Journal Home > Volume 12 , Issue 4

Long-term postprandial hyperglycemia is a primary risk factor for developing chronic metabolic diseases such as obesity, type 2 diabetes, and cardiovascular disease. Chronic hyperglycemia induces the glycation of proteins, oxidative stress, inflammation and increases plasma insulin and lipid concentrations. Insulin resistance is the primary cause of postprandial excursions of blood glucose and lipids. Hyperglycemia can be treated by lowering dietary carbohydrates intake, digestion, and absorption. Various functional foods improve glucose metabolism by increasing insulin sensitivity and inhibiting α-glucosidase in the small intestine. Natural phytochemicals, especially active phenolics are good antioxidants and show anti-inflammatory action and regulate blood glucose. This review aimed to report on hypoglycemic properties of active phenolics from functional foods and their proposed anti-diabetic mechanisms. Nevertheless, further clinical trials are required to confirm the bioavailability, safety, and efficacy of phenolics, especially the dosage and duration of treatment, to avoid adverse effects and give better dietary recommendations.


menu
Abstract
Full text
Outline
About this article

The hypoglycemic potential of phenolics from functional foods and their mechanisms

Show Author's information Oksana GolovinskaiaChin-Kun Wang( )
Department of Nutrition, Chung Shan Medical University, Taiwan 402, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Abstract

Long-term postprandial hyperglycemia is a primary risk factor for developing chronic metabolic diseases such as obesity, type 2 diabetes, and cardiovascular disease. Chronic hyperglycemia induces the glycation of proteins, oxidative stress, inflammation and increases plasma insulin and lipid concentrations. Insulin resistance is the primary cause of postprandial excursions of blood glucose and lipids. Hyperglycemia can be treated by lowering dietary carbohydrates intake, digestion, and absorption. Various functional foods improve glucose metabolism by increasing insulin sensitivity and inhibiting α-glucosidase in the small intestine. Natural phytochemicals, especially active phenolics are good antioxidants and show anti-inflammatory action and regulate blood glucose. This review aimed to report on hypoglycemic properties of active phenolics from functional foods and their proposed anti-diabetic mechanisms. Nevertheless, further clinical trials are required to confirm the bioavailability, safety, and efficacy of phenolics, especially the dosage and duration of treatment, to avoid adverse effects and give better dietary recommendations.

Keywords: Insulin secretion, Insulin resistance, Hypoglycemia, Functional foods, Phenolics

References(257)

[1]

M.I. Constantino, L. Molyneaux, F. Limacher-Gisler, et al., Long-term complications and mortality in young-onset diabetes: type 2 diabetes is more hazardous and lethal than type 1 diabetes, Diabetes Care 36 (2013) 3863-3869. https://doi.org/10.2337/dc12-2455.

[2]

A. Ceriello, Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes 54 (2005) 1-7. https://doi.org/10.2337/diabetes.54.1.1.

[3]

E.E. Blaak, J.M. Antoine, D. Benton, et al., Impact of postprandial glycaemia on health and prevention of disease, Obes. Rev. 13 (2012) 923-984. https://doi.org/10.1111/j.1467-789X.2012.01011.x.

[4]

Z. Yari, V. Behrouz, H. Zand, et al., New insight into diabetes management: from glycemic index to dietary insulin index, Curr. Diabetes Rev. 16 (2020) 293-300. https://doi.org/10.2174/1573399815666190614122626.

[5]

K. Simon, I. Wittmann, Can blood glucose value really be referred to as a metabolic parameter? Rev Endocr. Metab. Disord. 20 (2019) 151-160. https://doi.org/10.1007/s11154-019-09504-0.

[6]

A. M. Kubis-Kubiak, A. Rorbach-Dolata, A. Piwowar, Crucial players in Alzheimer's disease and diabetes mellitus: friends or foes? Mech. Ageing Dev. 181 (2019) 7-21. https://doi.org/10.1016/j.mad.2019.03.008.

[7]

H.J. Woerle, E. Szoke, C. Meyer, et al., Mechanisms for abnormal postprandial glucose metabolism in type 2 diabetes, Am. J. Physiol. Endocrinol. Metab. 290 (2006) E67-E77. https://doi.org/10.1152/ajpendo.00529.2004.

[8]

C. Meyer, H.J. Woerle, J.M. Dostou, et al., Abnormal renal, hepatic, and muscle glucose metabolism following glucose ingestion in type 2 diabetes, Am. J. Physiol. Endocrinol. Metab. 287 (2004) E1049-E1056. https://doi.org/10.1152/ajpendo.00041.2004.

[9]

A.M. Schmidt, S.D. Yan, J.L. Wautier, et al., Activation of receptor for advanced glycation end products, Circ. Res. 84 (1999) 489-497. https://doi.org/10.1161/01.RES.84.5.489.

[10]

M. Rahimi-Madiseh, E. Heidarian, S. Kheiri, et al., Effect of hydroalcoholic Allium ampeloprasum extract on oxidative stress, diabetes mellitus and dyslipidemia in alloxan-induced diabetic rats, Biomed. Pharmacother. 86 (2017) 363-367. https://doi.org/10.1016/j.biopha.2016.12.028.

[11]

P. Taslimi, H.E. Aslan, Y. Demir, et al., Diarylmethanon, bromophenol and diarylmethane compounds: discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia, Int. J. Biol. Macromol. 119 (2018) 857-863. https://doi.org/10.1016/j.ijbiomac.2018.08.004.

[12]

R. Mwakalukwa, Y. Amen, M. Nagata, et al., Postprandial hyperglycemia lowering effect of the isolated compounds from olive mill wastes-an inhibitory activity and kinetics studies on α-glucosidase and α-amylase enzymes, ACS Omega 5 (2020) 20070-20079. https://doi.org/10.1021/acsomega.0c01622.

[13]

P.M. Heacock, S.R. Hertzler, J.A. Williams, et al., Effects of a medical food containing an herbal α-glucosidase inhibitor on postprandial glycemia and insulinemia in healthy adults, J. Am. Diet Assoc. 105 (2005) 65-71. https://doi.org/10.1016/j.jada.2004.11.001.

[14]

S.K. Barik, W.R. Russell, K.M. Moar, et al., The anthocyanins in black currants regulate postprandial hyperglycaemia primarily by inhibiting α-glucosidase while other phenolics modulate salivary α-amylase, glucose uptake and sugar transporters, J. Nutr. Biochem. 78 (2020) 108325. https://doi.org/10.1016/j.jnutbio.2019.108325.

[15]

O.J. Phung, J.M. Scholle, M. Talwar, et al., Effect of noninsulin antidiabetic drugs added to metformin therapy on glycemic control, weight gain, and hypoglycemia in type 2 diabetes, J. Am. Med. Assoc. 303 (2010) 1410-1418. https://doi.org/10.1001/jama.2010.405.

[16]

Y. Demir, L. Durmaz, P. Taslimi, et al., Antidiabetic properties of dietary phenolic compounds: inhibition effects on α-amylase, aldose reductase, and α-glycosidase, Biotechnol. Appl. Biochem. 66 (2019) 781-786. https://doi.org/10.1002/bab.1781.

[17]

K. Venkatakrishnan, H.F. Chiu, C.K. Wang, Popular functional foods and herbs for the management of type-2-diabetes mellitus: a comprehensive review with special reference to clinical trials and its proposed mechanism, J. Funct. Foods 57 (2019) 425-438. https://doi.org/10.1016/j.jff.2019.04.039.

[18]

P. Inthongkaew, N. Chatsumpun, C. Supasuteekul, et al., α-Glucosidase and pancreatic lipase inhibitory activities and glucose uptake stimulatory effect of phenolic compounds from Dendrobium formosum, Rev. Bras. Farmacogn. 27 (2017) 480-487. https://doi.org/10.1016/j.bjp.2017.05.005.

[19]

P.M. Pradeep, Y.N. Sreerama, Impact of processing on the phenolic profiles of small millets: evaluation of their antioxidant and enzyme inhibitory properties associated with hyperglycemia, Food Chem. 169 (2015) 455-463. https://doi.org/10.1016/j.foodchem.2014.08.010.

[20]

C.F. Deacon, J.J. Holst, Glucagon-like peptide-1, glucose homeostasis and diabetes, Int. J. Biochem. Cell Biol. 38 (2006) 831-844. https://doi.org/10.1016/j.molmed.2008.01.003.

[21]

C.N. Huang, C.J. Wang, Y.S. Yang, et al., Hibiscus sabdariffa polyphenols prevent palmitate-induced renal epithelial mesenchymal transition by alleviating dipeptidyl peptidase-4-mediated insulin resistance, Food Funct. 7 (2016) 475-482. https://doi.org/10.1039/c5fo00464k.

[22]

C. Postic, J. Girard, Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice, J. Clin. Invest. 118 (2008) 829-838. https://doi.org/10.1172/JCI34275.

[23]

U.J. Jung, M.K. Lee, K.S. Jeong, et al., The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice, J. Nutr. 134 (2004) 2499-2503. https://doi.org/10.1093/jn/134.10.2499.

[24]

Q.F. Collins, H.Y. Liu, J. Pi, et al., Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5ʹ-AMP-activated protein kinase, J. Biol. Chem. 282 (2007) 30143-30149. https://doi.org/10.1074/jbc.M702390200.

[25]

S.A. Park, M.S. Choi, S.Y. Cho, et al., Genistein and daidzein modulate hepatic glucose and lipid regulating enzyme activities in C57BL/KsJ-db/db mice, Life Sci. 79(2006) 1207-1213. https://doi.org/10.1016/j.lfs.2006.03.022.

