Postprandial studies on dietary cholesterol in human subjects using stable isotopes and gas chromatography-mass spectrometry analysis, Atherosclerosis 141 (Sup 1) (1998) 81-85. https://doi.org/10.1016/s0021-9150(98)00223-8.

[37]
N. Li, M. Jia, Q. Deng, et al., Effect of low-ratio n-6/n-3 PUFA on blood lipid level: a meta-analysis, Hormones (Athens). https://doi.org/10.1007/s42000-020-00248-0.
DOI
[38]

H. Chen, G. Deng, Q. Zhou, et al., Effects of eicosapentaenoic acid and docosahexaenoic acid versus alpha-linolenic acid supplementation on cardiometabolic risk factors: a meta-analysis of randomized controlled trials, Food Funct. 11 (2020) 1919-1932. https://doi.org/10.1039/c9fo03052b.

[39]

A. Munoz, M. Costa, Nutritionally mediated oxidative stress and inflammation, Oxid. Med. Cell. Longev. 2013 (2013) 610950. https://doi.org/10.1155/2013/610950.

[40]

A.N. Margioris, Fatty acids and postprandial inflammation, Curr. Opin. Clin. Nutr. Metab. Care 12 (2009) 129-137. https://doi.org/10.1097/MCO.0b013e3283232a11.

[41]

J.J. DiNicolantonio, J.H. O'Keefe, Importance of maintaining a low omega-6/omega-3 ratio for reducing inflammation, Open Heart 5 (2018) e000946. https://doi.org/10.1136/openhrt-2018-000946.

[42]

J. Magne, F. Mariotti, R. Fischer, et al., Early postprandial low-grade inflammation after high-fat meal in healthy rats: possible involvement of visceral adipose tissue, J. Nutr. Biochem. 21 (2010) 550-555. https://doi.org/10.1016/j.jnutbio.2009.03.004.

[43]

D.A. Hyson, T.G. Paglieroni, T. Wun, et al., Postprandial lipemia is associated with platelet and monocyte activation and increased monocyte cytokine expression in normolipemic men, Clin. Appl. Thromb. Hem. 8 (2002) 147-155. https://doi.org/10.1177/107602960200800211.

[44]

Y. Wei, Y. Meng, N. Li, et al., The effects of low-ratio n-6/n-3 PUFA on biomarkers of inflammation: a systematic review and meta-analysis, Food Funct. 12 (2021) 30-40. https://doi.org/10.1039/d0fo01976c.

[45]

E. Romina Meza-Miranda, A. Camargo, O. Alberto Rangel-Zuniga, et al., Postprandial oxidative stress is modulated by dietary fat in adipose tissue from elderly people, Age 36 (2014) 507-517. https://doi.org/10.1007/s11357-013-9579-y.

[46]

G. Baydas, O. Yilmaz, S. Celik, et al., Effects of certain micronutrients and melatonin on plasma lipid, lipid peroxidation, and homocysteine levels in rats, Arch. Med. Res. 33 (2002) 515-519. https://doi.org/10.1016/s0188-4409(02)00414-9.

[47]

E. Arya, S. Saha, S.A. Saraf, et al., Effect of Perilla frutescens fixed oil on experimental esophagitis in Albino Wistar rats, Biomed. Res. Int. 2013 (2013) 981372. https://doi.org/10.1155/2013/981372.

[48]

D. Tsikas, Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges, Anal. Biochem. 524 (2017) 13-30. https://doi.org/10.1016/j.ab.2016.10.021.

[49]

Z. Durackova, Some current insights into oxidative stress, Physiol. Res. 59 (2010) 459-469. https://doi.org/10.33549/physiolres.931844.

[50]

J.G. Scandalios, Oxidative stress responses-what have genome-scale studies taught us?, Genome Biol. 3 (2002) 1019. https://doi.org/10.1186/gb-2002-3-7-reviews1019.

[51]

J.J. Wei, D.P. Tang, J.J. Xie, et al., Decreased n-6/n-3 polyunsaturated fatty acid ratio reduces chronic reflux esophagitis in rats, Prostaglandins Leukotrienes Essential Fatty Acids 112 (2016) 37-43. https://doi.org/10.1016/j.plefa.2016.08.003.

