Journal Home > Volume 12 , Issue 3

This review attempts to delineate the effects and roles of fermented foods on allergic responses (AR), specifically from milk, plant, and meat sources. Evidence for AR alleviation and aggravation were noted for many different fermented food groups. Positive outcomes on AR through fermented foods could be linked to microbial hydrolysis of food allergens, improvement in gut microbiota robustness, and modulation of the immune system that promotes a balance between T helper 1 (Th1) and Th2 cells. Studies on plant-based, non-protein rich fermented foods tend to show more favourable results compared to those on meat-based or protein-rich group. The usage of specific and known starter cultures are helpful in alleviating AR, as in the case for many yogurt, Kefir or Dahi products. Sufficient fermentation time was also deemed important, exemplified in studies that showed inefficient AR reduction through consumption of fresh cheese. However, formation of new allergens through fermentation of certain meat-based foods, or by using specific fermenting microbes (e.g. Penicillium sp.), is possible. Thus, combination of starter cultures and food substrates must be considered in preventing or eliminating AR from intake of these foods. This review may aid consumers to make informed decision during the consumption of fermented food.


menu
Abstract
Full text
Outline
About this article

Roles of fermented plant-, dairy- and meat-based foods in the modulation of allergic responses

Show Author's information Muhamad Hafiz Abd Rahima( )Nur Hazlin Hazrin-ChongbHanis Hazeera HarithcWan Abd Al Qadr Imad Wan-MohtardRashidah Sukora,e
Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Abstract

This review attempts to delineate the effects and roles of fermented foods on allergic responses (AR), specifically from milk, plant, and meat sources. Evidence for AR alleviation and aggravation were noted for many different fermented food groups. Positive outcomes on AR through fermented foods could be linked to microbial hydrolysis of food allergens, improvement in gut microbiota robustness, and modulation of the immune system that promotes a balance between T helper 1 (Th1) and Th2 cells. Studies on plant-based, non-protein rich fermented foods tend to show more favourable results compared to those on meat-based or protein-rich group. The usage of specific and known starter cultures are helpful in alleviating AR, as in the case for many yogurt, Kefir or Dahi products. Sufficient fermentation time was also deemed important, exemplified in studies that showed inefficient AR reduction through consumption of fresh cheese. However, formation of new allergens through fermentation of certain meat-based foods, or by using specific fermenting microbes (e.g. Penicillium sp.), is possible. Thus, combination of starter cultures and food substrates must be considered in preventing or eliminating AR from intake of these foods. This review may aid consumers to make informed decision during the consumption of fermented food.

Keywords: Allergy, Fermented food, Milk-based allergens, Plant-based allergens, Animal-based allergens

References(132)

[1]

J.P. Tamang, D.H. Shin, S.J. Jung, et al., Functional properties of microorganisms in fermented foods, Front. Microbiol. 7 (2016) 578. https://doi.org/10.3389/fmicb.2016.00578.

[2]

C. Voidarou, Μ . Antoniadou, G. Rozos, et al., Fermentative foods: microbiology, biochemistry, potential human health benefits and public health issues, Foods 10 (2021) 69. https://doi.org/10.3390/foods10010069.

[3]

R. Jayabalan, R.V. Malbaša, E.S. Lončar, et al., A review on kombucha tea: microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus, Compr. Rev. Food Sci. Food Saf. 13 (2014) 538-550. https://doi.org/10.1111/1541-4337.12073.

[4]

S.A. Villarreal-Soto, S. Beaufort, J. Bouajila, et al., Understanding kombucha tea fermentation: a review, J. Food Sci. 83 (2018) 580-588. https://doi.org/10.1111/1750-3841.14068.

[5]

M.L. Marco, D. Heeney, S. Binda, et al., Health benefits of fermented foods: microbiota and beyond, Curr. Opin. Biotechnol. 44 (2017) 94-102. https://doi.org/10.1016/j.copbio.2016.11.010.

[6]

N. Şanlier, B.B. Gökcen, A.C. Sezgin, Health benefits of fermented foods, Crit. Rev. Food Sci. Nutr. 59 (2019) 506-527. https://doi.org/10.1080/10408398.2017.1383355.

[7]

B.S. Sivamaruthi, P. Kesika, C. Chaiyasut, Thai fermented foods as a versatile source of bioactive microorganisms: a comprehensive review, Sci. Pharm. 86 (2018) 37. https://doi.org/10.3390/scipharm86030037.

[8]

J.F. Cryan, K.J. O’Riordan, C.S.M. Cowan, et al., The microbiota-gutbrain axis, Physiol. Rev. 99 (2019) 1877-2013. https://doi.org/10.1152/physrev.00018.2018.

[9]

P. Hemarajata, J. Versalovic,Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation, Therap. Adv. Gastroenterol. 6 (2012) 39-51. https://doi.org/10.1177/1756283X12459294.

[10]

P. Strandwitz, Neurotransmitter modulation by the gut microbiota, Brain Res. 1693 (2018) 128-133. https://doi.org/10.1016/j.brainres.2018.03.015.

[11]

V. Bali, P.S. Panesar, M.B. Bera, et al., Fructo-oligosaccharides: production, purification and potential applications, Crit. Rev. Food Sci. Nutr. 55 (2015) 1475-1490. https://doi.org/10.1080/10408398.2012.694084.