[26]

K.J. Chang-Chen, R. Mullur, E. Bernal-Mizrachi, Beta-cell failure as a complication of diabetes, Rev. Endocr Metab. Disord. 9 (2008) 329-343. https://doi.org/10.1007/s11154-008-9101-5.

[27]

M.P. Lu, R. Wang, X. Song, et al., Dietary soy isoflavones increase insulin secretion and prevent the development of diabetic cataracts in streptozotocin-induced diabetic rats, Nutr. Res. 28 (2008) 464-471. https://doi.org/10.1016/j.nutres.2008.03.009.

[28]

Z. Fu, D. Liu, Long-term exposure to genistein improves insulin secretory function of pancreatic beta-cells, Eur. J. Pharmacol. 616 (2009) 321-327. https://doi.org/10.1016/j.ejphar.2009.06.005.

[29]

B. Jayaprakasam, S.K. Vareed, L.K. Olson, et al., Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits, J. Agric. Food Chem. 53 (2005) 28-31. https://doi.org/10.1021/jf049018.

[30]

M. Dagli, Polyphenols as antimicrobial agents, Curr. Opin. Biotechnol. 23 (2012) 174-181. https://doi.org/10.1016/j.copbio.2011.08.007.

[31]

A.M. Bower, L.M. Real Hernandez, M.A. Berhow, et al., Bioactive compounds from culinary herbs inhibit a molecular target for type 2 diabetes management, dipeptidyl peptidase Ⅳ, J. Agric. Food Chem. 62 (2014) 6147-6158. https://doi.org/10.1021/jf500639f.

[32]

U.J. Jung, M.K. Lee, Y.B. Park, et al., Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice, Int. J. Biochem. Cell Biol. 38 (2006) 1134-1145. https://doi.org/10.1016/j.biocel.2005.12.002.

[33]

H.M. Eid, L.C. Martineau, A. Saleem, et al., Stimulation of AMP-activated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant Vaccinium vitis-idaea, Mol. Nutr. Food Res. 54 (2010) 991-1003. https://doi.org/10.1002/mnfr.200900218.

[34]

X. Li, R. Wang, N. Zhou, et al., Quercetin improves insulin resistance and hepatic lipid accumulation in vitro in a NAFLD cell model, Biomed. Rep. 1 (2013) 71-76. https://doi.org/10.3892/br.2012.27.

[35]

S. Adisakwattana, P. Chantarasinlapin, H. Thammarat, et al., A series of cinnamic acid derivatives and their inhibitory activity on intestinal α-glucosidase, J. Enzyme Inhib. Med. Chem. 24 (2009) 1194-1200. https://doi.org/10.1080/14756360902779326.

[36]

G. Bardy, A. Virsolvy, J. Quignard, et al., Quercetin induces insulin secretion by direct activation of L-type calcium channels in pancreatic beta cell, Br. J. Pharmacol. 169 (2013) 1102-1113. https://doi.org/10.1111/bph.12194.

[37]

M.D.G. van den Eynde, J.M. Geleijnse, J. Scheijen, et al., Quercetin, but not epicatechin, decreases plasma concentrations of methylglyoxal in adults in a randomized, double-blind, placebo-controlled, crossover trial with pure flavonoids, J. Nutr. 48 (2018) 1911-1916. https://doi.org/10.1093/jn/nxy236.

[38]

G.J. McDougall, F. Shpiro, P. Dobson, et al., Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase, J. Agric. Food Chem. 53 (2005) 2760-2766. https://doi.org/10.1021/jf0489926.

[39]

S.H. Lee, M.H. Park, S.J. Heo, et al., Dieckol isolated from Ecklonia cava inhibits α-glucosidase and α-amylase in vitro and alleviates postprandial hyperglycemia in streptozotocin-induced diabetic mice, Food Chem. Toxicol. 48 (2010) 2633-2637. https://doi.org/10.1016/j.fct.2010.06.032.

[40]

S.J. Heo, J.Y. Hwang, J.I. Choi, et al., Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent α-glucosidase and α-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice, Eur. J. Pharmacol. 615 (2009) 252-256. https://doi.org/10.1016/j.ejphar.2009.05.017.

[41]

K. Li, F. Yao, J. Du, et al., Persimmon tannin decreased the glycemic response through decreasing the digestibility of starch and inhibiting α-amylase, α-glucosidase, and intestinal glucose uptake, J. Agric. Food Chem. 66 (2018) 1629-1637. https://doi.org/10.1021/acs.jafc.7b05833.

[42]

B. Qin, K.S. Panickar, R.A. Anderson, Cinnamon: potential role in the prevention of insulin resistance, metabolic syndrome, and type 2 diabetes, J. Diabetes Sci. Technol. 4 (2010) 685-693. https://doi.org/10.1177/193229681000400324.

[43]

P. Kar, D. Laight, H.K. Rooprai, et al., Effects of grape seed extract in type 2 diabetic subjects at high cardiovascular risk: a double blind randomized placebo controlled trial examining metabolic markers, vascular tone, inflammation, oxidative stress and insulin sensitivity, Diabetic Med. 26 (2009) 526-531. https://doi.org/10.1111/j.1464-5491.2009.02727.x.

[44]

D.D. Mellor, T. Sathyapalan, E.S. Kilpatrick, et al., High-cocoa polyphenol-rich chocolate improves HDL cholesterol in type 2 diabetes patients, Diabetic Med. 27 (2010) 1318-1321. https://doi.org/10.1111/j.1464-5491.2010.03108.x.

[45]

K. Davison, A.M. Coates, J.D. Buckley, et al., Effect of cocoa flavanols and exercise on cardiometabolic risk factors in overweight and obese subjects, Int. J. Obes. (Lond). 32 (2008) 1289-1296. https://doi.org/10.1038/ijo.2008.66.

[46]

Z.F. Zhang, Q. Li, J. Liang, et al., Epigallocatechin-3-O-gallate (EGCG) protects the insulin sensitivity in rat L6 muscle cells exposed to dexamethasone condition, Phytomedicine 17 (2010) 14-18. https://doi.org/10.1016/j.phymed.2009.09.007.

[47]

H.J. Zhang, B.P. Ji, G. Chen, et al., A combination of grape seed-derived procyanidins and gypenosides alleviates insulin resistance in mice and HepG2 cells, J. Food Sci. 74 (2009) 1-7. https://doi.org/10.1111/j.1750-3841.2008.00976.x.

[48]

I. Cordero-Herrera, M.A. Martin, L. Bravo, et al., Cocoa flavonoids improve insulin signalling and modulate glucose production via AKT and AMPK in HepG2 cells, Mol. Nutr. Food Res. 57 (2013) 974-985. https://doi.org/10.1002/mnfr.201200500.

[49]

Y. Kurimoto, Y. Shibayama, S. Inoue, et al., Black soybean seed coat extract ameliorates hyperglycemia and insulin sensitivity via the activation of AMP-activated protein kinase in diabetic mice, J. Agric. Food Chem. 61 (2013) 5558-5564. https://doi.org/10.1021/jf401190y.

[50]

S.H. Cheong, K. Furuhashi, K. Ito, et al., Daidzein promotes glucose uptake through glucose transporter 4 translocation to plasma membrane in L6 myocytes and improves glucose homeostasis in type 2 diabetic model mice, J. Nutr. Biochem. 25 (2014) 136-143. https://doi.org/10.1016/j.jnutbio.2013.09.012.

[51]

M.S. Choi, U.J. Jung, J. Yeo, et al., Genistein and daidzein prevent diabetes onset by elevating insulin level and altering hepatic gluconeogenic and lipogenic enzyme activities in non-obese diabetic (NOD) mice, Diabetes Metab. Res. Rev. 24 (2008) 74-81. https://doi.org/10.1002/dmrr.780.

[52]

D.J. Kim, Y.J. Jeong, J.H. Kwon, et al., Beneficial effect of chungkukjang on regulating blood glucose and pancreatic beta-cell functions in C75BL/KsJ-db/db mice, J. Med. Food. 11 (2008) 215-223. https://doi.org/10.1089/jmf.2007.560.

[53]

G.M. Do, U.J. Jung, H.J. Park, et al., Resveratrol ameliorates diabetes-related metabolic changes via activation of AMP-activated protein kinase and its downstream targets in db/db mice, Mol. Nutr. Food Res. 56 (2012) 1282-1291. https://doi.org/10.1002/mnfr.201200067.

[54]

G.T.T. Ho, E.T. Kase, H. Wangensteen, et al., Phenolic elderberry extracts, anthocyanins, procyanidins, and metabolites influence glucose and fatty acid uptake in human skeletal muscle cells, J. Agric. Food Chem. 65 (2017) 2677-2685. https://doi.org/10.1021/acs.jafc.6b05582.

[55]

B. Scazzocchio, R. Varì, C. Filesi, et al., Cyanidin-3-O-β-glucoside and protocatechuic acid exert insulin-like effects by upregulating PPARγ activity in human omental adipocytes, Diabetes Care 60 (2011) 2234-2244. https://doi.org/10.2337/db10-1461.

[56]

E. Daneshzad, S. Shab-Bidar, Z. Mohammadpour, et al., Effect of anthocyanin supplementation on cardio-metabolic biomarkers: a systematic review and meta-analysis of randomized controlled trials, Clin. Nutr. 38 (2019) 1153-1165. https://doi.org/10.1016/j.clnu.2018.06.979.

[57]

P.W. Zhang, F.X. Chen, D. Li, et al., A CONSORT-compliant, randomized, double-blind, placebo-controlled pilot trial of purified anthocyanin in patients with nonalcoholic fatty liver disease, Medicine (Baltimore) 94 (2015) e758. https://doi.org/10.1097/MD.0000000000000758.

