Journal Home > Volume 12 , Issue 4

Accumulating evidence suggests that the gut microbiota plays an important role in the pathogenesis of inflammatory bowel disease (IBD). Carnosic acid (CA) is a major antioxidant component of rosemary and sage. Herein, we investigated the protective effects of dietary CA on dextran sodium sulfate (DSS)-induced colitis mouse model with an emphasis on its impact on the composition and metabolic function of gut microbiota. We found that CA effectively attenuated DSS-stimulated colitis in mice, as evidenced by reduced disease activity index (DAI), and systemic and colonic inflammation. Additionally, CA restored microbial diversity and improved the composition of gut microbiota in DSS-treated mice. Moreover, Spearman's correlation coefficient showed a significant correlation between the fecal metabolites and the gut microbiota species. Changes in gut microbiota and the correlated metabolites might partially explain CA's anti-inflammatory effects against colitis. Future clinical trials are needed to determine the therapeutic effects and mechanisms of CA on IBD in humans.


menu
Abstract
Full text
Outline
About this article

The protective effect of carnosic acid on dextran sulfate sodium-induced colitis based on metabolomics and gut microbiota analysis

Show Author's information Changhui DuaZhenjie LiaJing ZhangaNi YinaLirong TangaJie LiaJingyin SunaXiaoqing YuaWei ChenbHang XiaocXian Wud( )Xuexiang Chena( )
School of Public Health, Guangzhou Medical University, Guangzhou 510642, China
Department of Information Systems and Analytics, Miami University, Oxford 45056, USA
Department of Food Science, University of Massachusetts, Amherst 01003, USA
Department of Kinesiology, Nutrition, and Health, Miami University, Oxford 45056, USA

Peer review under responsibility of KeAi Communications Co., Ltd.

Abstract

Accumulating evidence suggests that the gut microbiota plays an important role in the pathogenesis of inflammatory bowel disease (IBD). Carnosic acid (CA) is a major antioxidant component of rosemary and sage. Herein, we investigated the protective effects of dietary CA on dextran sodium sulfate (DSS)-induced colitis mouse model with an emphasis on its impact on the composition and metabolic function of gut microbiota. We found that CA effectively attenuated DSS-stimulated colitis in mice, as evidenced by reduced disease activity index (DAI), and systemic and colonic inflammation. Additionally, CA restored microbial diversity and improved the composition of gut microbiota in DSS-treated mice. Moreover, Spearman's correlation coefficient showed a significant correlation between the fecal metabolites and the gut microbiota species. Changes in gut microbiota and the correlated metabolites might partially explain CA's anti-inflammatory effects against colitis. Future clinical trials are needed to determine the therapeutic effects and mechanisms of CA on IBD in humans.

Keywords: Gut microbiota, Inflammatory bowel diseases, Metabolites, Colitis, Carnosic acid

References(74)

[1]

T. Sairenji, K.L. Collins, D.V. Evans, An update on inflammatory bowel disease, Prim. Care. 44 (4) (2017) 673-692. https://doi.org/10.1016/j.pop.2017.07.010.

[2]

W. Han, F. Xiang, Q. Liu, et al., Research progress of myeloid suppressor cells in tumor microenvironment, Immunol. J 33 (8) (2017) 729-732. https://doi.org/10.1016/j.ijbiomac.2019.09.148.

[3]

M. Yang, X.H. Qian, D.H. Zhao, et al., Effects of Astragalus polysaccharide on the erythroid lineage and microarray analysis in K562 cells, J. Ethnopharmacol 127 (2) (2010) 242-250. https://doi.org/10.1016/j.jep.2009.11.013.

[4]

K. Matsuoka, T. Kanai, The gut microbiota and inflammatory bowel disease, Semin. Immunopathol. 37 (1) (2015) 47-55. https://doi.org/10.1007/s00281-014-0454-4.

[5]

D.N. Frank, A.L. St Amand, R.A. Feldman, et al., Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases, Proc. Natl. Acad. Sci. U.S. A 104 (34) (2007) 13780-13785. https://doi.org/10.1073/pnas.0706625104.