[12]

M.H. Abd Rahim, H. Hasan, A. Montoya, et al., Lovastatin and (+)-geodin production by Aspergillus terreus from crude glycerol, Eng. Life Sci. 15 (2015) 220-228. https://doi.org/10.1002/elsc.201400140.

[13]

F. Watanabe, Y. Yabuta, T. Bito, et al., Vitamin B12-containing plant food sources for vegetarians, Nutrients 6 (2014) 1861-1873. https://doi.org/10.3390/nu6051861.

[14]

M.L. Cross, L.M. Stevenson, H.S. Gill, Anti-allergy properties of fermented foods: an important immunoregulatory mechanism of lactic acid bacteria?, Int. Immunopharmacol. 1 (2001) 891-901. https://doi.org/10.1016/S1567-5769(01)00025-X.

[15]

S. Parvez, K.A. Malik, S. Ah Kang, et al., Probiotics and their fermented food products are beneficial for health, J. Appl. Microbiol. 100 (2006) 1171- 1185. https://doi.org/10.1111/j.1365-2672.2006.02963.x.

[16]

S.K. Sathe, C.Q. Liu, V.D. Zaffran, Food allergy, Annu. Rev. Food Sci. T. 7(1) (2016) 191-220. http://doi.org/10.1146/annurev-food-041715-033308.

[17]

B. Sánchez, S. Delgado, A. Blanco-Míguez, et al., Probiotics, gut microbiota, and their influence on host health and disease, Mol. Nutr. Food Res. 61 (2017) 1600240. https://doi.org/10.1002/mnfr.201600240.

[18]

K.C.M. Verhoeckx, Y.M. Vissers, J.L. Baumert, et al., Food processing and allergenicity, Food Chem. Toxicol. 80 (2015) 223-240. https://doi.org/10.1016/j.fct.2015.03.005.

[19]

U.C. Steiner, L. Kölliker, C. Weber-Chrysochoou, et al., Food as a trigger for abdominal angioedema attacks in patients with hereditary angioedema, Orphanet J. Rare Dis. 13 (2018) 90. https://doi.org/10.1186/s13023-018-0832-4.

[20]

B.J.M. van de Heijning, A. Berton, H. Bouritius, et al., GI symptoms in infants are a potential target for fermented infant milk formulae: a review, Nutrients 6 (2014) 3942-3967. https://doi.org/10.3390/nu6093942.

[21]

V. Saliganti, R. Kapila, R. Sharma, et al., Feeding probiotic Lactobacillus rhamnosus (MTCC 5897) fermented milk to suckling mothers alleviates ovalbumin-induced allergic sensitisation in mice offspring, Br. J. Nutr. 114 (2015) 1168-1179. https://doi.org/10.1017/S000711451500286X.

[22]

E.M.M. Velez, R. Weill, M.C. Maldonado-Galdeano, et al., Respiratory allergy control by probiotic fermented milk intake: a mouse model from weaning to maturity, Benef. Microbes. 11 (2020) 767-778. https://doi.org/10.3920/BM2020.0055.

[23]

V. Verardo, A.M. Gómez-Caravaca, G. Tabanelli, Bioactive components in fermented foods and food by-products, Foods 9 (2020) 153. https://doi.org/10.3390/foods9020153.

[24]

F. Aiello, D. Restuccia, U.G. Spizzirri, et al., Improving kefir bioactive properties by functional enrichment with plant and agro-food waste extracts, Ferment. 6 (2020) 83. https://doi.org/10.3390/fermentation6030083.

[25]

E. Pessione, S. Cirrincione, Bioactive molecules released in food by lactic acid bacteria: encrypted peptides and biogenic amines, Front. Microbiol. 7 (2016) 876.

[26]

V. Biscola, Y. Choiset, H. Rabesona, et al., Brazilian artisanal ripened cheeses as sources of proteolytic lactic acid bacteria capable of reducing cow milk allergy, J. Appl. Microbiol. 125 (2018) 564-574. https://doi.org/10.1111/jam.13779.

[27]

J. Hol, E.H.G. van Leer, B.E.E. Elink Schuurman, et al., The acquisition of tolerance toward cow’s milk through probiotic supplementation: a randomized, controlled trial, J. Allergy Clin. Immunol. 121 (2008) 1448- 1454. https://doi.org/10.1016/j.jaci.2008.03.018.

[28]

S.E. Soh, M. Aw, I. Gerez, et al., Probiotic supplementation in the first 6 months of life in at risk Asian infants: effects on eczema and atopic sensitization at the age of 1 year, Clin. Exp. Allergy 39 (2009) 571-578. https://doi.org/10.1111/j.1365-2222.2008.03133.x.

[29]

D. Sistek, R. Kelly, K. Wickens, et al., Is the effect of probiotics on atopic dermatitis confined to food sensitized children?, Clin. Exp. Allergy 36 (2006) 629-633. https://doi.org/10.1111/j.1365-2222.2006.02485.x.