[58]

A.J. Stull, K.C. Cash, W.D. Johnson, et al., Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women, J. Nutr. 140 (2010) 1764-1768. https://doi.org/10.3945/jn.110.125336.

[59]

J. Zhang, L. Sun, Y. Dong, et al., Chemical compositions and α-glucosidase inhibitory effects of anthocyanidins from blueberry, blackcurrant and blue honeysuckle fruits, Food Chem. 299 (2019) 125102. https://doi.org/10.1016/j.foodchem.2019.125102.

[60]

M. Kozuka, T. Yamane, Y. Nakano, et al., Identification and characterization of a dipeptidyl peptidase Ⅳ inhibitor from aronia juice, Biochem. Biophys. Res. Commun. 465 (2015) 433-436. https://doi.org/10.1016/j.bbrc.2015.08.031.

[61]

L. Mojica, M. Berhow, E. de Mejia, Black bean anthocyanin-rich extracts as food colorants: physicochemical stability and antidiabetes potential, Food Chem. 229 (2017) 628-639. https://doi.org/10.1016/j.foodchem.2017.02.124.

[62]

X. Sun, M. Du, D.A. Navarre, Purple potato extract promotes intestinal epithelial differentiation and barrier function by activating AMP-activated protein kinase, Mol. Nutr. Food Res. 62 (2018) 1700536. https://doi.org/10.1002/mnfr.201700536.

[63]

M.M.G. Karasawa, C. Mohan. Fruits as prospective reserves of bioactive compounds: a review, Nat. Prod. Bioprospect. 8 (2018) 335-346. https://doi.org/10.1007/s13659-018-0186-6.

[64]

M.F. McCarty, A chlorogenic acid-induced increase in GLP-1 production may mediate the impact of heavy coffee consumption on diabetes risk, Med. Hypotheses. 64 (2005) 848-853. https://doi.org/10.1016/j.mehy.2004.03.037.

[65]

H. Roshan, O. Nikpayam, M. Sedaghat, et al., Effects of green coffee extract supplementation on anthropometric indices, glycaemic control, blood pressure, lipid profile, insulin resistance and appetite in patients with the metabolic syndrome: a randomised clinical trial, Br. J. Nutr. 119 (2018) 250-258. https://doi.org/10.1017/S0007114517003439.

[66]

L.Y. Zuniga, M.C.A.D. Aceves-de la Mora, M. González-Ortiz, et al., Effect of chlorogenic acid administration on glycemic control, insulin secretion, and insulin sensitivity in patients with impaired glucose tolerance, J. Med. Food 21 (2018) 469-473. https://doi.org/10.1089/jmf.2017.0110.

[67]

H.A. Shahmohammadi, S.A. Hosseini, E. Hajiani, et al., Effects of green coffee bean extract supplementation on patients with non-alcoholic fatty liver disease: a randomized clinical trial, Hepat. Mon. 17 (2017) e12299. https://doi.org/10.5812/hepatmon.45609.

[68]

K.L. Johnston, M.N. Clifford, L.M. Morgan, Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine, Am. J. Clin. Nutr. 78 (2003) 728-733. https://doi.org/10.1093/ajcn/78.4.728.

[69]

Y.Q. Li, F.C. Zhou, F. Gao, Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of α-glucosidase, J. Agric. Food Chem. 57 (2009) 11463-11468. https://doi.org/10.1021/jf903083h.

[70]

A. Narasimhan, M. Chinnaiyan, B. Karundevi, Ferulic acid exerts its antidiabetic effect by modulating insulin-signalling molecules in the liver of high-fat diet and fructose-induced type-2 diabetic adult male rat, Appl. Physiol. Nutr. Metab. 40 (2015) 769-781. https://doi.org/10.1139/apnm-2015-0002.

[71]

Z.D. He, C.F. Qiao, Q.B. Han, et al., Authentication and quantitative analysis on the chemical profile of cassia bark (Cortex cinnamomi) by high-pressure liquid chromatography, J. Agric. Food Chem. 53 (2005) 2424-2428. https://doi.org/10.1021/jf048116s.

[72]

R.M. Hafizur, A. Hameed, M. Shukrana, et al. Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro, Phytomedicine 22 (2015) 297-300. https://doi.org/10.1016/j.phymed.2015.01.003.

[73]

V.P. Mahendra, D.J. Haware, R. Kumar, cAMP-PKA dependent ERK1/2 activation is necessary for vanillic acid potentiated glucose-stimulated insulin secretion in pancreatic β-cells, J. Funct. Foods 56 (2019) 110-118. https://doi.org/10.1016/j.jff.2019.02.047.

[74]

A.F. Raimundo, F. Félix, R. Andrade et al., Combined effect of interventions with pure or enriched mixtures of (poly)phenols and anti-diabetic medication in type 2 diabetes management: a meta-analysis of randomized controlled human trials, Eur. J. Nutr. 59 (2020) 1329-1343. https://doi.org/10.1007/s00394-020-02189-1.

[75]

P.F. Jacques, A. Cassidy, G. Rogers, et al., Higher dietary flavonol intake is associated with lower incidence of type 2 diabetes, J. Nutr. 143 (2013) 1474-1480. https://doi.org/10.3945/jn.113.177212.

[76]

N.M. Wedick, A. Pan, A. Cassidy, et al., Dietary flavonoid intakes and risk of type 2 diabetes in US men and women, Am. J. Clin. Nutr. 95 (2012) 925-933. https://doi.org/10.3945/ajcn.111.028894.

[77]

X. Wang, J. Tian, J. Jiang, et al., Effects of green tea or green tea extract on insulin sensitivity and glycaemic control in populations at risk of type 2 diabetes mellitus: a systematic review and meta-analysis of randomised controlled trials, J. Hum. Nutr. Diet. 27 (2014) 501-512. https://doi.org/10.1111/jhn.12181.

[78]

L. Gan, Z.J. Meng, R.B. Xionget al., Green tea polyphenol epigallocatechin-3-gallate ameliorates insulin resistance in non-alcoholic fatty liver disease mice, Acta Pharmacol. Sin. 36 (2015) 597-605. https://doi.org/10.1038/aps.2015.11.

[79]

L. Aguirre, N. Arias, M. Teresa Macarulla, et al., Beneficial effects of quercetin on obesity and diabetes, Open Nutraceuticals J. 4 (2011) 189-198. https://doi.org/10.2174/1876396001104010189.

[80]

S. Kannappan, C.V. Anuradha, Naringenin enhances insulin-stimulated tyrosine phosphorylation and improves the cellular actions of insulin in a dietary model of metabolic syndrome, Eur. J. Nutr. 49 (2010) 101-109. https://doi.org/10.1007/s00394-009-0054-6.

[81]

X.F. Guo, Y. Ruan, Z.H. Li, et al., Flavonoid subclasses and type 2 diabetes mellitus risk: a meta-analysis of prospective cohort studies, Crit. Rev. Food Sci. Nutr. 59 (2019) 2850-2862. https://doi.org/10.1080/10408398.2018.1476964.

[82]

M. Karaś, A. Jakubczyk, U. Szymanowska, et al., Digestion and bioavailability of bioactive phytochemicals, Int. J. Food Sci. 52 (2017) 291-305. https://doi.org/10.1111/ijfs.13323.

[83]

J.M. Carbonell-Capella, M. Buniowska, F.J. Barba, et al., Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: a review, Compr. Rev. Food Sci. Food Saf. 13 (2014) 155-171. https://doi.org/10.1111/1541-4337.12049.

[84]

M.P. Czech, Insulin action and resistance in obesity and type 2 diabetes, Nat. Med. 23 (2017) 804-814. https://doi.org/10.1038/nm.4350.

[85]

A.M. Johnson, J.M. Olefsky, The origins and drivers of insulin resistance, Cell 152 (2013) 673-684. https://doi.org/10.1016/j.cell.2013.01.041.

[86]

J. Boucher, A. Kleinridders, C.R. Kahn, Insulin receptor signaling in normal and insulin-resistant states, Cold Spring Harb. Perspect. Biol. 6 (2014) a009191. https://doi.org/10.1101/cshperspect.a009191.

[87]

S. Guo, Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models to disease mechanisms, J. Endocrinol. 220 (2014) 1-23. https://doi.org/10.1530/JOE-13-0327.

[88]

L.E. Rojo, D. Ribnicky, S. Logendra, et al., In vitro and in vivo anti-diabetic effects of anthocyanins from Maqui berry (Aristotelia chilensis), Food Chem. 131 (2012) 387-396. https://doi.org/10.1016/j.foodchem.2011.08.066.

[89]

N. Arias, M.T. Macarulla, L. Aguirre, et al., Quercetin can reduce insulin resistance without decreasing adipose tissue and skeletal muscle fat accumulation, Genes Nutr. 9 (2014) 361. https://doi.org/10.1007/s12263-013-0361-7.

[90]

A. Koutsos, K.M. Tuohy, J.A. Lovegrove, Apples and cardiovascular health—is the gut microbiota a core consideration? Nutrients 7 (2015) 3959-3998. https://doi.org/10.3390/nu7063959.

[91]

Y. Song, J.E. Manson, J.E. Buring, et al., Associations of dietary flavonoids with risk of type 2 diabetes, and markers of insulin resistance and systemic inflammation in women: a prospective study and cross-sectional analysis, J. Am. Coll. Nutr. 24 (2005) 376-384. https://doi.org/10.1080/07315724.2005.10719488.

[92]

Y.S. Cho, K.J. Yeum, C.Y. Chen, et al., Phytonutrients affecting hydrophilic and lipophilic antioxidant activities in fruits, vegetables and legumes, J. Sci. Food Agric. 8 (2007) 1096-1107. https://doi.org/10.1002/jsfa.2817.