[6]

A. Andoh, H. Imaeda, T. Aomatsu, et al., Comparison of the fecal microbiota profiles between ulcerative colitis and Crohn's disease using terminal restriction fragment length polymorphism analysis, J. Gastroenterol. 46 (4) (2011) 479-486. https://doi.org/10.1007/S00535-010-0368-4/TABLES/3.

[7]

A.W. Walker, J.D. Sanderson, C. Churcher, et al., High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease, BMC Microbiol 11 (1) (2011) 7. https://doi.org/10.1186/1471-2180-11-7.

[8]

J. Stephani, K. Radulovic, J.H. Niess, Gut microbiota, probiotics and inflammatory bowel disease, Arch. Immunol. Ther. Exp. 59 (3) (2011) 161-177. https://doi.org/10.1007/s00005-011-0122-5.

[9]

A.M. Berg, C.P. Kelly, F.A. Farraye, Clostridium difficile infection in the inflammatory bowel disease patient, Inflamm. Bowel Dis. 19 (1) (2013) 194-204. https://doi.org/10.1002/ibd.22964.

[10]

V. Iebba, M. Nicoletti, S. Schippa, Gut microbiota and the immune system: an intimate partnership in health and disease, Int. J. Immunopathol. Pharmacol. 25 (4) (2012) 823-833. https://doi.org/10.1177/039463201202500401.

[11]

L. Jostins, S. Ripke, R.K. Weersma, Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease, Nature 491 (7422) (2012) 119-124. https://doi.org/10.1038/nature11582.

[12]

W. Zhang, P. Xue, C. Jiang, et al., Non-targeted metabolomics study of intestinal contents in neonatal rats with necrotizing enterocolitis, Chinese J. Neonatol 2 (2020) 137-143. https://doi.org/10.3389/fmicb.2018.00963.

[13]

M.V. Novotny, H.A. Soini, Y. Mechref, Biochemical individuality reflected in chromatographic, electrophoretic and mass-spectrometric profiles, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 866 (1/2) (2008) 26-47. https://doi.org/10.1016/j.jchromb.2007.10.007.

[14]

S.M. Petiwala, J.J. Johnson, Diterpenes from rosemary (Rosmarinus officinalis): defining their potential for anti-cancer activity, Cancer Lett 367 (2) (2015) 93-102. https://doi.org/10.1016/j.canlet.2015.07.005.

[15]
Y.I.N. Yan, Z.W. Zhou, Physiological functions of rosemary and its application in food 35 (22) (2014) 364-370. https://doi.org/10.13386/j.issn1002-0306.2014.22.072.
DOI
[16]

D.W. Li, L.W. Bi, Z.D. Zhao, Research progress on extraction and purification of carsonic acid, Chem. Ind. For. Prod. 30 (5) (2010) 122-126.

[17]

Z. Panpan, W. Hao, Research progress on chemical constituents and biological activities of diterpenoids from rosemary, Strait Pharm. J. 32 (11) (2020) 37-41.

[18]

W.A. Bernardes, R. Lucarini, M.G. Tozatti, et al., Antimicrobial activity of Rosmarinus officinalis against oral pathogens: relevance of carnosic acid and carnosol, Chem. Biodivers. 7 (7) (2010) 1835-1840. https://doi.org/10.1002/cbdv.200900301.

[19]

G. Yuan, P. Li, H. Yang, Anti-MRSA activity of carnosic acid in rosemary, Chinese J. Mod. Appl. Pharm 29 (7) (2012) 571-574. https://doi.org/10.13748/j.cnki.issn1007-7693.2012.07.014.