[30]

A.L. Taylor, J.A. Dunstan, S.L. Prescott, Probiotic supplementation for the first 6 months of life fails to reduce the risk of atopic dermatitis and increases the risk of allergen sensitization in high-risk children: a randomized controlled trial, J. Allergy Clin. Immunol. 119 (2007) 184-191. https://doi.org/10.1016/j.jaci.2006.08.036.

[31]

K. Wickens, P.N. Black, T. V Stanley, et al., A differential effect of 2 probiotics in the prevention of eczema and atopy: a double-blind, randomized, placebo-controlled trial, J. Allergy Clin. Immunol. 122 (2008) 788-794. https://doi.org/10.1016/j.jaci.2008.07.011.

[32]

M. Morisset, C. Aubert-Jacquin, P. Soulaines, et al., A non-hydrolyzed, fermented milk formula reduces digestive and respiratory events in infants at high risk of allergy, Eur. J. Clin. Nutr. 65 (2011) 175-183. https://doi.org/10.1038/ejcn.2010.250.

[33]

J. Lee, D. Seto, L. Bielory, Meta-analysis of clinical trials of probiotics for prevention and treatment of pediatric atopic dermatitis, J. Allergy Clin. Immunol. 121 (2008) 116-121. https://doi.org/10.1016/j.jaci.2007.10.043.

[34]

J.W. Jung, H.R. Kang, G.E. Ji, et al., Therapeutic effects of fermented red ginseng in allergic rhinitis: a randomized, double-blind, placebocontrolled study, Allergy, Asthma Immunol. Res. 3 (2011) 103-110. https://doi.org/10.4168/aair.2011.3.2.103.

[35]

W.S. Hong, Y.P. Chen, M.J. Chen, The antiallergic effect of kefir lactobacilli, J. Food Sci. 75 (2010) H244-H253. https://doi.org/10.1111/j.1750-3841.2010.01787.x.

[36]

S. Makino, A. Sato, A. Goto, et al., Enhanced natural killer cell activation by exopolysaccharides derived from yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1, J. Dairy Sci. 99 (2016) 915-923. https://doi.org/10.3168/jds.2015-10376.

[37]

M.M. Shah, M. Saio, H. Yamashita, et al., Lactobacillus acidophilus strain L-92 induces CD4+ CD25+ Foxp3+ regulatory T Cells and suppresses allergic contact dermatitis, Biol. Pharm. Bull. 35 (2012) 612-616. https://doi.org/10.1248/bpb.35.612.

[38]

A. Marseglia, A.M. Castellazzi, C. Valsecchi, et al., Outcome of oral provocation test in egg-sensitive children receiving semi-fat hard cheese Grana Padano PDO (protected designation of origin) containing, or not, lysozyme, Eur. J. Nutr. 52 (2013) 877-883. https://doi.org/10.1007/s00394- 012-0394-5.

[39]

M. Chen, A. Sutherland, G. Birrueta, et al., Analysis of allergen-specific T cell and IgE reactivity to different preparations of cow’s milk-containing food extracts, Cells 8 (2019) 667. https://doi.org/10.3390/cells8070667.

[40]

M. Viñas, J. Carnés, M.A. López-Matas, et al. Allergy to goat and sheep cheese with tolerance to cow’s milk and its derivatives, Allergol. Immunopathol. (Madr). 42 (2014) 186-190. https://doi.org/10.1016/j.aller.2012.08.002.

[41]

S. Tripodi, P. Comberiati, A. di Rienzo Businco, et al., Severe anaphylaxis to sheep’s milk cheese in a child desensitized to cow’s milk through specific oral tolerance induction, Eur. Ann. Allergy Clin. Immunol. 45 (2013) 56-60.

[42]

S. Hazebrouck, S. Ah-Leung, E. Bidat, et al., Goat’s milk allergy without cow’s milk allergy: suppression of non-cross-reactive epitopes on caprine β-casein, Clin. Exp. Allergy 44 (2014) 602-610. https://doi.org/10.1111/cea.12261.

[43]

F. Pazheri, A.L. Melton Jr., E. Poptic, et al., Allergy to sheep milk with or without allergy to cow milk, J. Allergy Clin. Immunol. 133 (2014) AB199. https://doi.org/10.1016/j.jaci.2013.12.714.

[44]

M. Lisson, N. Novak, G. Erhardt, Immunoglobulin E epitope mapping by microarray immunoassay reveals differences in immune response to genetic variants of caseins from different ruminant species, J. Dairy Sci. 97 (2014) 1939-1954. https://doi.org/10.3168/jds.2013-7355.

[45]

S. Nicklaus, A. Divaret-Chauveau, M.L. Chardon, et al., The protective effect of cheese consumption at 18 months on allergic diseases in the first 6 years, Allergy 74 (2019) 788-798. https://doi.org/10.1111/all.13650.

[46]

V. Celik, B. Beken, M. Yazicioglu, et al., Do traditional fermented foods protect against infantile atopic dermatitis?, Pediatr. Allergy Immunol. 30 (2019) 540-546. https://doi.org/10.1111/pai.13045.

[47]

C. Alessandri, S. Sforza, P. Palazzo, et al., Tolerability of a fully maturated cheese in cow’s milk allergic children: biochemical, immunochemical, and clinical aspects, PLoS ONE 7 (2012) e40945. https://doi.org/10.1371/journal.pone.0040945.