[93]

K. Ogura, M. Ogura, T. Shoji, et al., Oral administration of apple procyanidins ameliorates insulin resistance via suppression of pro-inflammatory cytokine expression in liver of diabetic ob/ob mice, J. Agric. Food Chem. 64 (2016) 8857-8865. https://doi.org/10.1021/acs.jafc.6b03424.

[94]

T. Shoji, M. Yamada, T. Miura, et al., Chronic administration of apple polyphenols ameliorates hyperglycaemia in high-normal and borderline subjects: a randomised, placebo-controlled trial, Diabetes Res. Clin. Pract. 129 (2017) 43-51. https://doi.org/10.1016/j.diabres.2017.03.028.

[95]

W.S. Yang, W.Y. Wang, W.Y. Fan, et al., Tea consumption and risk of type 2 diabetes: a dose–response meta-analysis of cohort studies, Br. J. Nutr. 111 (2014) 1329-1339. https://doi.org/10.1017/S0007114513003887.

[96]

K. Liu, R. Zhou, B. Wang, et al., Effect of green tea on glucose control and insulin sensitivity: a meta-analysis of 17 randomized controlled trials, Am. J. Clin. Nutr. 98 (2013) 340-348. https://doi.org/10.3945/ajcn.112.052746.

[97]

H. Cao, I. Hininger-Favier, M.A. Kelly, et al., Green tea polyphenol extract regulates the expression of genes involved in glucose uptake and insulin signaling in rats fed a high fructose diet, J. Agric. Food Chem. 55 (2007) 6372-6378. https://doi.org/10.1021/jf070695o.

[98]

L.Y. Wu, C.C. Juan, L.S. Hwang, et al., Green tea supplementation ameliorates insulin resistance and increases glucose transporter Ⅳ content in a fructose-fed rat model, Eur. J. Nutr. 43 (2004) 116-124. https://doi.org/10.1007/s00394-004-0450-x.

[99]

H.J. Jang, S.D. Ridgeway, J.A. Kim, Effects of the green tea polyphenol epigallocatechin-3-gallate on high-fat diet-induced insulin resistance and endothelial dysfunction, Am. J. Physiol. Endocrinol. Metab. 305 (2013) E1444-E1451. https://doi.org/10.1152/ajpendo.00434.2013.

[100]

A. Basu, M. Du, K. Sanchez, et al., Green tea minimally affects biomarkers of inflammation in obese subjects with metabolic syndrome, Nutrition 27 (2011) 206-213. https://doi.org/10.1016/j.nut.2010.01.015.

[101]

X.X. Zheng, Y.L. Xu, S.H. Li, et al., Effects of green tea catechins with or without caffeine on glycemic control in adults: a meta-analysis of randomized controlled trials, Am. J. Clin. Nutr. 97 (2013) 750-762. https://doi.org/10.3945/ajcn.111.032573.

[102]

D. Grassi, C. Lippi, S. Necozione, et al., Short-term administration of dark chocolate is followed by a significant increase in insulin sensitivity and a decrease in blood pressure in healthy persons, Am. J. Clin. Nutr. 81 (2005) 611-614. https://doi.org/10.1093/ajcn/81.3.611.

[103]

S. Almoosawi, C. Tsang, L.M. Ostertag, et al., Differential effect of polyphenol-rich dark chocolate on biomarkers of glucose metabolism and cardiovascular risk factors in healthy, overweight and obese subjects: a randomized clinical trial, Food Funct. 3 (2012) 1035-1043. https://doi.org/10.1039/C2FO30060E.

[104]

D. Grassi, G. Desideri, S. Necozione, et al., Blood pressure is reduced and insulin sensitivity increased in glucose-intolerant, hypertensive subjects after 15 days of consuming high-polyphenol dark chocolate, J. Nutr. 138 (2008) 1671-1676. https://doi.org/10.1093/jn/138.9.1671.

[105]

G. Davison, R. Callister, G. Williamson, et al., The effect of acute pre-exercise dark chocolate consumption on plasma antioxidant status, oxidative stress and immunoendocrine responses to prolonged exercise, Eur. J. Nutr. 51 (2012) 69-79. https://doi.org/10.1007/s00394-011-0193-4.

[106]

M.G. Shrime, S.R. Bauer, A.C. McDonald, et al., Flavonoid-rich cocoa consumption affects multiple cardiovascular risk factors in a meta-analysis of short-term studies, J. Nutr. 141 (2011) 1982-1988. https://doi.org/10.3945/jn.111.145482.

[107]

G. Desideri, C. Kwik-Uribe, D. Grassi, et al., Benefits in cognitive function, blood pressure, and insulin resistance through cocoa flavanol consumption in elderly subjects with mild cognitive impairment, Hypertension 60 (2012) 794-801. https://doi.org/10.1161/HYPERTENSIONAHA.112.193060.

[108]

P.J. Curtis, M. Sampson, J. Potter, et al., Chronic ingestion of flavan-3-ols and isoflavones improves insulin sensitivity and lipoprotein status and attenuates estimated 10-year CVD risk in medicated postmenopausal women with type 2 diabetes: a 1-year, double-blind, randomized, controlled trial, Diabetes Care 35 (2012) 226-232. https://doi.org/10.2337/dc11-1443.

[109]

L. Azadbakht, M. Kimiagar, Y. Mehrabi, et al., Soy inclusion in the diet improves features of the metabolic syndrome: a randomized crossover study in postmenopausal women, Am. J. Clin. Nutr. 85 (2007) 735-741. https://doi.org/10.1093/ajcn/85.3.735.

[110]

E.R. Gilbert, D. Liu, Anti-diabetic functions of soy isoflavone genistein: mechanisms underlying its effects on pancreatic β-cell function, Food Funct. 4 (2013) 200-212. https://doi.org/10.1039/C2FO30199G.

[111]

H. Braxas, M. Rafraf, S.K. Hasanabad, et al., Effectiveness of genistein supplementation on metabolic factors and antioxidant status in postmenopausal women with type 2 diabetes mellitus, Can. J. Diabetes 43 (2019) 490-497. https://doi.org/10.1016/j.jcjd.2019.04.007.

[112]

P.F. Jacques, A. Cassidy, G. Rogers, et al., Higher dietary flavonol intake is associated with lower incidence of type 2 diabetes, J. Nutr. 143 (2013) 1474-1480. https://doi.org/10.3945/jn.113.177212.

[113]

T. Vuong, L.C. Martineau, C. Ramassamy, et al., Fermented Canadian lowbush blueberry juice stimulates glucose uptake and AMP-activated protein kinase in insulin-sensitive cultured muscle cells and adipocytes, Can. J. Physiol. Pharmacol. 85 (2007) 956-965. https://doi.org/10.1139/Y07-090.

[114]

M. Pinent, M. Blay, M.C. Blade, et al., Grape seed-derived procyanidins have an antihyperglycemic effect in streptozotocin-induced diabetic rats and insulinomimetic activity in insulin-sensitive cell lines, Endocrinology 145 (2004) 4985-4990. https://doi.org/10.1210/en.2004-0764.

[115]

J. Schell, N.M. Betts, T.J. Lyons, et al., Raspberries improve postprandial glucose and acute and chronic inflammation in adults with type 2 diabetes, Ann. Nutr. Metab. 74 (2019) 165-174. https://doi.org/10.1159/000497226.

[116]

J.H. An, D.L. Kim, T.B. Lee, et al., Amelioration of hyperglycemia by Rubus occidentalis (black raspberry) and increase in short-chain fatty acids producing bacteria, Phytother Res. 30 (2016) 1634-1640. https://doi.org/10.1016/j.jff.2019.01.045.

[117]

S.N. Bhupathiraju, A. Pan, V.S. Malik, et al., Caffeinated and caffeine-free beverages and risk of type 2 diabetes, Am. J. Clin. Nutr. 97 (2012) 155-166. https://doi.org/10.3945/ajcn.112.048603.

[118]

M. Ding, S.N. Bhupathiraju, M. Chen, et al., Caffeinated and decaffeinated coffee consumption and risk of type 2 diabetes: a systematic review and a dose-response meta-analysis, Diabetes Care 37 (2014) 569-586. https://doi.org/10.2337/dc13-1203.

[119]

X. Jiang, D. Zhang, W. Jiang, Coffee and caffeine intake and incidence of type 2 diabetes mellitus: a meta-analysis of prospective studies, Eur. J. Nutr. 53 (2014) 25-38. https://doi.org/10.1007/s00394-013-0603-x.

[120]

N.M. Pham, A. Nanri, T. Kochi, et al., Coffee and green tea consumption is associated with insulin resistance in Japanese adults, Metabolism 63 (2014) 400-408. https://doi.org/10.1016/j.metabol.2013.11.008.

[121]

A.N. Shikov, O.N. Pozharitskaya, M.N. Makarova, et al., Bergenia genus: traditional uses, phytochemistry and pharmacology, J. Funct. Foods 2 (2010) 71-76. https://doi.org/10.3390/molecules25235555.

[122]

E.S. Chernetsova, E.A. Crawford, A.N. Shikov, et al., ID-CUBE direct analysis in real time high-resolution mass spectrometry and its capabilities in the identification of phenolic components from the green leaves of Bergenia crassifolia L., Mass Spectrom. 26 (2012) 1329-1337. https://doi.org/10.1002/rcm.6226.

[123]

A.N. Shikov, O.N. Pozharitskaya, M.N. Makarova, et al., Effect of Bergenia crassifolia L. extracts on weight gain and feeding behavior of rats with high-caloric diet-induced obesity, Phytomedicine 9 (2012) 1250-1255. https://doi.org/10.1016/j.phymed.2012.09.019.