[20]

J. Duggal, J.S. Harrison, G.P. Studzinski, et al., Involvement of microRNA181a in differentiation and cell cycle arrest induced by a plant-derived antioxidant carnosic acid and vitamin D analog doxercalciferol in human leukemia cells, MicroRNA E 1 (1) (2012) 26-33. https://doi.org/10.2174/2211536611201010026

[21]

C. Theoduloz, M.W. Pertino, J.A. Rodríguez, et al., Gastroprotective effect and cytotoxicity of carnosic acid derivatives, Planta Med 77 (9) (2011) 882-887. https://doi.org/10.1055/s-0030-1250648.

[22]

X. Lin, D. Wang, Protective role of carnosic acid against liver injury, Hepatol. Res. 46 (6) (2016) 607. https://doi.org/10.1111/hepr.12589.

[23]

Y.J. Kim, J.S. Kim, Y.R. Seo, et al., Carnosic acid suppresses colon tumor formation in association with antiadipogenic activity, Mol. Nutr. Food Res. 58 (12) (2014) 2274-2285. https://doi.org/10.1002/mnfr.201400293.

[24]

N. Yang, Z. Xia, N. Shao, et al., Carnosic acid prevents dextran sulfate sodium-induced acute colitis associated with the regulation of the Keap1/Nrf2 pathway, Sci. Rep 7 (1) (2017) 1-12. https://doi.org/10.1038/s41598-017-11408-5.

[25]

J.P. Veenstra, B. Vemu, R. Tocmo, et al., Pharmacokinetic analysis of carnosic acid and carnosol in standardized rosemary extract and the effect on the disease activity index of dss-induced colitis, Nutrients 13 (3) (2021) 1-16. https://doi.org/10.3390/nu13030773.

[26]

J.J. Kim, M.S. Shajib, M.M. Manocha, et al., Investigating intestinal inflammation in DSS-induced model of IBD, J. Vis. Exp. 60 (2012) 3678. https://doi.org/10.3791/3678.

[27]

L. Wang, L. Tang, Y. Feng, et al., A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8+ T cells in mice, Gut 69 (11) (2020) 1988-1997. https://doi.org/10.1136/gutjnl-2019-320105.

[28]

M.L. Mei, Z. Yan, D. Duangthip, et al., Effect of silver diamine fluoride on plaque microbiome in children, J. Dent. 102 (2020) 103479. https://doi.org/10.1016/j.jdent.2020.103479.

[29]

P. Li, M. Wu, W. Xiong, et al., Saikosaponin-d ameliorates dextran sulfate sodium-induced colitis by suppressing NF-κB activation and modulating the gut microbiota in mice, Int. Immunopharmacol. 81 (2020) 106288. https://doi.org/10.1016/j.intimp.2020.106288.

[30]

Y. Hou, W. Wei, X. Guan, et al., A diet-microbial metabolism feedforward loop modulates intestinal stem cell renewal in the stressed gut, Nat. Commun. 12 (1) (2021) 1-15. https://doi.org/10.1038/s41467-020-20673-4.

[31]

X. Liao, L. Song, B. Zeng, et al., Alteration of gut microbiota induced by DPP-4i treatment improves glucose homeostasis, EBioMedicine 44 (2019) 665-674. https://doi.org/10.1016/j.ebiom.2019.03.057.

[32]

Q.L. Wang, H. Li, X.X. Li, et al., Acute and 30-day oral toxicity studies of administered carnosic acid, Food Chem. Toxicol. 50 (12) (2012) 4348-4355. https://doi.org/10.1016/j.fct.2012.08.057.

[33]

A. Nair, S. Jacob, A simple practice guide for dose conversion between animals and human, J. Basic Clin. Pharm. 7 (2) (2016) 27. https://doi.org/10.4103/0976-0105.177703.

[34]

S.L. Britto, M. Krishna, R. Kellermayer, Weight loss is a sufficient and economical single outcome measure of murine dextran sulfate sodium colitis, FASEB BioAdv 1 (8) (2019) 493-497. https://doi.org/10.1096/fba.2019-00035.

[35]

L. Solomon, S. Mansor, P. Mallon, et al., The dextran sulphate sodium (DSS) model of colitis: an overview, Comp. Clin. Path. 19 (3) (2010) 235-239. https://doi.org/10.1007/s00580-010-0979-4.