[48]

S. Monaco, G. Russo, A. Romano, et al., Yogurt is tolerated by the majority of children with IgE-mediated cow’s milk allergy, Allergol. Immunopathol. (Madr). 47 (2019) 322-327. https://doi.org/10.1016/j.aller.2018.10.005.

[49]

E. Küçükosmanoğlu, E. Özen, S.B. Eltan, et al., Most children who are allergic to cow’s milk tolerate yogurt, J. Int. Med. Res. 46 (2018) 5099-5106. https://doi.org/10.1177/0300060518790430.

[50]

N. Isobe, M. Suzuki, M. Oda, et al., Enzyme-modified cheese exerts inhibitory effects on allergen permeation in rats suffering from indomethacininduced intestinal inflammation, Biosci. Biotechnol. Biochem. 72 (2008) 1740-1745. https://doi.org/10.1271/bbb.80042.

[51]

L. Fu, S. Fu, C. Wang, et al., Yogurt-sourced probiotic bacteria alleviate shrimp tropomyosin-induced allergic mucosal disorders, potentially through microbiota and metabolism modifications, Allergol. Int. 68 (2019) 506-514. https://doi.org/10.1016/j.alit.2019.05.013.

[52]

T. Shoda, M. Futamura, L. Yang, et al., Yogurt consumption in infancy is inversely associated with atopic dermatitis and food sensitization at 5 years of age: a hospital-based birth cohort study, J. Dermatol. Sci. 86 (2017) 90- 96. https://doi.org/10.1016/j.jdermsci.2017.01.006.

[53]

Y. Hara, A. Shiraishi, Y. Sakane, et al., Effect of mandarin orange yogurt on allergic conjunctivitis induced by conjunctival allergen challenge, Invest. Ophthalmol. Vis. Sci. 58 (2017) 2922-2929. https://doi.org/10.1167/iovs.16-21206.

[54]

M. Matsumoto, A. Aranami, A. Ishige, et al., LKM512 yogurt consumption improves the intestinal environment and induces the T-helper type 1 cytokine in adult patients with intractable atopic dermatitis, Clin. Exp. Allergy. 37 (2007) 358-370. https://doi.org/10.1111/j.1365-2222.2007.02642.x.

[55]

K. Goro, H. Akagi, O. Chiharu, et al., Clinical effects of Lactobacillus acidophilus strain L-55-contained yogurt on symptoms of Japanese cedar pollen allergy, Japanese J. Allergol. 61 (2012) 628-641.

[56]

S. Song, S.J. Lee, D.J. Park, et al., The anti-allergic activity of Lactobacillus plantarum L67 and its application to yogurt, J. Dairy Sci. 99 (2016) 9372- 9382. https://doi.org/10.3168/jds.2016-11809.

[57]

B.C.T. Bourrie, B.P. Willing, P.D. Cotter, The microbiota and health promoting characteristics of the fermented beverage kefir, Front. Microbiol. 7 (2016) 647.

[58]

A.K. Adiloǧlu, N. Gönülateş, M. Işler, et al., Kefir tüketiminin insan baǧişiklik sistemi üzerine etkileri: Bir sitokin çalişmasi, Mikrobiyol. Bul. 47 (2013) 273-281. https://doi.org/10.5578/mb.4709.

[59]

R. Kodariah, H. Lissentiya Armal, H. Wibowo, et al., The effect of dadih in BALB/c mice on pro-inflammatory and anti-inflammatory cytokine productions, J. Med. Sci. 51 (2019) 292-300. https://doi.org/10.19106/JMedSci005104201902.

[60]

C.R.S. Prakoeswa, N. Herwanto, R. Prameswari, et al., Lactobacillus plantarum IS-10506 supplementation reduced SCORAD in children with atopic dermatitis, Benef. Microbes. 8 (2017) 833-840. https://doi.org/10.3920/BM2017.0011.

[61]

U.K. Shandilya, A. Sharma, R. Kapila, et al., Probiotic Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum modulates immunoglobulin levels and cytokines expression in whey proteins sensitised mice, J. Sci. Food Agric. 96 (2016) 3180-3187. https://doi.org/10.1002/jsfa.7497.

[62]

S. Jain, H. Yadav, P.R. Sinha, et al., Anti-allergic effects of probiotic Dahi through modulation of the gut immune system, Turk. J. Gastroenterol. 21 (2010) 244-250. https://doi.org/10.4318/tjg.2010.0095.

[63]

W.S. Hong, Y.P. Chen, T.Y. Dai, et al., Effect of heat-inactivated kefirisolated Lactobacillus kefiranofaciens M1 on preventing an allergic airway response in mice, J. Agric. Food Chem. 59 (2011) 9022-9031. https://doi.org/10.1021/jf201913x.

[64]

D.H. Kim, D. Jeong, H. Kim, et al., Modern perspectives on the health benefits of kefir in next generation sequencing era: improvement of the host gut microbiota, Crit. Rev. Food Sci. Nutr. 59 (2019) 1782-1793. https://doi.org/10.1080/10408398.2018.1428168.

