Journal Home > Volume 12 , Issue 4

The increased global incidence of chronic metabolic diseases, a vital threat to human health and a burden on our healthcare systems, includes a series of clinical metabolic syndromes such as obesity, diabetes, hypertension, and dyslipidemia. One of the well-known probiotic microorganisms, Lactiplantibacillus plantarum plays an important role in promoting human health, including inhibiting the occurrence and development of a variety of chronic metabolic diseases. The present study provides an overview of the preventive and therapeutic effects of L. plantarum on diabetes, obesity, non-alcoholic fatty liver disease, kidney stone disease, and cardiovascular diseases in animal models and human clinical trials. Ingesting L. plantarum demonstrated its ability to reduce inflammatory and oxidative stress levels by regulating the production of cytokines and short-chain fatty acids (SCFAs), the activity of antioxidant enzymes, and the balance of intestinal microbial communities to alleviate the symptoms of chronic metabolic diseases. Furthermore, updated applications and technologies of L. plantarum in food and biopharmaceutical industries are also discussed. Understanding the characteristics and functions of L. plantarum will guide the development of related probiotic products and explore the modulatory benefit of L. plantarum supplementations on the prevention and treatment of multiple chronic metabolic diseases.


menu
Abstract
Full text
Outline
About this article

Modulatory effects of Lactiplantibacillus plantarum on chronic metabolic diseases

Show Author's information Lei Tiana,1Ruixiang Zhaob,1Xinyi XuaZhiwei ZhouaXiaofang XuaDongmei LuoaZhiqiang ZhoucYu LiudAriel KushmaroeRobert S. MarkseAndrás Dinnyésa,f,g,hQun Suna,c( )
Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
Institute for Marine and Antarctic Studies, University of Tasmania, Newnham 7248, Australia
College of Biomass Science and Engineering, Sichuan University, Chengdu 610064, China
Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu 610041, China
Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
BioTalentum Ltd., Gödöllő 2100, Hungary
Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged H-6270, Hungary
Hungarian University of Agriculture and Life Sciences, Institute of Physiology and Animal Nutrition, Department of Physiology and Animal Health, Gödöllő 2100, Hungary

1 These authors contributed equally to this work.Peer review under responsibility of KeAi Communications Co., Ltd.]]>

Abstract

The increased global incidence of chronic metabolic diseases, a vital threat to human health and a burden on our healthcare systems, includes a series of clinical metabolic syndromes such as obesity, diabetes, hypertension, and dyslipidemia. One of the well-known probiotic microorganisms, Lactiplantibacillus plantarum plays an important role in promoting human health, including inhibiting the occurrence and development of a variety of chronic metabolic diseases. The present study provides an overview of the preventive and therapeutic effects of L. plantarum on diabetes, obesity, non-alcoholic fatty liver disease, kidney stone disease, and cardiovascular diseases in animal models and human clinical trials. Ingesting L. plantarum demonstrated its ability to reduce inflammatory and oxidative stress levels by regulating the production of cytokines and short-chain fatty acids (SCFAs), the activity of antioxidant enzymes, and the balance of intestinal microbial communities to alleviate the symptoms of chronic metabolic diseases. Furthermore, updated applications and technologies of L. plantarum in food and biopharmaceutical industries are also discussed. Understanding the characteristics and functions of L. plantarum will guide the development of related probiotic products and explore the modulatory benefit of L. plantarum supplementations on the prevention and treatment of multiple chronic metabolic diseases.

Keywords: Obesity, Diabetes, Cardiovascular diseases, Non-alcoholic fatty liver disease, Lactiplantibacillus plantarum, Kidney stone disease

References(130)

[1]

A.G. Abdelhamid, S.S. El-Masry, N.K. El-Dougdoug, Probiotic Lactobacillus and Bifidobacterium strains possess safety characteristics, antiviral activities and host adherence factors revealed by genome mining, EPMA J. 10(4) (2019) 337-350. https://doi.org/10.1007/s13167-019-00184-z.

[2]

N. Garcia-Gonzalez, N. Battista, R. Prete, et al., Health-promoting role of Lactiplantibacillus plantarum isolated from fermented foods, Microorganisms 9(2) (2021). https://doi.org/10.3390/microorganisms9020349.

[3]

H.X. Chong, N.A.A. Yusoff, Y.Y. Hor, et al., Lactobacillus plantarum DR7 improved upper respiratory tract infections via enhancing immune and inflammatory parameters: a randomized, double-blind, placebo-controlled study, J. Dairy Sci. 102(6) (2019) 4783-4797. https://doi.org/10.3168/jds.2018-16103.

[4]

M. Wang, T. Fu, J. Hao, et al., A recombinant Lactobacillus plantarum strain expressing the spike protein of SARS-CoV-2, Int. J. Biol. Macromol.160 (2020) 736-740. https://doi.org/10.1016/j.ijbiomac.2020.05.239.

[5]

J. Xu, Z. Ren, K. Cao, et al., Boosting vaccine-elicited respiratory mucosal and systemic COVID-19 immunity in mice with the oral Lactobacillus plantarum, Front. Nutr. 8 (2021) 789242. https://doi.org/10.3389/fnut.2021.789242.

[6]

X. Song, Z. Zhao, Y. Zhao, et al., Lactobacillus plantarum DP189 prevents cognitive dysfunction in D-galactose/AlCl3 induced mouse model of Alzheimer's disease via modulating gut microbiota and PI3K/Akt/GSK-3β signaling pathway, Nutr. Neurosci. (2021) 1-13. https://doi.org/10.1080/1028415x.2021.1991556.