[36]

X. Wu, M. Song, Z. Gao, et al., Nobiletin and its colonic metabolites suppress colitis-associated colon carcinogenesis by down-regulating iNOS, inducing antioxidative enzymes and arresting cell cycle progression, J. Nutr. Biochem. 42 (2017) 17-25. https://doi.org/10.1016/j.jnutbio.2016.12.020.

[37]

A.P.B. Da Silva, R.P. Ellen, E.S. Sørensen, et al., Osteopontin attenuation of dextran sulfate sodium-induced colitis in mice, Lab. Investig. 89 (10) (2009) 1169-1181. https://doi.org/10.1038/labinvest.2009.80.

[38]

S.V. Lynch, O. Pedersen, The human intestinal microbiome in health and disease, N. Engl. J. Med. 375 (24) (2016) 2369-2379. https://doi.org/10.1056/nejmra1600266.

[39]

A. Sun, G. Ren, C. Deng, et al., Effects and mechanisms of vitexin against ulcerative colitis in mice, Chinese Pharmacol. Bull 30 (12) (2014) 1677-1681. https://doi.org/10.3969/j.issn.1001-1978.2014.12.012.

[40]

A. Poullis, R. Foster, A. Shetty, et al., Bowel inflammation as measured by fecal calprotectin: a link between lifestyle factors and colorectal cancer risk, Cancer Epidemiol. Biomarkers Prev 13 (2) (2004) 279-284. https://doi.org/10.1158/1055-9965.EPI-03-0160.

[41]

X. Zhang, L. Wei, J. Wang, et al., Suppression colitis and colitis-associated colon cancer by anti-S100a9 antibody in mice, Front. Immunol. 8 (2017) 1774. https://doi.org/10.3389/fimmu.2017.01774.

[42]

A.R. Bourgonje, J.Z.H. von Martels, R.Y. Gabriëls, et al., A combined set of four serum inflammatory biomarkers reliably predicts endoscopic disease activity in inflammatory bowel disease, Front. Med. 6 (2019) 251. https://doi.org/10.3389/fmed.2019.00251.

[43]

M. Tong, X. Li, L.W. Parfrey, et al., A modular organization of the human intestinal mucosal microbiota and its association with inflammatory bowel disease, PLoS One 8 (11) (2013) 1-14. https://doi.org/10.1371/journal.pone.0080702.

[44]

C. Colquhoun, M. Duncan, G. Grant, Inflammatory bowel diseases: host-microbial-environmental interactions in dysbiosis, Diseases 8 (2) (2020) 13. https://doi.org/10.3390/diseases8020013.

[45]
Y. Jing, A. Li, Z. Liu, et al., Metabolism of Codonopsis pilosula saponins by coexisting polysaccharides alleviates gut microbial dysbiosis with acute colitis mice, BioMed Research International 2018 (2018).
DOI
[46]

L. Shang, H. Liu, H. Yu, et al., Core altered microorganisms in colitis mouse model: a comprehensive time-point and fecal microbiota transplantation analysis, Antibiotics 10 (6) (2021). https://doi.org/10.3390/antibiotics10060643.

[47]

A. Nishida, R. Inoue, O. Inatomi, et al., Gut microbiota in the pathogenesis of inflammatory bowel disease, Clin. J. Gastroenterol. 11 (1) (2018) 1-10. https://doi.org/10.1007/s12328-017-0813-5.

[48]

C. Yan, Z. Yawei, L. Xiao, et al., Effects of intestinal beneficial bacteria and metabolites on intestinal tract and human body, Biotechnol. Bus 1 (2017) 91-94. https://doi.org/10.3969/j.issn.1674-0319.2017.01.014.

[49]

L. Hu, L. Jin, D. Xia, et al., Nitrate ameliorates dextran sodium sulfate-induced colitis by regulating the homeostasis of the intestinal microbiota, Free Radic. Biol. Med. 152 (2020) 609-621. https://doi.org/10.1016/j.freeradbiomed.2019.12.002.