[65]

J.H. Kim, K. Kim, K. Rungravee, et al., Kazachstania turicensis CAU Y1706 ameliorates atopic dermatitis by regulation of the gut-skin axis, J. Dairy Sci. 102 (2019) 2854-2862. https://doi.org/10.3168/jds.2018-15849.

[66]

J. Xia, Q. Zu, A. Yang, et al., Allergenicity reduction and rheology property of Lactobacillus-fermented soymilk, J. Sci. Food Agric. 99 (2019) 6841- 6849. https://doi.org/10.1002/jsfa.9969.

[67]

P. Meinlschmidt, E. Ueberham, J. Lehmann, et al., Immunoreactivity, sensory and physicochemical properties of fermented soy protein isolate, Food Chem. 205 (2016) 229-238. https://doi.org/10.1016/j.foodchem.2016.03.016.

[68]

Y. Ko, E. Kim, J. Bahk, et al., Decrease of wheat allergen by treatment with fermented soybean extract, J. Allergy Clin. Immunol. 125 (2010) AB221. https://doi.org/10.1016/j.jaci.2009.12.865.

[69]

B.O. Cho, J.Y. Shin, J. Kim, et al., Soybean fermented with Bacillus amyloliquefaciens (cheonggukjang) ameliorates atopic dermatitislike skin lesion in mice by suppressing infiltration of mast cells and production of IL-31 cytokine, J. Microbiol. Biotechnol. 29 (2019) 827-837. https://doi.org/10.4014/jmb.1812.12046.

[70]

L. Huang, C. Wang, Y. Zhang, et al., Degradation of anti-nutritional factors and reduction of immunoreactivity of tempeh by co-fermentation with Rhizopus oligosporus RT-3 and Actinomucor elegans DCY-1, Int. J. Food Sci. Technol. 54 (2019) 1836-1848. https://doi.org/10.1111/ijfs.14085.

[71]

N. Ozawa, N. Shimojo, Y. Suzuki, et al., Maternal intake of natto, a Japan’s traditional fermented soybean food, during pregnancy and the risk of eczema in Japanese babies, Allergol. Int. 63 (2014) 261-266. https://doi.org/10.2332/allergolint.13-OA-0613.

[72]

C. Ikemoto, R. Tamagawa-Mineoka, K. Masuda, et al., Immediate-onset anaphylaxis of Bacillus subtilis-fermented soybeans (natto), J. Dermatol. 41 (2014) 857-858. https://doi.org/10.1111/1346-8138.12592.

[73]

K. Suzuki, K. Futamura, N. Sato, et al., Two cases of fermented soybean (natto) allergy diagnosed using the skin prick test and enzyme linked immunosorbent assay for poly-γ-glutamic acid, J. Dermatol. 47 (2020) e429-e430. https://doi.org/10.1111/1346-8138.15601.

[74]

K. Yamakawa, N. Inomata, K. Fukuro, et al., Fermented soybean-induced late-onset anaphylaxis in a 7-year-old junior surfer, J. Dermatol. 47 (2020) e17-e18. https://doi.org/10.1111/1346-8138.15112.

[75]

N. Inomata, Y. Nomura, Z. Ikezawa, Involvement of poly (γ-glutamic acid) as an allergen in late-onset anaphylaxis due to fermented soybeans (natto), J. Dermatol. 39 (2012) 409-412. https://doi.org/10.1111/j.1346-8138.2011.01282.x.

[76]

S.L. Hefle, D.M. Lambrecht, J.A. Nordlee, Soy sauce retains allergenicity through the fermentation/production process, J. Allergy Clin. Immunol. 115 (2005) S32. https://doi.org/10.1016/j.jaci.2004.12.143.

[77]

K. Sugiura, M. Sugiura, Soy sauce allergy, J. Eur. Acad. Dermatology Venereol. 24 (2010) 852-855. https://doi.org/10.1111/j.1468-3083.2009.03512.x.

[78]

I. Nishimura, T. Igarashi, T. Enomoto, et al., Clinical efficacy of halophilic lactic acid bacterium Tetragenococcus halophilus Th221 from soy sauce moromi for perennial allergic rhinitis, Allergol. Int. 58 (2009) 179-185. https://doi.org/10.2332/allergolint.O-08-548.

[79]

M. Kobayashi, H. Matsushita, I. Shioya, et al., Quality of life improvement with soy sauce ingredients, Shoyu polysaccharides, in perennial allergic rhinitis: a double-blind placebo-controlled clinical study, Int. J. Mol. Med. 14 (2004) 885-889. https://doi.org/10.3892/ijmm.14.5.885.

[80]

M. Kobayashi, H. Matsushita, R.I. Tsukiyama, et al., Shoyu polysaccharides from soy sauce improve quality of life for patients with seasonal allergic rhinitis: a double-blind placebo-controlled clinical study, Int. J. Mol. Med. 15 (2005) 463-467. https://doi.org/10.3892/ijmm.15.3.463.

[81]

M. Kobayashi, H. Matsushita, K. Yoshida, et al., In vitro and in vivo anti-allergic activity of soy sauce, Int. J. Mol. Med. 14 (2004) 879-884. https://doi.org/10.3892/ijmm.14.5.879.