[52]

E. Giordano, F. Visioli, Long-chain omega 3 fatty acids: molecular bases of potential antioxidant actions, Prostaglandins Leukotrienes Essential Fatty Acids 90 (2014) 1-4. https://doi.org/10.1016/j.plefa.2013.11.002.

[53]

D. Richard, C. Wolf, U. Barbe, et al., Docosahexaenoic acid down-regulates endothelial Nox 4 through a sPLA(2) signalling pathway, Biochem. Biophys. Res. Commun. 389 (2009) 516-522. https://doi.org/10.1016/j.bbrc.2009.09.013.

[54]

D. Richard, K. Kefi, U. Barbe, et al., Polyunsaturated fatty acids as antioxidants, Pharmacol. Res. 57 (2008) 451-455. https://doi.org/10.1016/j.phrs.2008.05.002.

[55]

J.H. Bae, E. Bassenge, K.B. Kim, et al., Postprandial hypertriglyceridemia impairs endothelial function by enhanced oxidant stress, Atherosclerosis 155 (2001) 517-523. https://doi.org/10.1016/s0021-9150(00)00601-8.

[56]

G.C. Burdge, P.C. Calder, Plasma cytokine response during the postprandial period: a potential causal process in vascular disease?, Br. J. Nutr. 93 (2005) 3-9. https://doi.org/10.1079/bjn20041282.

[57]

G.Y. Lip, A. Blann, von Willebrand factor: a marker of endothelial dysfunction in vascular disorders?, Cardiovasc. Res. 34 (1997) 255-265. https://doi.org/10.1016/s0008-6363(97)00039-4.

[58]

S. Marchesi, G. Lupattelli, R. Lombardini, et al., Effects of fenofibrate on endothelial function and cell adhesion molecules during post-prandial lipemia in hypertriglyceridemia, J. Clin. Pharm. Ther. 28 (2003) 419-424. https://doi.org/10.1046/j.0269-4727.2003.00512.x.

[59]

A.H. Mariamenatu, E.M. Abdu, Overconsumption of omega-6 polyunsaturated fatty acids (PUFAs) versus deficiency of omega-3 PUFAs in modern-day diets: the disturbing factor for their "balanced antagonistic metabolic functions" in the human body, J. Lipids 2021 (2021) 8848161. https://doi.org/10.1155/2021/8848161.

[60]

A.V. Poznyak, Y.Y. Silaeva, A.N. Orekhov, et al., Animal models of human atherosclerosis: current progress, Braz. J. Med. Biol. Res. 53 (2020) e9557. https://doi.org/10.1590/1414-431x20209557.

[61]

C.A. Hogarth, A. Roy, D.L. Ebert, Genomic evidence for the absence of a functional cholesteryl ester transfer protein gene in mice and rats, Comp. Biochem. Physiol. B Biochem. Mol. Biol. 135 (2003) 219-229. https://doi.org/10.1016/s1096-4959(03)00046-0.

[62]

V. Guyard-Dangremont, C. Desrumaux, P. Gambert, et al., Phospholipid and cholesteryl ester transfer activities in plasma from 14 vertebrate species. relation to atherogenesis susceptibility, Comp. Biochem. Physiol. B Biochem. Mol. Biol. 120 (1998) 517-525. https://doi.org/10.1016/s0305-0491(98)10038-x.

[63]

N.B. Panzoldo, A. Urban, E.S. Parra, et al., Differences and similarities of postprandial lipemia in rodents and humans, Lipids Health Dis. 10 (2011) 86. https://doi.org/10.1186/1476-511X-10-86.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 15 May 2021
Revised: 24 June 2021
Accepted: 15 September 2021
Published: 18 November 2022
Issue date: July 2023

Copyright

© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

Acknowledgements

Acknowledgements

This work was supported by National Key Research and Development Plan (2016YFD0400604) and National Natural Science Foundation of China (82073551).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return