[124]

M.A. Azarbayjani, S. Shirkhani, M. Pouramir, The effect of a swim workout program along with the use of arbutin on glucose and insulin levels in rats with hyperglycemia, Int. J. Biosci. 4 (2014) 292-297. http://dx.doi.org/10.12692/ijb/4.1.292-297.

[125]

H. Takii, K. Matsumoto, T. Kometani, et al., Lowering effect of phenolic glycosides on the rise in postprandial glucose in mice, Biosci. Biotechnol. Biochem. 61 (1997) 1531-1535. https://doi.org/10.1271/bbb.61.1531.

[126]

M. Dehghan-Kooshkghazi, J.C. Mathers, Starch digestion, large-bowel fermentation and intestinal mucosal cell proliferation in rats treated with the α-glucosidase inhibitor acarbose, Br. J. Nutr. 91 (2004) 357-365. https://doi.org/10.1079/BJN20031063.

[127]

R. Tundis, M.R. Loizzo, F. Menichini, Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update, Mini. Rev. Med. Chem. 10 (2010) 315-331. https://doi.org/10.2174/138955710791331007.

[128]

A.W. Indrianingsih, S. Tachibana, K. Itoh, In vitro evaluation of antioxidant and α-glucosidase inhibitory assay of several tropical and subtropical plants, Procedia. Environ. Sci. 28 (2015) 639-648. https://doi.org/10.1016/j.proenv.2015.07.075.

[129]

Y. Demir, P. Taslimi, M.S. Ozaslan, et al., Antidiabetic potential: in vitro inhibition effects of bromophenol and diarylmethanones derivatives on metabolic enzymes, Arch. Pharm. (Weinheim) 351 (2018) 1800263. https://doi.org/10.1002/ardp.201800263.

[130]

K. Tadera, Y. Minami, K. Takamatsu, et al., Inhibition of α-glucosidase and α-amylase by flavonoids, J. Nutr. Sci. Vitaminol. 52 (2006) 149-153. https://doi.org/10.3177/jnsv.52.149.

[131]

L.N. Malunga, S. Joseph Thandapilly, N. Ames, Cereal-derived phenolic acids and intestinal alpha glucosidase activity inhibition: structural activity relationship, J. Food Biochem. 42 (2018) e12635. https://doi.org/10.1111/jfbc.12635.

[132]

J.H. Kim, H.Y. Kim, C.H. Jin, Mechanistic investigation of anthocyanidin derivatives as α-glucosidase inhibitors, Bioorg. Chem. 87 (2019) 803-809. https://doi.org/10.1016/j.bioorg.2019.01.033.

[133]

E. Di Stefano, T. Oliviero, C.C. Udenigwe, Functional significance and structure–activity relationship of food-derived α-glucosidase inhibitors, Curr. Opin. Food Sci. 20 (2018) 7-12. https://doi.org/10.1016/j.cofs.2018.02.008.

[134]

L. Zhang, J. Li, S. Hogan, et al., Inhibitory effect of raspberries on starch digestive enzyme and their antioxidant properties and phenolic composition, Food Chem. 119 (2010) 592-599. https://doi.org/10.1016/j.foodchem.2009.06.063.

[135]

M.S. Pinto, Y.I. Kwon, E. Apostolidis, et al., Evaluation of red currants (Ribes rubrum L.), black currants (Ribes nigrum L.), red and green gooseberries (Ribes uva-crispa) for potential management of type 2 diabetes and hypertension using in vitro models, J. Food Biochem. 34 (2010) 639-660. https://doi.org/10.1111/j.1745-4514.2009.00305.x.

[136]

M.D. Pinto, J.E. de Carvalho, F.M. Lajolo, et al., Evaluation of antiproliferative, anti-type 2 diabetes, and antihypertension potentials of ellagitannins from strawberries (Fragaria ananassa Duch.) using in vitro models, J. Med. Food 13 (2010) 1027-1035. https://doi.org/10.1089/jmf.2009.0257.

[137]

E. Apostolidis, Y.I. Kwon, K. Shetty, Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension, Innov. Food Sci. Emerg. Technol. 8 (2007) 46-54. https://doi.org/10.1016/j.ifset.2006.06.001.

[138]

Z. Liu, J. Zhang, S. Lu, et al., Effects of different drying methods on phenolic components and in vitro hypoglycemic activities of pulp extracts from two Chinese bayberry (Myrica rubra Sieb. et Zucc.) cultivars, Food Sci. Hum. Wellness 11 (2022) 366-373. https://doi.org/10.1016/j.fshw.2021.11.014.

[139]

R. Borneo, A.E. León, Whole grain cereals: functional components and health benefits, Food Funct. 3 (2012) 110-119. https://doi.org/10.1039/C1FO10165J.

[140]

R.L. Shen, F.L. Cai, J.L. Dong, et al., Hypoglycemic effects and biochemical mechanisms of oat products on streptozotocin-induced diabetic mice, J. Agric. Food Chem. 59 (2011) 8895-8900. https://doi.org/10.1021/jf200678q.

[141]

P. Qin, W. Li, Y. Yang, et al., Changes in phytochemical compositions, antioxidant and α-glucosidase inhibitory activities during the processing of tartary buckwheat tea, Food Res. Int. 50 (2013) 562-567. https://doi.org/10.1016/j.foodres.2011.03.028.

[142]

P.M. Pradeep, Y.N. Sreerama, Impact of processing on the phenolic profiles of small millets: evaluation of their antioxidant and enzyme inhibitory properties associated with hyperglycemia, Food Chem. 169 (2015) 455-463. https://doi.org/10.1016/j.foodchem.2014.08.010.

[143]

P.M. Pradeep, Y.N. Sreerama, Phenolic antioxidants of foxtail and little millet cultivars and their inhibitory effects on α-amylase and α-glucosidase activities, Food Chem. 247 (2018) 46-55. https://doi.org/10.1016/j.foodchem.2017.11.103.

[144]

G.A.S Premakumara, W.K.S.M Abeysekera, W.D. Ratnasooriya, et al., Antioxidant, anti-amylase and anti-glycation potential of brans of some Sri Lankan traditional and improved rice (Oryza sativa L.) varieties, J. Cereal Sci. 58 (2013) 451-456. https://doi.org/10.1016/j.jcs.2013.09.004.

[145]

K. Gong, L. Chen, X. Li, et al., Effects of germination combined with extrusion on the nutritional composition, functional properties and polyphenol profile and related in vitro hypoglycemic effect of whole grain corn, J. Cereal Sci. 83 (2018) 1-8. https://doi.org/10.1016/j.jcs.2018.07.002.

[146]

S. Abumweis, S.J. Thandapilly, J. Storsley, et al., Effect of barley β-glucan on postprandial glycaemic response in the healthy human population: a meta-analysis of randomized controlled trials, J. Funct. Foods 27 (2016) 329-342. https://doi.org/10.1016/j.jff.2016.08.057.

[147]

M.R. Links, J. Taylor, M.C. Kruger, et al., Sorghum condensed tannins encapsulated in kafirin microparticles as a nutraceutical for inhibition of amylases during digestion to attenuate hyperglycaemia, J. Funct. Foods, 12 (2015) 55-63. https://doi.org/10.1016/j.jff.2014.11.003.

[148]

S. Shobana, Y.N. Sreerama, N.G. Malleshi, Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: mode of inhibition of α-glucosidase and pancreatic amylase, Food Chem. 115 (2009) 1268-1273. https://doi.org/10.1016/j.foodchem.2009.01.042.

[149]

L.K. Mishra, D. Sarkar, S. Zwinger, et al., Phenolic antioxidant-linked anti-hyperglycemic properties of rye cultivars grown under conventional and organic production systems, J. Cereal Sci. 76 (2017) 108-115. https://doi.org/10.1016/j.jcs.2017.06.002.

[150]

L.A. Rosén, L.O.B. Silva, U.K. Andersson, et al., Endosperm and whole grain rye breads are characterized by low post-prandial insulin response and a beneficial blood glucose profile, J. Nutr. 8 (2009) 1-11. https://doi.org/10.1186/1475-2891-8-42.

[151]

L.A. Rosén, E.M. Östman, I.M. Björck, Effects of cereal breakfasts on postprandial glucose, appetite regulation and voluntary energy intake at a subsequent standardized lunch; focusing on rye products, J. Nutr. 10 (2011) 1-11. https://doi.org/10.1186/1475-2891-10-7.

[152]

J.L. Hargrove, P. Greenspan, D.K. Hartle, et al., Inhibition of aromatase and α-amylase by flavonoids and proanthocyanidins from Sorghum bicolor bran extracts, J. Med. Food 14 (2011) 799-807. https://doi.org/10.1089/jmf.2010.0143.

[153]

D. Kalita, D.G. Holm, D.V. LaBarbera, et al., Inhibition of α-glucosidase, α-amylase, and aldose reductase by potato polyphenolic compounds, PLoS One 13 (2018) e0191025. https://doi.org/10.1371/journal.pone.0191025.

[154]

S. Moser, I. Aragon, A. Furrer, et al., Potato phenolics impact starch digestion and glucose transport in model systems but translation to phenolic rich potato chips results in only modest modification of glycemic response in humans, Nutr. Res. 52 (2018) 57-70. https://doi.org/10.1016/j.nutres.2018.02.001.

[155]

G. Oboh, A.O. Ademiluyi, A.J. Akinyemi, et al., Inhibitory effect of polyphenol-rich extracts of jute leaf (Corchorus olitorius) on key enzyme linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin Ⅰ-converting) in vitro, J. Funct. Foods 4 (2012) 450-458. https://doi.org/10.1016/j.jff.2012.02.003.

[156]

Y. Yao, X.Z. Cheng, L.X. Wang, et al., Major phenolic compounds, antioxidant capacity and antidiabetic potential of rice bean (Vigna umbellata L.) in China, Int. J. Mol. Sci. 13 (2012) 2707-2716. https://doi.org/10.3390/ijms13032707.