[7]

M.M. Mensi, C. Rogantini, M. Marchesi, et al., Lactobacillus plantarum PS128 and other probiotics in children and adolescents with autism spectrum disorder: a real-world experience, Nutrients 13(6) (2021).https://doi.org/10.3390/nu13062036.

[8]

Y.W. Liu, M.T. Liong, Y.C. Tsai, New perspectives of Lactobacillus plantarum as a probiotic: the gut-heart-brain axis, J. Microbiol. 56(9) (2018)601-613. https://doi.org/10.1007/s12275-018-8079-2.

[9]

S.S. Cai, Y. Zhou, B.C. Ye, Reducing the reproductive toxicity activity of Lactiplantibacillus plantarum: a review of mechanisms and prospects, Environ. Sci. Pollut. Res. 28(28) (2021) 36927-36941.https://doi.org/10.1007/s11356-021-14403-6.

[10]

M. Fidanza, P. Panigrahi, T.R. Kollmann, Lactiplantibacillus plantarumnomad and ideal probiotic, Front. Microbiol. 12 (2021) 712236.https://doi.org/10.3389/fmicb.2021.712236.

[11]

GBD 2019 Risk Factors Collaborators, Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019, Lancet 396(10258) (2020) 1223-1249.https://doi.org/10.1016/s0140-6736(20)30752-2.

[12]

M.A. Abdul-Ghani, C.P. Jenkinson, D.K. Richardson, et al., Insulin secretion and action in subjects with impaired fasting glucose and impaired glucose tolerance: results from the Veterans Administration Genetic Epidemiology Study, Diabetes 55(5) (2006) 1430-1435. https://doi.org/10.2337/db05-1200.

[13]

C.Y. Wang, D.L. Neil, P. Home, 2020 vision - an overview of prospects for diabetes management and prevention in the next decade, Diabetes Res. Clin.Pract. 143 (2018) 101-112. https://doi.org/10.1016/j.diabres.2018.06.007.

[14]

F. Yang, J. Wang, H. Zhang, et al., Hypoglycemic effects of space-induced Lactobacillus plantarum SS18-5 on type 2 diabetes in a rat model, J. Food Biochem. 45(9) (2021) e13899. https://doi.org/10.1111/jfbc.13899.

[15]

X. Li, N. Wang, B. Yin, et al., Effects of Lactobacillus plantarum CCFM0236 on hyperglycaemia and insulin resistance in high-fat and streptozotocin-induced type 2 diabetic mice, J. Appl. Microbiol. 121(6)(2016) 1727-1736. https://doi.org/10.1111/jam.13276.

[16]

A. Gulnaz, J. Nadeem, J.H. Han, et al., Lactobacillus sps in reducing the risk of diabetes in high-fat diet-Induced diabetic mice by modulating the gut microbiome and inhibiting key digestive enzymes associated with diabetes, Biology 10(4) (2021). https://doi.org/10.3390/biology10040348.

[17]

L.J. Wu, L. Long, J.Y. Sun, et al., Exploring the antioxidant effect of Lactobacillus plantarum SCS2 on mice with type 2 diabetes, J. Food Biochem. (2021) e13781. https://doi.org/10.1111/jfbc.13781.

[18]

H.S. Youn, J.H. Kim, J.S. Lee, et al., Lactobacillus plantarum reduces lowgrade inflammation and glucose levels in a mouse model of chronic stress and diabetes, Infect. Immun. 89(8) (2021) e0061520. https://doi.org/10.1128/iai.00615-20.

[19]

A.L. Cunningham, J.W. Stephens, D.A. Harris, Gut microbiota influence in type 2 diabetes mellitus (T2DM). Gut Pathog. 13(1) (2021) 50.https://doi.org/10.1186/s13099-021-00446-0.

[20]

T. Kocsis, B. Molnár, D. Németh, et al., Probiotics have beneficial metabolic effects in patients with type 2 diabetes mellitus: a metaanalysis of randomized clinical trials, Sci. Rep. 10(1) (2020) 11787.https://doi.org/10.1038/s41598-020-68440-1.

[21]

N. Larsen, F.K. Vogensen, F.W. van den Berg, et al., Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults, PLoS One 5(2) (2010) e9085. https://doi.org/10.1371/journal.pone.0009085.

[22]

J. Luo, H. Zhang, J. Lu, et al., Antidiabetic effect of an engineered bacterium Lactobacillus plantarum-pMG36e-GLP-1 in monkey model, Synth. Syst. Biotechnol. 6(4) (2021) 272-282. https://doi.org/10.1016/j.synbio.2021.09.009.

[23]

D. Ríos-Covián, P. Ruas-Madiedo, A. Margolles, et al., Intestinal short chain fatty acids and their link with diet and human health, Front. Microbiol. 7(2016) 185. https://doi.org/10.3389/fmicb.2016.00185.

[24]

G. Wang, J. Song, Y. Huang, et al., Lactobacillus plantarum SHY130 isolated from yak yogurt attenuates hyperglycemia in C57BL/6J mice by regulating the enteroinsular axis, Food Funct. 13(2) (2022) 675-687.https://doi.org/10.1039/d1fo02387j.