[82]

N. Magishi, N. Yuikawa, M. Kobayashi, et al., Degradation and removal of soybean allergen in Japanese soy sauce, Mol. Med. Rep. 16 (2017) 2264- 2268. https://doi.org/10.3892/mmr.2017.6815.

[83]

K. Hyesook, O. Se-Young, K. Myung-Hee, et al., Association between kimchi intake and asthma in Korean adults: the fourth and fifth Korea National Health and Nutrition Examination Survey (2007–2011), J. Med. Food 17 (2014) 172-178. https://doi.org/10.1089/jmf.2013.3013.

[84]

N.K. Lee, S.Y. Kim, K.J. Han, et al., Probiotic potential of Lactobacillus strains with anti-allergic effects from kimchi for yogurt starters, LWT-Food Sci. Technol. 58 (2014) 130-134. https://doi.org/10.1016/j.lwt.2014.02.028.

[85]

S. Park, J.H. Bae, Fermented food intake is associated with a reduced likelihood of atopic dermatitis in an adult population (Korean National Health and Nutrition Examination Survey 2012−2013), Nutr. Res. 36 (2016) 125-133. https://doi.org/10.1016/j.nutres.2015.11.011.

[86]

W.G. Kim, G.D. Kang, H.I. Kim, et al., Bifidobacterium longum IM55 and Lactobacillus plantarum IM76 alleviate allergic rhinitis in mice by restoring Th2/Treg imbalance and gut microbiota disturbance, Benef. Microbes. 10 (2019) 55-67. https://doi.org/10.3920/BM2017.0146.

[87]

M.K. Rho, Y.E. Kim, H.I. Rho, et al., Enterococcus faecium FC-K derived from kimchi is a probiotic strain that shows anti-allergic activity, Artic. J. Microbiol. Biotechnol. 27 (2017) 1071-1077. https://doi.org/10.4014/ jmb.1611.11020.

[88]

K.E. Hyung, B.S. Moon, B. Kim, et al., Lactobacillus plantarum isolated from kimchi suppress food allergy by modulating cytokine production and mast cells activation, J. Funct. Foods 29 (2017) 60-68. https://doi.org/10.1016/j.jff.2016.12.016.

[89]

C. Raak, T. Ostermann, K. Boehm, et al., Regular consumption of sauerkraut and its effect on human health: a bibliometric analysis, Glob. Adv. Heal. Med. 3 (2014) 12-18. https://doi.org/10.7453/gahmj.2014.038.

[90]

M.J. Choi, H.K. Jung, Y.S. Jeong, et al., Anti-allergic activities of fermented Eriobotrya japonica and Saurus chinensis extracts in 2,4-dinitrochlorobezene-induced BALB/c mice, J. Korean Soc. Food Sci. Nutr. 39 (2010) 1611-1618. https://doi.org/10.3746/jkfn.2010.39.11.1611.

[91]

B.G. Jung, S.J. Cho, H.B. Koh, et al., Fermented Maesil (Prunus mume) with probiotics inhibits development of atopic dermatitis-like skin lesions in NC/ Nga mice, Vet. Dermatol. 21 (2010) 184-191. https://doi.org/10.1111/j.1365-3164.2009.00796.x.

[92]

E.J. Lee, M.J. Song, H.S. Kwon, et al., Oral administration of fermented red ginseng suppressed ovalbumin-induced allergic responses in female BALB/c mice, Phytomedicine 19 (2012) 896-903. https://doi.org/10.1016/j.phymed.2012.04.008.

[93]

M.O. Choi, B.J. Kim, S.K. Jo, et al., Anti-allergic activities of Castanea crenata inner shell extracts fermented by Lactobacillus bifermentans, Korean J. Food Preserv. 20 (2013) 583-591. https://doi.org/10.11002/kjfp.2013.20.4.583.

[94]

J.M. Yoo, J.H. Yang, H.J. Yang, et al., Inhibitory effect of fermented Arctium lappa fruit extract on the IgE-mediated allergic response in RBL-2H3 cells, Int. J. Mol. Med. 37 (2016) 501-508. https://doi.org/10.3892/ijmm.2015.2447.

[95]

R. Laatikainen, J. Koskenpato, S.M. Hongisto, et al., Pilot study: comparison of sourdough wheat bread and yeast-fermented wheat bread in individuals with wheat sensitivity and irritable bowel syndrome, Nutrients 9 (2017) 1215. https://doi.org/10.3390/nu9111215.

[96]

S. Beretta, V. Fabiano, M. Petruzzi, et al., Fermented rice flour in pediatric atopic dermatitis, Dermatitis. 26 (2015) 104-106.

[97]

T.D. Jung, S.I. Choi, S.H. Choi, et al., Changes in the anti-allergic activities of sesame by bioconversion, Nutrients 10 (2018) 210. https://doi.org/10.3390/nu10020210.

[98]

A. Sknepnek, S. Tomić, D. Miletić, et al. Fermentation characteristics of novel Coriolus versicolor and Lentinus edodes kombucha beverages and immunomodulatory potential of their polysaccharide extracts, Food Chem. 342 (2021) 128344. https://doi.org/10.1016/j.foodchem.2020.128344.