[157]

S.V. Thompson, D.M. Winham, A.M. Hutchins, Bean and rice meals reduce postprandial glycemic response in adults with type 2 diabetes: a cross-over study, J. Nutr. 11 (2012) 1-7. https://doi.org/10.1186/1475-2891-11-23.

[158]

S.H. Lee, S.C. Ko, M.C. Kang, et al., Octaphlorethol A, a marine algae product, exhibits antidiabetic effects in type 2 diabetic mice by activating AMP-activated protein kinase and upregulating the expression of glucose transporter 4, Food Chem. Toxicol. 91 (2016) 58-64. https://doi.org/10.1016/j.fct.2016.02.022.

[159]

H.A.R. Suleria, G. Gobe, P. Masci, et al., Marine bioactive compounds and health promoting perspectives; innovation pathways for drug discovery, Trends Food Sci. Technol. 50 (2016) 44-55. https://doi.org/10.1016/j.tifs.2016.01.019.

[160]

C. Zhao, Y. Wu, C. Yang, et al., Hypotensive, hypoglycaemic and hypolipidaemic effects of bioactive compounds from microalgae and marine micro-organisms, Int. J. Food Sci. Technol. 50 (2015) 1705-1717. https://doi.org/10.1111/ijfs.12860.

[161]

W. Choochote, L. Suklampoo, D. Ochaikul, Evaluation of antioxidant capacities of green microalgae, J. Appl. Psychol. 26 (2014) 43-48. https://doi.org/10.1007/s10811-013-0084-6.

[162]

K.R. Rengasamy, M.G. Kulkarni, W.A. Stirk, et al., Advances in algal drug research with emphasis on enzyme inhibitors, Biotechnol. Adv. 32 (2014) 1364-1381. https://doi.org/10.1016/j.biotechadv.2014.08.005.

[163]

T. Ohta, S. Sasaki, T. Oohori, et al., α-Glucosidase inhibitory activity of a 70% methanol extract from ezoishige (Pelvetia babingtonii de Toni) and its effect on the elevation of blood glucose level in rats, Biosci. Biotechnol. Biochem. 66 (2002) 1552-1554. https://doi.org/10.1271/bbb.66.1552.

[164]

M. Yotsu-Yamashita, S. Kondo, S. Segawa, et al., Isolation and structural determination of two novel phlorotannins from the brown alga Ecklonia kurome Okamura, and their radical scavenging activities, Mar. Drugs 11 (2013) 165-183. https://doi.org/10.3390/md11010165.

[165]

K. Iwai, Antidiabetic and antioxidant effects of polyphenols in brown alga Ecklonia stolonifera in genetically diabetic KK-Ay mice, Plant Foods Hum. Nutr. 63 (2008) 163-169. https://doi.org/10.1007/s11130-008-0098-4.

[166]

H.L. Xu, C. Kitajima, H. Ito, et al., Antidiabetic effect of polyphenols from brown alga Ecklonia kurome in genetically diabetic KK-Ay mice, Pharm Biol. 50 (2012) 393-400. https://doi.org/10.3109/13880209.2011.601464.

[167]

K.Y. Kim, K.A. Nam, H. Kurihara, et al., Potent α-glucosidase inhibitors purified from the red alga grateloupia elliptica, Phytochemistry 69 (2008) 2820-2825. https://doi.org/10.1016/j.phytochem.2008.09.007.

[168]

K. Hanhineva, R. Torronen, I. Bondia-Pons, et al., Impact of dietary polyphenols on carbohydrate metabolism, Int. J. Mol. Sci. 11 (2010) 1365-1402. https://doi.org/10.3390/ijms11041365.

[169]

S.A. Raptis, G.D. Dimitriadis, Oral hypoglycemic agents: insulin secretagogues, α-glucosidase inhibitors and insulin sensitizers, Exp. Clin. Endocrinol. Diabetes 109 (2001) S265-S287. https://doi.org/10.1055/s-2001-18588.

[170]

A. Scheepers, H.G. Joost, A. Schurmann, et al., The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function, Enteral. Nutr. 28 (2004) 364-371. https://doi.org/10.1177/0148607104028005364.

[171]

G.L. Kellett, E. Brot-Laroche, O.J. Mace, et al., Sugar absorption in the intestine: the role of GLUT2, Annu. Rev. Nutr. 28 (2008) 35-54. https://doi.org/10.1146/annurev.nutr.28.061807.155518.

[172]

P.V. Roder, K.E. Geillinger, T.S. Zietek, et al., The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing, PLoS One 9 (2014) e89977. https://doi.org/10.1371/journal.pone.0089977.

[173]

A.A. Tahrani, A.H. Barnett, C.J. Bailey, SGLT inhibitors in management of diabetes, Lancet Diabetes Endocrinol. 1 (2013) 140-151. https://doi.org/10.1016/S2213-8587(13)70050-0.

[174]

T. Hanamura, C. Mayama, H. Aoki, et al., Antihyperglycemic effect of polyphenols from acerola (Malpighia emarginata DC.) fruit, Biosci. Biotechnol. Biochem. 70 (2006) 1813-1820. https://doi.org/10.1271/bbb.50592.

[175]

R. Cermak, S. Landgraf, S. Wolffram, Quercetin glucosides inhibit glucose uptake into brush-border-membrane vesicles of porcine jejunum, Br. J. Nutr. 91 (2004) 849-855. https://doi.org/10.1079/BJN20041128.

[176]

S. Manzano, G. Williamson, Polyphenols and phenolic acids from strawberry and apple decrease glucose uptake and transport by human intestinal Caco-2 cells, Mol. Nutr. Food Res. 54 (2010) 1773-1780. https://doi.org/10.1002/mnfr.201000019.

[177]

T.L. Farrell, S.L. Ellam, T. Forrelli, et al., Attenuation of glucose transport across Caco-2 cell monolayers by a polyphenol-rich herbal extract: Interactions with SGLT1 and GLUT2 transporters, Biofactors 39 (2013) 448-456. https://doi.org/10.1002/biof.1090.

[178]

U. Müller, F. Stübl, B. Schwarzinger, et al., In vitro and in vivo inhibition of intestinal glucose transport by guava (Psidium Guajava) extracts, Mol. Nutr. Food Res. 62 (2018) 1701012. https://doi.org/10.1002/mnfr.201701012.

[179]

J.A. Villa-Rodriguez, E. Aydin, J.S. Gauer, et al., Green and chamomile teas, but not acarbose, attenuate glucose and fructose transport via inhibition of GLUT2 and GLUT5, Mol. Nutr. Food Res. 61 (2017) 1700566. https://doi.org/10.1002/mnfr.201700566.

[180]

A. Barberis, A. Garbetta, A. Cardinali, et al., Real-time monitoring of glucose and phenols intestinal absorption through an integrated Caco-2 TC7cells/biosensors telemetric device: hypoglycemic effect of fruit phytochemicals, Biosens Bioelectron. 88 (2017) 159-166. https://doi.org/10.1016/j.bios.2016.08.007.

[181]

C. Schulze, A. Bangert, G. Kottra, et al., Inhibition of the intestinal sodium-coupled glucose transporter 1 (SGLT1) by extracts and polyphenols from apple reduces postprandial blood glucose levels in mice and humans, Mol. Nutr. Food Res. 58 (2014) 1795-1808. https://doi.org/10.1002/mnfr.201400016.

[182]

Y. Mi, G. Qi, Y. Gao, et al., (–)-Epigallocatechin-3-gallate ameliorates insulin resistance and mitochondrial dysfunction in HepG2 cells: involvement of Bmal1, Mol. Nutr. Food Res. 61 (2017) 1700440. https://doi.org/10.1002/mnfr.201700440.

[183]

J.H. Jang, J.E. Park, J.S. Han. Scopoletin increases glucose uptake through activation of PI3K and AMPK signaling pathway and improves insulin sensitivity in 3T3-L1 cells, Nutr. Res. 74 (2020) 52-61. https://doi.org/10.1016/j.nutres.2019.12.003.

[184]

J.J. Holst, F. Gribble, M. Horowitz, et al., The emerging role of polyphenols in the management of type 2 diabetes, Diabetes Care 39 (2016) 884-892. https://doi.org/10.3390/molecules26030703.

[185]

M. Salehi, B. Aulinger, D.A. D'Alessio, Effect of glycemia on plasma incretins and the incretin effect during oral glucose tolerance test, Diabetes 61 (2012) 2728-2733. https://doi.org/10.2337/db11-1825.

[186]

D.J. Drucker, M.A. Nauck, The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes, The Lancet 368 (2006) 1696-1705. https://doi.org/10.1016/S0140-6736(06)69705-5.

[187]

K. Vollmer, H. Gardiwal, B.A. Menge, et al., Hyperglycemia acutely lowers the postprandial excursions of glucagon-like peptide-1 and gastric inhibitory polypeptide in humans, J. Clin. Endocrinol. Metab. 94 (2009) 1379-1385. https://doi.org/10.1210/jc.2008-2197.

[188]

M.D. Gorrell, Dipeptidyl peptidase Ⅳ and related enzymes in cell biology and liver disorders, Clin. Sci. 108 (2005) 277-292. https://doi.org/10.1042/CS20040302.

[189]

B.D. Patel, S.V. Bhadada, M.D. Ghate, Design, synthesis and anti-diabetic activity of triazolotriazine derivatives as dipeptidyl peptidase-4 (DPP-4) inhibitors, Bioorg. Chem. 72 (2017) 345-358. https://doi.org/10.1016/j.bioorg.2017.03.004.