[25]

Y.S. Lee, D. Lee, G.S. Park, et al., Lactobacillus plantarum HAC01 ameliorates type 2 diabetes in high-fat diet and streptozotocin-induced diabetic mice in association with modulating the gut microbiota, Food Funct.12(14) (2021) 6363-6373. https://doi.org/10.1039/d1fo00698c.

[26]

M.R. Oh, H.Y. Jang, S.Y. Lee, et al., Lactobacillus plantarum HAC01 supplementation improves glycemic control in prediabetic subjects: a randomized, double-blind, placebo-controlled trial, Nutrients 13(7) (2021).https://doi.org/10.3390/nu13072337.

[27]

A.L. Rouxinol-Dias, A.R. Pinto, C. Janeiro, et al., Probiotics for the control of obesity - its effect on weight change. Porto. Biomed. J. 1(1) (2016) 12-24.https://doi.org/10.1016/j.pbj.2016.03.005

[28]

F. Nakamura, Y. Ishida, D. Sawada, et al., Fragmented lactic acid bacterial cells activate peroxisome proliferator-activated receptors and ameliorate dyslipidemia in obese mice, J. Agric. Food Chem. 64(12) (2016) 2549-2559.https://doi.org/10.1021/acs.jafc.5b05827.

[29]

H. Cai, Z. Wen, X. Li, et al., Lactobacillus plantarum FRT10 alleviated high-fat diet-induced obesity in mice through regulating the PPARα signal pathway and gut microbiota, Appl. Microbiol. Biotechnol. 104(13) (2020)5959-5972. https://doi.org/10.1007/s00253-020-10620-0.

[30]

E. Huang, S. Kim, H. Park, et al., Modulation of the gut microbiome and obesity biomarkers by Lactobacillus plantarum KC28 in a diet-Induced obesity murine model, Probiotics Antimicrob. Proteins 13(3) (2021) 677-697. https://doi.org/10.1007/s12602-020-09720-0.

[31]

Y. Gan, M.W. Tang, F. Tan, et al., Anti-obesity effect of Lactobacillus plantarum CQPC01 by modulating lipid metabolism in high-fat dietinduced C57BL/6 mice, J. Food Biochem. 44(12) (2020) e13491.https://doi.org/10.1111/jfbc.13491.

[32]

W.J. Choi, H.J. Dong, H.U. Jeong, et al., Lactobacillus plantarum LMT1-48 exerts anti-obesity effect in high-fat diet-induced obese mice by regulating expression of lipogenic genes, Sci. Rep. 10(1) (2020) 869.https://doi.org/10.1038/s41598-020-57615-5.

[33]

F. Bäckhed, H. Ding, T. Wang, et al., The gut microbiota as an environmental factor that regulates fat storage, Proc. Natl. Acad. Sci. 101(44)(2004) 15718-15723. https://doi.org/10.1073/pnas.0407076101.

[34]

S. Duranti, C. Ferrario, D. van Sinderen, et al., Obesity and microbiota: an example of an intricate relationship, Genes Nutr. 12 (2017) 18.https://doi.org/10.1186/s12263-017-0566-2.

[35]

S. Eaimworawuthikul, P. Thiennimitr, N. Chattipakorn, et al., Diet-induced obesity, gut microbiota and bone, including alveolar bone loss, Arch. Oral Biol. 78 (2017) 65-81. https://doi.org/10.1016/j.archoralbio.2017.02.009.

[36]

S. Park, Y. Ji, H.Y. Jung, et al., Lactobacillus plantarum HAC01 regulates gut microbiota and adipose tissue accumulation in a diet-induced obesity murine model, Appl. Microbiol. Biotechnol. 101(4) (2017) 1605-1614.https://doi.org/10.1007/s00253-016-7953-2.

[37]

A. Hussain, M.H. Kwon, H.K. Kim, et al., Anti-obesity effect of Lactobacillus plantarum LB818 is associated with regulation of gut microbiota in high-fat diet-fed obese mice, J. Med. Food. 23(7) (2020) 750-759. https://doi.org/10.1089/jmf.2019.4627.

[38]

H. In Kim, J.K. Kim, J.Y. Kim, et al., Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 simultaneously alleviate high-fat diet-induced colitis, endotoxemia, liver steatosis, and obesity in mice, Nutr. Res. 67 (2019)78-89. https://doi.org/10.1016/j.nutres.2019.03.008.

[39]

Y. Liu, Y. Chen, B. Liao, et al., Epidemiology of urolithiasis in Asia, J. Urol.5(4) (2018) 205-214. https://doi.org/10.1016/j.ajur.2018.08.007.

[40]

C. Thongprayoon, A.E. Krambeck, A.D. Rule, Determining the true burden of kidney stone disease, Nat. Rev. Nephrol. 16(12) (2020) 736-746.https://doi.org/10.1038/s41581-020-0320-7.

[41]

P. Singh, P.C. Harris, D.J. Sas, et al., The genetics of kidney stone disease and nephrocalcinosis, Nat. Rev. Nephrol. (2021). https://doi.org/10.1038/s41581-021-00513-4.

[42]

G. Tundo, S. Khaleel, V.M. Pais Jr., Gender equivalence in the prevalence of nephrolithiasis among adults younger than 50 years in the United States, J.Urol. 200(6) (2018) 1273-1277. https://doi.org/10.1016/j.juro.2018.07.048.

[43]

L.E. Vaughan, F.T. Enders, J.C. Lieske, et al., Predictors of symptomatic kidney stone recurrence after the first and subsequent episodes, Mayo Clin.Proc. 94(2) (2019) 202-210. https://doi.org/10.1016/j.mayocp.2018.09.016.