[99]

O.K. Kim, J.Y. Chang, D.E. Nam, et al., Effect of Canavalia gladiata extract fermented with Aspergillus oryzae on the development of atopicdermatitis in NC/Nga mice, Int. Arch. Allergy Immunol. 168 (2015) 79-89. https://doi.org/10.1159/000441654.

[100]

T. Tominaga, K. Kawaguchi, M. Kanesaka, et al., Suppression of type-Iallergic responses by oral administration of grape marc fermented withLactobacillus plantarum, Immunopharmacol. Immunotoxicol. 32 (2010)593-599. https://doi.org/10.3109/08923971003604786.

[101]

S. Kawamoto, M. Kaneoke, K. Ohkouchi, et al., Sake lees fermented with lactic acid bacteria prevents allergic rhinitis-like symptoms and IgE-mediated basophil degranulation, Biosci. Biotechnol. Biochem. (2011) 1012012292. https://doi.org/10.1271/bbb.100541.

[102]

Y. Maejima, H. Nakatsugawa, D. Ichida, et al., Functional compounds in fermented buckwheat sprouts, Biosci. Biotechnol. Biochem. 75 (2011) 1708- 1712. https://doi.org/10.1271/bbb.110241.

[103]

Y. Zhu, L. Gao, G. Xie, et al., Effect of fermentation on immunological properties of allergens from black carp (Mylopharyngodon piceus) sausages, Int. J. Food Sci. Technol. 55 (2020) 3162-3172. https://doi.org/10.1111/ ijfs.14580.

[104]

S.C. Han, G.J. Kang, Y.J. Ko, et al., Fermented fish oil suppresses T helper 1/2 cell response in a mouse model of atopic dermatitis via generation of CD4+ CD25+ Foxp3+ T cells, BMC Immunol. 13 (2012) 44. https://doi.org/10.1186/1471-2172-13-44.

[105]

N. Mejrhit, O. Azdad, L. Aarab, Effect of industrial processing on the IgE reactivity of three commonly consumed moroccan fish species in Fez region, Eur. Ann. Allergy Clin. Immunol. 50 (2018) 202-210. https://doi.org/10.23822/EurAnnACI.1764-1489.61.

[106]

J.G. Park, H. Saeki, A. Nakamura, et al., Allergenicity changes in raw shrimp (Acetes japonicus) and Saeujeot (salted and fermented shrimp) in cabbage kimchi due to fermentation conditions, Food Sci. Biotechnol. 16 (2007) 1011-1017.

[107]

J.S. Moon, Y. Kim, K.I. Jang, et al., Analysis of biogenic amines in fermented fish products consumed in Korea, Food Sci. Biotechnol. 19 (2010) 1689-1692. https://doi.org/10.1007/s10068-010-0240-6.

[108]

T. Kuda, Y. Izawa, S. Ishii, et al., Suppressive effect of Tetragenococcus halophilus, isolated from fish-nukazuke, on histamine accumulation in salted and fermented fish, Food Chem. 130 (2012) 569-574. https://doi.org/10.1016/j.foodchem.2011.07.074.

[109]

Y.C. Lee, H.F. Kung, C.Y. Huang, et al., Reduction of histamine and biogenic amines during salted fish fermentation by Bacillus polymyxa as a starter culture, J. Food Drug Anal. 24 (2016) 157-163. https://doi.org/10.1016/j.jfda.2015.02.002.

[110]

J.M. Wilson, T.A.E. Platts-Mills, Meat allergy and allergens, Mol. Immunol. 100 (2018) 107-112. https://doi.org/10.1016/j.molimm.2018.03.018.

[111]

D. González-de-Olano, M. Gandolfo-Cano, E. González-Mancebo, et al., Different patterns of sensitization in allergy to dry fermented sausage, J. Investig. Allergol. Clin. Immunol. 22 (2012) 133-153.

[112]

M. Morisset, L. Parisot, G. Kanny, et al., Food allergy to moulds: two cases observed after dry fermented sausage ingestion, Allergy 58 (2003) 1203- 1204. https://doi.org/10.1046/j.1398-9995.2003.00319.x.

[113]

Z.Ř. Lukášková, B. Tremlová, M. Pospiech, et al., Comparison of immunohistochemical, histochemical and immunochemical methods for the detection of wheat protein allergens in meat samples and cooked, dry, raw and fermented sausage samples, Food Addit. Contam. Part A 28 (2011) 817- 825. https://doi.org/10.1080/19440049.2011.572292.

[114]

C. Xie, H.H. Wang, X.K. Nie, et al., Reduction of biogenic amine concentration in fermented sausage by selected starter cultures, CyTA-J. Food 13 (2015) 491-497. https://doi.org/10.1080/19476337.2015.1005027.

[115]

C. Zhao, X. Zhao, Z. Lu, et al., Production of fermented pork jerky using Lactobacillus bulgaricus, LWT-Food Sci. Technol. 72 (2016) 377-382. https://doi.org/10.1016/j.lwt.2016.04.060.

[116]

S. Fadda, G. Vignolo, M.C. Aristoy, et al., Effect of curing conditions and Lactobacillus casei CRL705 on the hydrolysis of meat proteins, J. Appl. Microbiol. 91 (2001) 478-487. https://doi.org/10.1046/j.1365-2672.2001.01408.x.