[50]

P. Rangan, I. Choi, M. Wei, et al., Fasting-mimicking diet modulates microbiota and promotes intestinal regeneration to reduce inflammatory bowel disease pathology, Cell Rep 26 (10) (2019) 2704-2719. https://doi.org/10.1016/J.CELREP.2019.02.019.

[51]

H. Fan, J. Du, X. Liu, et al., Effects of pentasa-combined probiotics on the microflora structure and prognosis of patients with inflammatory bowel disease, Turkish J. Gastroenterol. 30 (8) (2019) 680-685. https://doi.org/10.5152/tjg.2019.18426.

[52]

J.K. Silva-Maia, Â. G. Batista, C. Ba, et al., Aqueous extract of Brazilian berry (Myrciaria and modulates Lactobacillus and Bifidobacterium in rats with induced-colitis, Nutrients 11 (11) (2019) 2776. https://doi.org/10.3390/nu11112776.

[53]

H. Wang, C. Zhou, J. Huang, et al., The potential therapeutic role of Lactobacillus reuteri for treatment of inflammatory bowel disease, Am. J. Transl. Res. 12 (5) (2020) 1569-1583.

[54]

N. Segata, J. Izard, L. Waldron, et al., Metagenomic biomarker discovery and explanation, Genome Biol 12 (6) (2011) R60. https://doi.org/10.1186/gb-2011-12-6-r60.

[55]

K.L. Glassner, B.P. Abraham, E.M.M. Quigley, The microbiome and inflammatory bowel disease, J. Allergy Clin. Immunol. 145 (1) (2020) 16-27. https://doi.org/10.1016/j.jaci.2019.11.003.

[56]

J. Liang, S.M. Sha, K.C. Wu, Role of the intestinal microbiota and fecal transplantation in inflammatory bowel diseases, J. Dig. Dis. 15 (12) (2014) 641-646. https://doi.org/10.1111/1751-2980.12211.

[57]

W. Li, Y. Sun, L. Dai, et al., Ecological and network analyses identify four microbial species with potential significance for the diagnosis/treatment of ulcerative colitis (UC), BMC Microbiol 21 (1) (2021) 1-12. https://doi.org/10.1186/s12866-021-02201-6.

[58]

H. Xu, H. Huang, Y. Liu, et al., Selection strategy of dextran sulfate sodium-induced acute or chronic colitis mouse models based on gut microbial profile, BMC Microbiol 21 (1) (2021) 1-14. https://doi.org/10.1186/s12866-021-02342-8.

[59]

R. Pittayanon, J.T. Lau, G.I. Leontiadis, et al., Differences in gut microbiota in patients with vs without inflammatory bowel diseases: a systematic review, gastroenterology 158 (4) (2020) 930-946. https://doi.org/10.1053/j.gastro.2019.11.294.

[60]

W. Yang, D. Ren, Y. Zhao, et al., Fuzhuan brick tea polysaccharide improved ulcerative colitis in association with gut microbiota-derived tryptophan metabolism, J. Agric. Food Chem. 69 (30) (2021) 8448-8459. https://doi.org/10.1021/acs.jafc.1c02774.

[61]

J. Liu, Y. Liu, Y. Wang, et al., The integration of GC-MS and LC-MS to assay the metabolomics profiling in Panax ginseng and Panax quinquefolius reveals a tissue- and species-specific connectivity of primary metabolites and ginsenosides accumulation, J. Pharm. Biomed. Anal. 135 (2017) 176-185. https://doi.org/10.1016/j.jpba.2016.12.026.

[62]

H. Wu, Y. Chen, Q. Li, et al., Intervention effect of Qi-Yu-San-Long Decoction on Lewis lung carcinoma in C57BL/6 mice: Insights from UPLC-QTOF/MS-based metabolic profiling, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1102/1103 (2018) 23-33. https://doi.org/10.1016/j.jchromb.2018.10.013.