[44]

A. Garbens, M.S. Pearle, Causes and prevention of kidney stones: separating myth from fact, BJU Int. 128(6) (2021) 661-666. https://doi.org/10.1111/bju.15532.

[45]

T. Alelign, B. Petros, Kidney stone disease: an update on current concepts, Adv. Meteorol. 2018 (2018) 3068365. https://doi.org/10.1155/2018/3068365.

[46]

Y.T. Liu, P.Y. Yang, Y.W. Yang, et al., The association of nephrolithiasis with metabolic syndrome and its components: a cross-sectional analysis, Ther. Clin.Risk Manage. 13 (2017) 41-48. https://doi.org/10.2147/tcrm.S125480.

[47]

D. Rodríguez, D.E. Sacco, Minimally invasive surgical treatment for kidney stone disease, Adv. Chronic Kidney Dis. 22(4) (2015) 266-272.https://doi.org/10.1053/j.ackd.2015.03.005.

[48]

J.C. Lieske, Probiotics for prevention of urinary stones, Ann. Transl. Med.5(2) (2017) 29. https://doi.org/10.21037/atm.2016.11.86.

[49]

E. Paul, A. Albert, S. Ponnusamy, et al., Designer probiotic Lactobacillus plantarum expressing oxalate decarboxylase developed using group Ⅱ intron degrades intestinal oxalate in hyperoxaluric rats, Microbiol. Res. 215 (2018)65-75. https://doi.org/10.1016/j.micres.2018.06.009.

[50]

P. Sasikumar, S. Gomathi, K. Anbazhagan, et al., Recombinant Lactobacillus plantarum expressing and secreting heterologous oxalate decarboxylase prevents renal calcium oxalate stone deposition in experimental rats, J.Biomed. Sci. 21(1) (2014) 86. https://doi.org/10.1186/s12929-014-0086-y.

[51]

Y. Liu, X. Jin, L. Tian, et al., Lactiplantibacillus plantarum reduced renal calcium oxalate stones by regulating arginine metabolism in gut microbiota, Front. Microbiol. 12 (2021) 743097. https://doi.org/10.3389/fmicb.2021.743097.

[52]

Z. Wei, Y. Cui, L. Tian, et al., Probiotic Lactiplantibacillus plantarum N-1 could prevent ethylene glycol-induced kidney stones by regulating gut microbiota and enhancing intestinal barrier function, FASEB J. 35(11) (2021)e21937. https://doi.org/10.1096/fj.202100887RR.

[53]

L. Tian, Y. Liu, X. X. et al. Lactiplantibacillus plantarum J-15 reduced calcium oxalate kidney stones by regulating intestinal microbiota, metabolism and inflammation in rats, FASEB J. (2022).https://doi.org/10.1096/fj.202101972RR.

[54]

M.H Le, Y.H. Yeo, X Li, et al. 2019 global NAFLD prevalence: a systematic review and meta-analysis, Clin. Gastroenterol. Hepatol. (2021).https://doi.org/10.1016/j.cgh.2021.12.002.

[55]

S. Zelber-Sagi, J. Godos, F. Salomone, Lifestyle changes for the treatment of nonalcoholic fatty liver disease: a review of observational studies and intervention trials, Ther. Adv. Gastroenterol. 9(3) (2016) 392-407.https://doi.org/10.1177/1756283x16638830.

[56]

S. Paul, A.M. Davis, Diagnosis and management of nonalcoholic fatty liver disease, JAMA 320(23) (2018) 2474-2475. https://doi.org/10.1001/jama.2018.17365.

[57]

R. Kelishadi, S. Farajian, M. Mirlohi, Probiotics as a novel treatment for non-alcoholic fatty liver disease; a systematic review on the current evidence, Hepatitis Mon. 13(4) (2013) e7233. https://doi.org/10.5812/hepatmon.7233.

[58]

Z.M. Younossi, A.B. Koenig, D. Abdelatif, et al., Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes, Hepatology 64(1) (2016) 73-84.https://doi.org/10.1002/hep.28431.

[59]

A. Borrelli, P. Bonelli, F.M. Tuccillo, et al., Role of gut microbiota and oxidative stress in the progression of non-alcoholic fatty liver disease to hepatocarcinoma: current and innovative therapeutic approaches, Redox Biol. 15 (2018) 467-479. https://doi.org/10.1016/j.redox.2018.01.009.

[60]

E.J. Park, Y.S. Lee, S.M. Kim, et al., Beneficial effects of Lactobacillus plantarum strains on non-alcoholic fatty liver disease in high fat/high fructose diet-fed rats, Nutrients 12(2) (2020). https://doi.org/10.3390/nu12020542.

[61]

M. Chen, W.L. Guo, Q.Y. Li, et al., The protective mechanism of Lactobacillus plantarum FZU3013 against non-alcoholic fatty liver associated with hyperlipidemia in mice fed a high-fat diet, Food Funct. 11(4)(2020) 3316-3331. https://doi.org/10.1039/c9fo03003d.

[62]

Y. Wang, Y. Zhang, J. Yang, et al., Lactobacillus plantarum MA2 ameliorates methionine and choline-deficient diet induced non-alcoholic fatty liver disease in rats by improving the intestinal microecology and mucosal barrier, Foods 10(12) (2021). https://doi.org/10.3390/foods10123126.