[190]

A.P. Stoian, A. Sachinidis, R.A. Stoica, et al., The efficacy and safety of dipeptidyl peptidase-4 inhibitors compared to other oral glucose-lowering medications in the treatment of type 2 diabetes, Metabolism 109 (2020) 154295. https://doi.org/10.1016/j.metabol.2020.154295.

[191]

E.S. Andersen, C.F. Deacon, J.J. Holst, Do we know the true mechanism of action of the DPP-4 inhibitors? Diabetes Obes. Metab. 20 (2018) 34-41. https://doi.org/10.1111/dom.13018.

[192]
B. Omar, B. Ahrén, Diabetes, pleiotropic mechanisms for the glucose-lowering action of DPP-4 inhibitors, 63 (2014) 2196-2202. https://doi.org/10.2337/db14-0052.
DOI
[193]

A. Waget, C. Cabou, M. Masseboeuf, et al., Physiological and pharmacological mechanisms through which the DPP-4 inhibitor sitagliptin regulates glycemia in mice, Endocrinology 152 (2011) 3018-3029. https://doi.org/10.1210/en.2011-0286.

[194]

K. Filipsson, M. Kvist-Reimer, B. Ahrén, The neuropeptide pituitary adenylate cyclase–activating polypeptide and islet function, Diabetes 50 (2001) 1959-1969. https://doi.org/10.2337/diabetes.50.9.1959.

[195]

R. Sedighi, Y. Zhao, A. Yerke, et al., Preventive and protective properties of rosemary (Rosmarinus officinalis L.) in obesity and diabetes mellitus of metabolic disorders: a brief review, Curr. Opin. Food Sci. 2 (2015) 58-70. https://doi.org/10.1016/j.cofs.2015.02.002.

[196]

A. del Pilar Sánchez-Camargo, M. Herrero, Rosemary (Rosmarinus officinalis) as a functional ingredient: recent scientific evidence, Curr. Opin. Food Sci. 14 (2017) 13-19. https://doi.org/10.1016/j.cofs.2016.12.003.

[197]

K. Kosaka, T. Yokoi, Carnosic acid, a component of rosemary (Rosmarinus officinalis L.), promotes synthesis of nerve growth factor in T98G human glioblastoma cells, Biol. Pharm. Bull. 26 (2003) 1620-1622. https://doi.org/10.1248/bpb.26.1620.

[198]

A. Cardador-Martínez, G. Loarca-Piña, B. Oomah, Antioxidant activity in common beans (Phaseolus vulgaris L.), J. Agric. Food Chem. 50 (2002) 6975-6980. https://doi.org/10.1021/jf020296n.

[199]

G.A. Rutter, Visualising insulin secretion. The Minkowski Lecture 2004, Diabetologia 47 (2004) 1861-1872. https://doi.org/10.1007/s00125-004-1541-1.

[200]

P. Maechler, S. Carobbio, B. Rubi, In beta-cells, mitochondria integrate and generate metabolic signals controlling insulin secretion, Int. J. Biochem. Cell Biol. 38 (2006) 696-709. https://doi.org/10.1016/j.biocel.2005.12.006.

[201]

S.N. Yang, P.O. Berggren, Beta-cell CaV channel regulation in physiology and pathophysiology, Am. J. Physiol. Endocrinol. Metab. 288 (2005) E16-E28. https://doi.org/10.1152/ajpendo.00042.2004.

[202]

P. Rorsman, M. Braun, Q. Zhang, Regulation of calcium in pancreatic alpha- and beta-cells in health and disease, Cell Calcium 51 (2012) 300-308. https://doi.org/10.1016/j.ceca.2011.11.006.

[203]

E. Heikkila, A. Hermant, J. Thevenet, et al., The plant product quinic acid activates Ca2+-dependent mitochondrial function and promotes insulin secretion from pancreatic beta cells, Br. J. Pharmacol. 176 (2019) 3250-3263. https://doi.org/10.1111/bph.14757.

[204]

A.K. Sinha, U.K. Sharma, N. Sharma, A comprehensive review on vanilla flavor: extraction, isolation and quantification of vanillin and others constituents, Int. J. Food Sci. Nutr. 59 (2008) 299-326. https://doi.org/10.1080/09687630701539350.

[205]

R. Vinayagam, B. Xu, Antidiabetic properties of dietary flavonoids: a cellular mechanism review, Nutr. Metab. 12 (2015) 60. https://doi.org/10.1186/s12986-015-0057-7.

[206]

C. Carrasco-Pozo, K.N. Tan, M. Reyes-Farias, et al., The deleterious effect of cholesterol and protection by quercetin on mitochondrial bioenergetics of pancreatic β-cells, glycemic control and inflammation: in vitro and in vivo studies, Redox Biol. 9 (2016) 229-243. https://doi.org/10.1016/j.redox.2016.08.007.

[207]

M. De Bock, J.G.B. Derraik, C.M. Brennan, et al., Olive (Olea europaea L.) leaf polyphenols improve insulin sensitivity in middle-aged overweight men: a randomized, placebo-controlled, crossover trial, PLoS One 8 (2013) e57622. https://doi.org/10.1371/journal.pone.0057622.

[208]

S.J. Pilkis, T.H. Claus, Hepatic gluconeogenesis/glycolysis: regulation and structure/function relationships of substrate cycle enzymes, Annu. Rev. Nutr. 11 (1991) 465-515. https://doi.org/10.1146/annurev.nu.11.070191.002341.

[209]

R.J. Perry, V.T. Samuel, K.F. Petersen, et al., The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes, Nature 510 (2014) 84-89. https://doi.org/10.1038/nature13478.

[210]

A. Kikuchi, T. Takamura, Where does liver fat go? A possible molecular link between fatty liver and diabetes, J. Diabetes Investig. 8 (2017) 152-154. https://doi.org/10.1111/jdi.12573.

[211]

D.M. Cheng, P. Kuhn, A. Poulev, et al., In vivo and in vitro antidiabetic effects of aqueous cinnamon extract and cinnamon polyphenol-enhanced food matrix, Food Chem. 135 (2012) 2994-3002. https://doi.org/10.1016/j.foodchem.2012.06.117.

[212]

L. Chen, P. Sun, T. Wang, et al., Diverse mechanisms of antidiabetic effects of the different procyanidin oligomer types of two different cinnamon species on db/db mice, J. Agric. Food Chem. 60 (2012) 9144-9150. https://doi.org/10.1021/jf3024535.

[213]

M.U. Imam, M. Ismail, Nutrigenomic effects of germinated brown rice and its bioactives on hepatic gluconeogenic genes in type 2 diabetic rats and HEPG2 cells, Mol. Nutr. Food Res. 57 (2013) 401-411. https://doi.org/10.1002/mnfr.201200429.

[214]

C.C. Chen, C.Y. Hsu, C.Y. Chen, et al., Fructus Corni suppresses hepatic gluconeogenesis related gene transcription, enhances glucose responsiveness of pancreatic beta-cells, and prevents toxin induced beta-cell death, J. Ethnopharmacol. 117 (2008) 483-490. https://doi.org/10.1016/j.jep.2008.02.032.

[215]

Z. Zhao, M.H. Moghadasian, chemistry, natural sources, 596 dietary intake and pharmacokinetic properties of ferulic acid: a review, Food Chem. 109 (2008) 691-702. https://doi.org/10.1016/j.foodchem.2008.02.039.

[216]

H. Cao, I. Hininger-Favier, M.A. Kelly, et al., Green tea polyphenol extract regulates the expression of genes involved in glucose uptake and insulin signaling in rats fed a high fructose diet, J. Agric. Food Chem. 55 (2007) 6372-6378. https://doi.org/10.1021/jf070695o.

[217]

M.E. Waltner-Law, X.L. Wang, B.K. Law, et al., Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production, J. Biol. Chem. 277 (2002) 34933-34940. https://doi.org/10.1074/jbc.M204672200.

[218]

H.M. Bolt, High complexity of toxic reactions: parallels between products of oxidative stress and advanced glycation end products, Arch. Toxicol. 94 (2020) 1373-1374. https://doi.org/10.1007/s00204-020-02727-0.

[219]

J.M. Ashraf, S. Ahmad, I. Choi, et al., Recent advances in detection of AGEs: immunochemical, bioanalytical and biochemical approaches, IUBMB Life 67 (2015) 897-913. https://doi.org/10.1002/iub.1450.

[220]

D.M. Ciobanu, L.E. Olar, R. Stefan, et al., Fluorophores advanced glycation end products (AGEs)-to-NADH ratio is predictor for diabetic chronic kidney and cardiovascular disease, J. Diabetes Complicat. 29 (2015) 893-897. https://doi.org/10.1016/j.jdiacomp.2015.06.006.

[221]

J. Li, D. Liu, L. Sun, et al., Advanced glycation end products and neurodegenerative diseases: mechanisms and perspective, J. Neurol. Sci. 317 (2012) 1-5. https://doi.org/10.1016/j.jns.2012.02.018.

[222]

S.A. Kandarakis, C. Piperi, F. Topouzis, et al., Emerging role of advanced glycation-end products (AGEs) in the pathobiology of eye diseases, Prog. Retin. Eye Res. 42 (2014) 85-102. https://doi.org/10.1016/j.preteyeres.2014.05.002.

[223]

T.A. Ajith, P. Vinodkumar, Advanced glycation end products: association with the pathogenesis of diseases and the current therapeutic advances, Curr. Clin. Pharmacol. 11 (2016) 118-127. https://doi.org/10.2174/1574884711666160511150028.

[224]

H. Chen, M.S. Virk, F. Chen, Phenolic acids inhibit the formation of advanced glycation end products in food simulation systems depending on their reducing powers and structures, Int. J. Food Sci. Nutr. 67 (2016) 400-411. https://doi.org/10.3109/09637486.2016.1166187.