[63]

K.K. Szumlinski, D.L. Thompson, R.M. Renton, et al., Enduring dysregulation of nucleus accumbens catecholamine and glutamate transmission by developmental exposure to phenylpropanolamine, Brain Res 2020 (1748) 147098. https://doi.org/10.1016/j.brainres.2020.147098.

[64]

J. Boccard, D.N. Rutledge, A consensus orthogonal partial least squares discriminant analysis (OPLS-DA) strategy for multiblock Omics data fusion, Anal. Chim. Acta. 769 (2013) 30-39. https://doi.org/10.1016/j.aca.2013.01.022.

[65]

G. Wu, Y. Fang, S. Yang, et al., Glutathione metabolism and its implications for health, J. Nutr. 134 (3) (2004) 489-492. https://doi.org/10.1093/jn/134.3.489.

[66]

Z. Hong, M. Piao, Effect of quercetin monoglycosides on oxidative stress and gut microbiota diversity in mice with dextran sodium sulphate-induced colitis, Biomed Res. Int 2018 (2018). https://doi.org/10.1155/2018/8343052.

[67]

N. Yang, Z. Xia, N. Shao, et al., Carnosic acid prevents dextran sulfate sodium-induced acute colitis associated with the regulation of the Keap1/Nrf2 pathway, Sci. Rep. 7 (1) (2017) 11036. https://doi.org/10.1038/s41598-017-11408-5.

[68]

X. Li, Z.H. Zhang, H.M. Zabed, et al., An insight into the roles of dietary tryptophan and its metabolites in intestinal inflammation and nflammatory bowel disease, Mol. Nutr. Food Res. 65 (5) (2021) 1-16. https://doi.org/10.1002/mnfr.202000461.

[69]

E.A. Scoville, M.M. Allaman, C.T. Brown, et al., Alterations in lipid, amino acid, and energy metabolism distinguish Crohn's disease from ulcerative colitis and control subjects by serum metabolomic profiling, Metabolomics 14 (1) (2018) 1-20. https://doi.org/10.1007/s11306-017-1311-y.

[70]

Z. Wang, D. Koonen, M. Hofker, et al., Gut microbiome and lipid metabolism: from associations to mechanisms, Curr. Opin. Lipidol 27 (3) (2016) 216-224. https://doi.org/10.1097/MOL.0000000000000308.

[71]

J.R. Marchesi, D.H. Adams, F. Fava, et al., The gut microbiota and host health: a new clinical frontier, Gut 65 (2) (2016) 330-339. https://doi.org/10.1136/gutjnl-2015-309990.

[72]

S. Iwatani, H. Iijima, Y. Otake, et al., Novel mass spectrometry-based comprehensive lipidomic analysis of plasma from patients with inflammatory bowel disease, J. Gastroenterol. Hepatol 35 (8) (2020) 1355-1364. https://doi.org/10.1111/jgh.15067.

[73]

V. Cruzat, M.M. Rogero, K.N. Keane, et al., Glutamine: metabolism and immune function, supplementation and clinical translation, Nutrients 10 (11) (2018) 1-31. https://doi.org/10.3390/nu10111564.

[74]

M. Salaga, A. Binienda, F. Piscitelli, et al., Systemic administration of serotonin exacerbates abdominal pain and colitis via interaction with the endocannabinoid system, Biochem. Pharmacol. 161 (2019) 37-51. https://doi.org/10.1016/j.bcp.2019.01.001.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 13 February 2022
Revised: 03 April 2022
Accepted: 21 April 2022
Published: 18 November 2022
Issue date: July 2023

Copyright

© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

Acknowledgements

Acknowledgment

This study was supported by Natural Science Foundation of Guangdong basic and applied basic research foundation (2021A1515010965), General project of Basic and applied basic Research in Guangzhou (202102080241), Laboratory opening project of Guangzhou Medical University (PX-1020423), Natural Science Foundation of Guangdong basic and applied basic research foundation ([2018]105), Guangdong Provincial Department of Education (S202010570042) and Communist Youth League Committee of Guangzhou Medical University (2019A060).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return