[63]

H. Li, F. Liu, J. Lu, et al., Probiotic mixture of Lactobacillus plantarum strains improves lipid metabolism and gut microbiota structure in high fat diet-fed mice, Front. Microbiol. 11 (2020) 512. https://doi.org/10.3389/fmicb.2020.00512.

[64]

Z. Zhao, C. Wang, L. Zhang, et al., Lactobacillus plantarum NA136 improves the non-alcoholic fatty liver disease by modulating the AMPK/Nrf2 pathway, Appl. Microbiol. Biotechnol. 103(14) (2019) 5843-5850.https://doi.org/10.1007/s00253-019-09703-4.

[65]

Z. Zhao, L. Chen, Y. Zhao, et al., Lactobacillus plantarum NA136 ameliorates nonalcoholic fatty liver disease by modulating gut microbiota, improving intestinal barrier integrity, and attenuating inflammation, Appl.Microbiol. Biotechnol. 104(12) (2020) 5273-5282. https://doi.org/10.1007/s00253-020-10633-9.

[66]

Y. Shao, D. Huo, Q. Peng, et al., Lactobacillus plantarum HNU082-derived improvements in the intestinal microbiome prevent the development of hyperlipidaemia, Food Funct. 8(12) (2017) 4508-4516.https://doi.org/10.1039/c7fo00902j.

[67]

L. Tian, R. Liu, Z. Zhou, et al., Probiotic characteristics of Lactiplantibacillus plantarum N-1 and its cholesterol-lowering effect in hypercholesterolemic rats, Probiotics Antimicrob. Proteins (2022). https://doi.org/10.1007/s12602-021-09886-1.

[68]

D. Yang, W. Lyu, Z. Hu, et al., Probiotic effects of Lactobacillus fermentum ZJUIDS06 and Lactobacillus plantarum ZY08 on hypercholesteremic golden hamsters, Front. Nutr. 8 (2021) 705763. https://doi.org/10.3389/fnut.2021.705763.

[69]

W. Heo, E.S. Lee, H.T. Cho, et al., Lactobacillus plantarum LRCC 5273 isolated from Kimchi ameliorates diet-induced hypercholesterolemia in C57BL/6 mice, Biosci. Biotechnol. Biochem. 82(11) (2018) 1964-1972.https://doi.org/10.1080/09168451.2018.1497939.

[70]

T. Qu, L. Yang, Y. Wang, et al., Reduction of serum cholesterol and its mechanism by Lactobacillus plantarum H6 screened from local fermented food products, Food Funct. 11(2) (2020) 1397-1409. https://doi.org/10.1039/c9fo02478f.

[71]

L.C. Lew, Y.Y. Hor, M.H. Jaafar, et al., Lactobacillus strains alleviated hyperlipidemia and liver steatosis in aging rats via activation of AMPK, Int. J.Mol. Sci. 21(16) (2020). https://doi.org/10.3390/ijms21165872.

[72]

J.J. Song, W.J. Tian, L.Y. Kwok, et al., Effects of microencapsulated Lactobacillus plantarum LIP-1 on the gut microbiota of hyperlipidaemic rats, Br. J. Nutr. 118(7) (2017) 481-492. https://doi.org/10.1017/s0007114517002380.

[73]

Z.Y. Zheng, F.W. Cao, W.J. Wang, et al., Probiotic characteristics of Lactobacillus plantarum E680 and its effect on hypercholesterolemic mice, BMC Microbiol. 20(1) (2020) 239. https://doi.org/10.1186/s12866-020-01922-4.

[74]

K.T. Mills, A. Stefanescu, J. He, The global epidemiology of hypertension, Nat. Rev. Nephrol. 16(4) (2020) 223-237. https://doi.org/10.1038/s41581-019-0244-2.

[75]

B. Vaes, E. Beke, C. Truyers, et al., The correlation between blood pressure and kidney function decline in older people: a registry-based cohort study, BMJ Open 5(6) (2015) e007571. https://doi.org/10.1136/bmjopen-2015-007571.

[76]

D.M. Liu, J. Guo, X.A. Zeng, et al., The probiotic role of Lactobacillus plantarum in reducing risks associated with cardiovascular disease, Int. J.Food. Sci. Tech. 52(1) (2017) 127-136. https://doi.org/10.1111/ijfs.13234.

[77]

T.H. Liu, J. Chiou, T.Y. Tsai, Effects of Lactobacillus plantarum TWK10-fermented soymilk on deoxycorticosterone acetate-salt-induced hypertension and associated dementia in rats, Nutrients 8(5) (2016).https://doi.org/10.3390/nu8050260.

[78]

A. Costabile, I. Buttarazzi, S. Kolida, et al., An in vivo assessment of the cholesterol-lowering efficacy of Lactobacillus plantarum ECGC 13110402 in normal to mildly hypercholesterolaemic adults, PLoS One 12(12) (2017)e0187964. https://doi.org/10.1371/journal.pone.0187964.

[79]

E. Keleszade, S. Kolida, A. Costabile, The cholesterol lowering efficacy of Lactobacillus plantarum ECGC 13110402 in hypercholesterolemic adults: a double-blind, randomized, placebo controlled, pilot human intervention study, J. Funct. Foods. 89 (2022) 104939. https://doi.org/10.1016/j.jff.2022.104939.