[225]

C.S. Harris, A. Cuerrier, E. Lamont, et al., Investigating wild berries as a dietary approach to reducing the formation of advanced glycation endproducts: chemical correlates of in vitro antiglycation activity, Plant Foods Hum. Nutr. 69 (2014) 71-77. https://doi.org/10.1007/s11130-014-0403-3.

[226]

W. Wang, Y. Yagiz, T.J. Buran, et al., Phytochemicals from berries and grapes inhibited the formation of advanced glycation end-products by scavenging reactive carbonyls, Food Res. Int. 44 (2011) 2666-2673. https://doi.org/10.1016/j.foodres.2011.05.022.

[227]

D. Hemmler, C. Roullier-Gall, J.W. Marshall, et al., Evolution of complex Maillard chemical reactions, resolved in time, Sci. Rep. 7 (2017) 1-6. https://doi.org/10.1038/s41598-017-03691-z.

[228]

G. Abbas, S.A. Al-Harrasi, H. Hussain, et al., Antiglycation therapy: discovery of promising antiglycation agents for the management of diabetic complications, Pharm. Biol. 54 (2016) 198-206. https://doi.org/10.3109/13880209.2015.1028080.

[229]

X. Kong, J.R. Yang, L.Q. Guo, et al., Sesamin improves endothelial dysfunction in renovascular hypertensive rats fed with a high-fat, high-sucrose diet, Eur. J. Pharmacol. 620 (2009) 84-89. https://doi.org/10.1016/j.ejphar.2009.08.023.

[230]

X. Kong, G.D. Wang, M.Z. Ma, et al., Sesamin ameliorates advanced glycation end products-induced pancreatic β-cell dysfunction and apoptosis, Nutrients 7 (2015) 4689-4704. https://doi.org/10.3390/nu7064689.

[231]

M. Jeż, W. Wiczkowski, D. Zielińska, et al., The impact of high pressure processing on the phenolic profile, hydrophilic antioxidant and reducing capacity of purée obtained from commercial tomato varieties, Food Chem. 261 (2018) 201-209. https://doi.org/10.1016/j.foodchem.2018.04.060.

[232]

W. Błaszczak, M. Jeż, A. Szwengiel, Polyphenols and inhibitory effects of crude and purified extracts from tomato varieties on the formation of advanced glycation end products and the activity of angiotensin-converting and acetylcholinesterase enzymes, Food Chem. 314 (2020) 126181. https://doi.org/10.1016/j.foodchem.2020.126181.

[233]

S. Chatterjee, Z. Niaz, S. Gautam, et al., Antioxidant activity of some phenolic constituents from green pepper (Piper nigrum L.) and fresh nutmeg mace (Myristica fragrans), Food Chem. 101 (2007) 515-523. https://doi.org/10.1016/j.foodchem.2006.02.008.

[234]

L. C. Favre, G. Rolandelli, N. Mshicileli, et al., Antioxidant and anti-glycation potential of green pepper (Piper nigrum): optimization of β-cyclodextrin-based extraction by response surface methodology, Food Chem. 316 (2020) 126280. https://doi.org/10.1016/j.foodchem.2020.126280.

[235]

L. Dykes, L.W. Rooney, R.D. Waniska, et al., Phenolic compounds and antioxidant activity of sorghum grains of varying genotypes, J. Agric. Food Chem. 53 (2005) 6813-6818. https://doi.org/10.1021/jf050419e.

[236]

J.L. Farrar, D.K. Hartle, J.L. Hargrove, et al., A novel nutraceutical property of select sorghum (Sorghum bicolor) brans: inhibition of protein glycation, Phytother. Res. 22 (2008) 1052-1056. https://doi.org/10.1002/ptr.2431.

[237]

G. Ramadan, M. Nadia, E.A. Abd El-Ghffar, Modulatory effects of black v. green tea aqueous extract on hyperglycaemia, hyperlipidaemia and liver dysfunction in diabetic and obese rat models, Br. J. Nutr. 102 (2009) 1611-1619. https://doi.org/10.1017/S000711450999208X.

[238]

S. Peng, G. Zhang, Influence of Tea polyphenols on the formation of advanced glycation end products (AGEs) in vitro and in vivo, J. Food Nutr. Res. 2 (2014) 524-531. http://pubs.sciepub.com/jfnr/2/8/15.

[239]

J.J. Park, W.Y. Lee, Anti-glycation effects of brown algae extracts and its phenolic compounds, Food Biosci. 41 (2021) 101042. https://doi.org/10.1016/j.fbio.2021.101042.

[240]

P.S. Sri Harsha, M. Mesias, V. Lavelli, et al., Grape skin extracts from winemaking by-products as a source of trapping agents for reactive carbonyl species, J. Sci. Food Agric. 96 (2016) 656-663. https://doi.org/10.1002/jsfa.7137.

[241]

P.S. Sri Harsha, C. Gardana, P. Simonetti, et al., Characterization of phenolics, in vitro reducing capacity and anti-glycation activity of red grape skins recovered from winemaking by-products, Bioresour. Technol. 140 (2013) 263-268. https://doi.org/10.1016/j.biortech.2013.04.092.

[242]

M. Xue, M.O. Weickert, S. Qureshi, et al., Improved glycemic control and vascular function in overweight and obese subjects by glyoxalase 1 inducer formulation, Diabetes 65 (2016) 2282-2294. https://doi.org/10.2337/db16-0153.

[243]

A. Murakami, Dose-dependent functionality and toxicity of green tea polyphenols in experimental rodents, Arch. Biochem. Biophys. 557 (2014) 3-10. https://doi.org/10.1016/j.abb.2014.04.018.

[244]

M. Glei, M. Matuschek, C. Steiner, et al., Initial in vitro toxicity testing of functional foods rich in catechins and anthocyanins in human cells, Toxicol. In Vitro 17 (2003) 723-729. https://doi.org/10.1016/S0887-2333(03)00099-7.

[245]

D. Metodiewa, A.K. Jaiswal, N. Cenas, et al., Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product, Free Radic. Biol. Med. 26 (1999) 107-116. https://doi.org/10.1016/S0891-5849(98)00167-1.

[246]

S.A. Mandel, T. Amit, O. Weinreb, et al., Understanding the broad-spectrum neuroprotective action profile of green tea polyphenols in aging and neurodegenerative diseases, Alzheimers Dis. 25 (2011) 187-208. https://doi.org/10.3233/JAD-2011-101803.

[247]

S.U. Rahman, Y. Li, Y. Huang, et al., Treatment of inflammatory bowel disease via green tea polyphenols: possible application and protective approaches, Inflammopharmacology 26 (2018) 319-330. https://doi.org/10.1007/s10787-018-0462-4.

[248]

Y. Miyata, Y. Shida, T. Hakariya, et al., Anti-cancer effects of green tea polyphenols against prostate cancer, Molecules 24 (2019) 193. https://doi.org/10.3390/molecules24010193.

[249]

T.E. Lopez, H.M. Pham, J. Barbour, et al., The impact of green tea polyphenols on development and reproduction in Drosophila melanogaster, J. Funct. Foods. 20 (2016) 556-566. https://doi.org/10.1016/j.jff.2015.11.002.

[250]

P. Fan, H. Lou, Effects of polyphenols from grape seeds on oxidative damage to cellular DNA, Mol. Cell. Biochem. 267 (2004) 67-74. https://doi.org/10.1023/B:MCBI.0000049366.75461.00.

[251]

V. Ugartondo, M. Mitjans, C. Lozano, et al., Comparative study of the cytotoxicity induced by antioxidant epicatechin conjugates obtained from grape, J. Agric. Food Chem. 54 (2006) 6945-6950. https://doi.org/10.1021/jf061356i.

[252]

L. Ziberna, M. Lunder, S. Moze, et al., Acute cardioprotective and cardiotoxic effects of bilberry anthocyanins in ischemia–reperfusion injury: beyond concentration-dependent antioxidant activity, Cardiovasc. Toxicol. 10 (2010) 283-294. https://doi.org/10.1007/s12012-010-9091-x.

[253]

C.A. Simintiras, R.G. Sturmey, Genistein crosses the bioartificial oviduct and alters secretion composition, Reprod. Toxicol. 71 (2017) 63-70. https://doi.org/10.1016/j.reprotox.2017.04.010.

[254]

L. You, M. Sar, E.J. Bartolucci, et al., Modulation of mammary gland development in prepubertal male rats exposed to genistein and methoxychlor, Toxicol. Sci. 66 (2002) 216-225. https://doi.org/10.1093/toxsci/66.2.216.

[255]

R. Meena, C. Supriya, K.P. Reddy, et al., Altered spermatogenesis, steroidogenesis and suppressed fertility in adult male rats exposed to genistein, a non-steroidal phytoestrogen during embryonic development, Food Chem. Toxicol. 99 (2017) 70-77. https://doi.org/10.1016/j.fct.2016.11.020.

[256]

S. Patel, J. Peretz, Y.X. Pan, et al., Genistein exposure inhibits growth and alters steroidogenesis in adult mouse antral follicles, Toxicol. Appl. Pharmacol. 293 (2016) 53-62. https://doi.org/10.1016/j.taap.2015.12.026.

[257]

S. Harlid, M. Adgent, W.N. Jefferson, et al., Soy formula and epigenetic modifications: analysis of vaginal epithelial cells from infant girls in the IFED study, Environ. Health Perspect. 125 (2017) 447-452. https://doi.org/10.1289/EHP428.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 23 February 2022
Revised: 06 April 2022
Accepted: 28 April 2022
Published: 18 November 2022
Issue date: July 2023

Copyright

© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

Acknowledgements

This review was not supported by any funding body.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return