[80]

T. Tong, Y.N. Wang, C.M. Zhang, et al., In vitro and in vivo antihypertensive and antioxidant activities of fermented roots of Allium hookeri, Chin. Herb.Med. 13(4) (2021) 541-548. https://doi.org/10.1016/j.chmed.2021.08.003.

[81]

G. Derosa, G. Gaudio, A. D'Angelo, et al., Evaluation in patients with high normal blood pressure of a supplement containing arginine, Lactobacillus plantarum Lp-LDL, coenzime Q10 and vitamin B1: a pilot study, J. Food.Nutr. Res-Slov. 8(6) (2020) 273-278. https://doi.org/10.12691/JFNR-8-6-5.

[82]

L. Chen, Q. Zhang, Z. Ji, et al., Production and fermentation characteristics of angiotensin-I-converting enzyme inhibitory peptides of goat milk fermented by a novel wild Lactobacillus plantarum 69, LWT-Food Sci.Technol. 91 (2018) 532-540. https://doi.org/10.1016/j.lwt.2018.02.002.

[83]

H.C. Chundakkattumalayil, K.T. Raghavan, Biotechnology, Health endorsing potential of Lactobacillus plantarum MBTU-HK1 and MBTUHT of Honeybee gut origin, J. Appl. Biol. Biotech. 9(4) (2021) 6-8.https://doi.org/10.7324/JABB.2021.9408.

[84]

A. Fujita, D. Sarkar, M.I. Genovese, et al., Improving anti-hyperglycemic and anti-hypertensive properties of camu-camu (Myriciaria dubia Mc.Vaugh) using lactic acid bacterial fermentation, Process Biochem. 59 (2017)133-140. https://doi.org/10.1016/j.procbio.2017.05.017.

[85]

F.S. Hussin, S.Y. Chay, M. Zarei, et al., Potentiality of self-cloned Lactobacillus plantarum Taj-Apis362 for enhancing GABA production in yogurt under glucose induction: optimization and its cardiovascular effect on spontaneous hypertensive rats, Foods 9(12) (2020). https://doi.org/10.3390/foods9121826.

[86]

F.A. Saputri, D. Kang, A.S.W. Kusuma, et al., Lactobacillus plantarum IS-10506 probiotic administration increases amlodipine absorption in a rabbit model, J. Int. Med. Res. 46(12) (2018) 5004-5010.https://doi.org/10.1177/0300060518788994.

[87]

T. Toshimitsu, A. Gotou, T. Sashihara, et al., Effects of 12-week ingestion of yogurt containing Lactobacillus plantarum OLL2712 on glucose metabolism and chronic inflammation in prediabetic adults: a randomized placebocontrolled trial, Nutrients 12(2) (2020). https://doi.org/10.3390/nu12020374.

[88]

A. Uchinaka, N. Azuma, H. Mizumoto, et al., Anti-inflammatory effects of heat-killed Lactobacillus plantarum L-137 on cardiac and adipose tissue in rats with metabolic syndrome, Sci. Rep. 8(1) (2018) 8156.https://doi.org/10.1038/s41598-018-26588-x.

[89]

C. Antza, S. Stabouli, V. Kotsis, Gut microbiota in kidney disease and hypertension, Pharmacol. Res. 130 (2018) 198-203. https://doi.org/10.1016/j.phrs.2018.02.028.

[90]

Y. Kang, Y. Cai, Gut microbiota and hypertension: From pathogenesis to new therapeutic strategies, Clin. Res. Hepatol. Gastroenterol. 42(2) (2018)110-117. https://doi.org/10.1016/j.clinre.2017.09.006.

[91]

S.S. Martin, M.J. Blaha, R. Blankstein, et al., Dyslipidemia, coronary artery calcium, and incident atherosclerotic cardiovascular disease: implications for statin therapy from the multi-ethnic study of atherosclerosis, Circulation 129(1) (2014) 77-86. https://doi.org/10.1161/circulationaha.113.003625.

[92]

A. Hassan, A.U. Din, Y. Zhu, et al., Updates in understanding the hypocholesterolemia effect of probiotics on atherosclerosis, Appl. Microbiol.Biotechnol. 103(15) (2019) 5993-6006. https://doi.org/10.1007/s00253-019-09927-4.

[93]

D.P. Richardson, M. Eggersdorfer, Technology, opportunities for product innovation using authorised European Union health claims, Int. J. Food Sci.Technol. 50(1) (2015) 3-12. https://doi.org/10.1111/ijfs.12574.

[94]

T. Qu, L. Yang, Y. Wang, et al., Reduction of serum cholesterol and its mechanism by Lactobacillus plantarum H6 screened from local fermented food products, Food Funct. 11(2) (2020) 1397-1409. https://doi.org/10.1039/c9fo02478f.

[95]

B.C. Hofeld, V.K. Puppala, S. Tyagi, et al., Lactobacillus plantarum 299v probiotic supplementation in men with stable coronary artery disease suppresses systemic inflammation, Sci. Rep. 11(1) (2021) 3972.https://doi.org/10.1038/s41598-021-83252-7.

[96]

M. Malik, T.M. Suboc, S. Tyagi, et al., Lactobacillus plantarum 299v Supplementation improves vascular endothelial function and reduces inflammatory biomarkers in men with stable coronary artery disease, Circ. Res. 123(9) (2018) 1091-1102. https://doi.org/10.1161/circresaha.118.313565.

[97]

E. Hijová, J. Kuzma, L. Strojný, et al., Ability of Lactobacillus plantarum LS/07 to modify intestinal enzymes activity in chronic diseases prevention, Acta Biochim. Pol. 64(1) (2017) 113-116. https://doi.org/10.18388/abp.2016_1308.

[98]

A. Hassan, A.U. Din, Y. Zhu, et al., Anti-atherosclerotic effects of Lactobacillus plantarum ATCC 14917 in ApoE-/- mice through modulation of proinflammatory cytokines and oxidative stress, Appl. Microbiol.Biotechnol. 104(14) (2020) 6337-6350. https://doi.org/10.1007/s00253-020-10693-x.

[99]

L. Qiu, X. Tao, H. Xiong, et al., Lactobacillus plantarum ZDY04 exhibits a strain-specific property of lowering TMAO via the modulation of gut microbiota in mice, Food Funct. 9(8) (2018) 4299-4309.https://doi.org/10.1039/c8fo00349a.

[100]

J. Adler-Nissen, A.L. Demain. Aeration-controlled formation of acetic acid in heterolactic fermentations, J. Ind. Microbiol. 13 (1994) 335-343.https://doi.org/10.1007/bf01577216.

[101]

M.S. Chiş, A. Păucean, S.M. Man, et al., Quinoa sourdough fermented with Lactobacillus plantarum ATCC 8014 designed for gluten-free muffins—a powerful tool to enhance bioactive compounds, Appl. Sci. 10(20) (2020)7140. https://doi.org/10.3390/app10207140.

[102]

D.M. Park, J.H. Bae, M.S. Kim, et al., Suitability of Lactobacillus plantarum SPC-SNU 72-2 as a probiotic starter for sourdough fermentation, J.Microbiol. Biotechnol. 29(11) (2019) 1729-1738. https://doi.org/10.4014/jmb.1907.07039.

[103]

W.Q. Wu, L.L. Wang, J.X. Zhao, et al., Research progress on physiological characteristics and probiotic functions of Lactobacillus plantarum, Food and Fermentation Industries 45(1) (2019) 1-13. https://doi.org/10.13995/j.cnki.11-1802/ts.019602.

[104]

P. Hütt, E. Songisepp, M. Rätsep, et al., Impact of probiotic Lactobacillus plantarum TENSIA in different dairy products on anthropometric and blood biochemical indices of healthy adults, Benefic. Microbes. 6(3) (2015) 233-243. https://doi.org/10.3920/bm2014.0035.

[105]

Y.Y. Liu, S.Y. Zeng, Y.L. Leu, et al., Antihypertensive effect of a combination of uracil and glycerol derived from Lactobacillus plantarum strain TWK10-fermented soy milk, J. Agric. Food Chem. 63(33) (2015)7333-7342. https://doi.org/10.1021/acs.jafc.5b01649.

[106]

A. Abdelazez, A. Heba, Z.T. Zhu, et al., Potential benefits of Lactobacillus plantarum as probiotic and its advantages in human health and industrial applications: a review, Adv. Exp. Med. Biol. (2018).https://doi.org/10.22587/aeb.2018.12.1.4.

[107]

S.S. Behera, R.C. Ray, N. Zdolec, Lactobacillus plantarum with functional properties: An approach to increase safety and shelflife of fermented foods, BioMed Res. Int. 2018 (2018) 9361614.https://doi.org/10.1155/2018/9361614.

[108]

E.A. Nordström, C. Teixeira, C. Montelius, et al., Lactiplantibacillus plantarum 299v (LP299V(®)): three decades of research, Benef. Microbes.12(5) (2021) 441-465. https://doi.org/10.3920/bm2020.0191.

[109]

W. Krasaekoopt, S. Watcharapoka, Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice, LWT-Food Sci. Technol. 57(2) (2014) 761-766.https://doi.org/10.1016/j.lwt.2014.01.037.

[110]

E.S. Rahayu, M. Mariyatun, N.E.P. Manurung, et al., Effect of probiotic Lactobacillus plantarum Dad-13 powder consumption on the gut microbiota and intestinal health of overweight adults, World J. Gastroenterol. 27(1)(2021) 107-128. https://doi.org/10.3748/wjg.v27.i1.107.

[111]
X.Y. Jiang, Effect of live combined Bifidobacterium and Lactobacillus tablets on serum TMAO and TC in patients with atherosclerosis, Hunan Normal university, 2019.
[112]
X.X. Ma, Preparation of Lactobacillus plantarum microcapsules and its application in yogurt, Jilin University, 2020.
[113]

P.F. Xu, H.Q. Wang, X.F. Zheng, et al., Preparation of Bifidobacterium lactis Probio-M8 microcapsules by spray freeze drying technology, Chinese Institute of Food Science and Technology 21(7) (2021) 197-207.https://doi.org/10.16429/j.1009-7848.2021.07.024.

[114]

R.J. Liu, Z. Li, S.N. Mao, et al., Preparation and characterization of Lactobacillus plantarum microcapsules by compounding and multilayer encapsulation, Sci. Technol. Food Ind. 41(5) (2020) 12-16.https://doi.org/10.13386/j.issn1002-0306.2020.05.003.

[115]

S. Guo, H.Q. Wang, P.F. Xu, et al., Preparation of Bifidobacterium lactis Probio-M8 microcapsules by vacuum low-temperature spray drying, Chinese Institute of Food Science and Technology 21(12) (2021) 164-172. https://doi.org/10.16429/j.1009-7848.2021.12.018.

[116]

K.S. Yoha, T. Anukiruthika, W. Anila, et al., 3D printing of encapsulated probiotics: Effect of different post-processing methods on the stability of Lactiplantibacillus plantarum (NCIM 2083) under static in vitro digestion conditions and during storage, LWT-Food Sci. Technol. 146 (2021) 111461.https://doi.org/https://doi.org/10.1016/j.lwt.2021.111461.

[117]

V.L. O'Morain, Y.H. Chan, J.O. Williams, et al., The Lab4P consortium of probiotics attenuates atherosclerosis in LDL receptor deficient mice fed a high fat diet and causes plaque stabilization by inhibiting inflammation and several pro-atherogenic processes, Mol. Nutr. Food Res. 65(17) (2021)e2100214. https://doi.org/10.1002/mnfr.202100214.

[118]

D.R. Michael, A.A. Jack, G. Masetti, et al., A randomised controlled study shows supplementation of overweight and obese adults with Lactobacilli and Bifidobacteria reduces bodyweight and improves well-being, Sci. Rep. 10(1)(2020) 4183. https://doi.org/10.1038/s41598-020-60991-7.

[119]

X. Long, X. Zeng, F. Tan, et al., Lactobacillus plantarum KFY04 prevents obesity in mice through the PPAR pathway and alleviates oxidative damage and inflammation, Food Funct. 11(6) (2020) 5460-5472.https://doi.org/10.1039/d0fo00519c.

[120]

Y. Gan, H. Chen, X.R. Zhou, et al., Regulating effect of Lactobacillus plantarum CQPC03 on lipid metabolism in high-fat diet-induced obesity in mice, J. Food Biochem. 44(11) (2020) e13495. https://doi.org/10.1111/jfbc.13495.

[121]

C. Cao, R. Wu, X. Zhu, et al., Ameliorative effect of Lactobacillus plantarum WW-fermented soy extract on rat fatty liver via the PPAR signaling pathway, J. Funct. Foods 60 (2019) 103439. https://doi.org/10.1016/j.jff.2019.103439.

[122]

V.S. Nallala, K. Jeevaratnam, Hypocholesterolaemic action of Lactobacillus plantarum VJC38 in rats fed a cholesterol-enriched diet, Ann. Microbiol.69(4) (2019) 369-376. https://doi.org/10.1007/s13213-018-1427-y.

[123]

Y. Xia, J. Yu, W. Xu, et al., Purification and characterization of angiotensin-I-converting enzyme inhibitory peptides isolated from whey proteins of milk fermented with Lactobacillus plantarum QS670, J. Dairy Sci. 103(6) (2020)4919-4928. https://doi.org/10.3168/jds.2019-17594.

[124]

B.U. Landry, C.H.M. Kenfack, J.M. Bindzi, et al, Viability and in vivo hypocholesterolemic effect of Lactobacillus plantarum 29V in local honey, J. Adv. Biol. Biotechnol. (2021) 24-33. https://doi.org/10.9734/jabb/2021/v24i230199.

[125]

M. Miraghajani, N. Zaghian, A. Dehkohneh, et al., Probiotic soymilk consumption and renal function among type 2 diabetic patients with nephropathy: a randomized controlled clinical trial, Probiotics Antimicrob.Proteins 11(1) (2019) 124-132. https://doi.org/10.1007/s12602-017-9325-3.

[126]

H. Xu, C. Ma, F. Zhao, et al., Adjunctive treatment with probiotics partially alleviates symptoms and reduces inflammation in patients with irritable bowel syndrome, Eur. J. Nutr. 60(5) (2021) 2553-2565.https://doi.org/10.1007/s00394-020-02437-4.

[127]

L.C. Lew, Y.Y. Hor, N.A.A. Yusoff, et al., Probiotic Lactobacillus plantarum P8 alleviated stress and anxiety while enhancing memory and cognition in stressed adults: a randomized, double-blind, placebo-controlled study, Clin. Nutr. 38(5)(2019) 2053-2064. https://doi.org/10.1016/j.clnu.2018.09.010.

[128]

S. Sun, J. Zhu, Z.G. Chen, et al., Research on the functionality and stability of Lactobacillus plantarum live bacteria tablet products, Sci.Technol. Food Ind. 40(17) (2019) 309-313. https://doi.org/10.13386/j.issn1002-0306.2019.17.051.

[129]
Z.Q. Jiang, Effects of live combined Bifidobacterium and Lactobacillus tablets on intestinal microecology under chronic hypoxia in mice, Qinghai university. 2021.
[130]

U. Axling, G. Önning, T. Martinsson Niskanen, et al., The effect of Lactiplantibacillus plantarum 299v together with a low dose of iron on iron status in healthy pregnant women: a randomized clinical trial, Acta Obstet.Gynecol. Scand. 100(9) (2021) 1602-1610. https://doi.org/10.1111/aogs.14153.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 04 March 2022
Revised: 21 April 2022
Accepted: 23 May 2022
Published: 18 November 2022
Issue date: July 2023

Copyright

© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Projects (2019YFE0103800), Sichuan Science and Technology Program (2021ZHFP0045, 2021YFN0092), International Research and Development Program of Sichuan (2019YFH0113, 2021YFH0060, 2021YFH0072), Chinese Hungarian Bilateral Project (2018-2.1.14-TÉT-CN-2018-00011, Chinese No. 8-4), and Food Fermentation Technology Research Team of Luzhou Vocational and Technical College (2021YJTD02).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return