[117]

S. Fadda, G. Oliver, G. Vignolo, Protein degradation by Lactobacillus plantarum and Lactobacillus casei in a sausage model system, J. Food Sci. 67 (2002) 1179-1183. https://doi.org/10.1111/j.1365-2621.2002.tb09473.x.

[118]

E.M.M. Velez, C. Maldonado Galdeano, E. Carmuega, et al., Probiotic fermented milk consumption modulates the allergic process induced by ovoalbumin in mice, Br. J. Nutr. 114 (2015) 566-576. https://doi.org/10.1017/S0007114515001981.

[119]

S. Wang, H. Zhu, C. Lu, et al., Fermented milk supplemented with probiotics and prebiotics can effectively alter the intestinal microbiota and immunity of host animals, J. Dairy Sci. 95 (2012) 4813-4822. https://doi.org/10.3168/jds.2012-5426.

[120]

P. Marteau, B. Le Nevé, L. Quinquis, et al., Consumption of a fermented milk product containing Bifidobacterium lactis CNCM I-2494 in women complaining of minor digestive symptoms: rapid response which is independent of dietary fibre intake or physical activity, Nutrients 11 (2019) 92. https://doi.org/10.3390/nu11010092.

[121]

A. Uncuoglu, N. Yologlu, I.E. Simsek, et al., Tolerance to baked and fermented cow’s milk in children with IgE-mediated and non-IgEmediated cow’s milk allergy in patients under two years of age, Allergol. Immunopathol. (Madr). 45 (2017) 560-566. https://doi.org/10.1016/j.aller.2017.02.008.

[122]

E. Fuc, D. Złotkowska, B. Wróblewska, Milk and meat allergens from bos taurus β-lactoglobulin, α-casein, and bovine serum albumin: an in-vivo study of the immune response in mice, Nutrients 11 (2019) 95. https://doi.org/10.3390/nu11092095.

[123]

P. Poza-Guedes, Y. Barrios, R. González Pérez, et al., Yogurt in the treatment of β-lactoglobulin-induced gastrointestinal cow’s milk allergy, J. Investig. Allergol. Clin. Immunol. 26 (2016) 327-329. https://doi.org/10.18176/jiaci.0083.

[124]

J. Crane, C. Barthow, E.A. Mitchell, et al., Is yoghurt an acceptable alternative to raw milk for reducing eczema and allergy in infancy?, Clin. Exp. Allergy 48 (2018) 604-606. https://doi.org/10.1111/cea.13121.

[125]

A.R. Jung, S. Ahn, I.S. Park, et al., Douchi (fermented Glycine max Merr.) alleviates atopic dermatitis-like skin lesions in NC/Nga mice by regulation of PKC and IL-4, BMC Complement. Altern. Med. 16 (2016) 416. https://doi.org/10.1186/s12906-016-1394-4.

[126]

H.J. Lee, H.E. Cho, H.J. Park, Germinated black soybean fermented with Lactobacillus pentosus SC65 alleviates DNFB-induced delayed-type hypersensitivity in C57BL/6N mice, J. Ethnopharmacol. 265 (2021) 113236. https://doi.org/10.1016/j.jep.2020.113236.

[127]

T. Fujimura, A. Hori, H. Torii, et al., Intake of a fermented plant product attenuates allergic symptoms without changing systemic immune responses in a mouse model of Japanese cedar pollinosis, World Allergy Organ. J. 11 (2018) 31. https://doi.org/10.1186/s40413-018-0213-4.

[128]

C. Kim, J. Ji, S. Ho Baek, et al., Fermented dried Citrus unshiu peel extracts exert anti-inflammatory activities in LPS-induced RAW264.7 macrophages and improve skin moisturizing efficacy in immortalized human HaCaT keratinocytes, Pharm. Biol. 57 (2019) 392-402. https://doi.org/10.1080/13880209.2019.1621353.

[129]

N. Harima-Mizusawa, M. Kano, D. Nozaki, et al., Citrus juice fermented with Lactobacillus plantarum YIT 0132 alleviates symptoms of perennial allergic rhinitis in a double-blind, placebo-controlled trial, Benef. Microbes. 7 (2016) 649-658. https://doi.org/10.3920/BM2016.0003.

[130]

S.H. Kim, G.S. Seong, S.Y. Choung, Fermented Morinda citrifolia (Noni) alleviates DNCB-induced atopic dermatitis in NC/Nga mice through modulating immune balance and skin barrier function, Nutrients 12 (2020) 249. https://doi.org/10.3390/nu12010249.

[131]

M.J. Han, D.H. Kim, Effects of red and fermented ginseng and ginsenosides on allergic disorders, Biomol. 10 (2020) 634. https://doi.org/10.3390/biom10040634.

[132]

H.I. Kim, J.K. Kim, J.Y. Kim, et al., Fermented red ginseng and ginsenoside Rd alleviate ovalbumin-induced allergic rhinitis in mice by suppressing IgE, interleukin-4, and interleukin-5 expression, J. Ginseng Res. 43 (2019) 635- 644. https://doi.org/10.1016/j.jgr.2019.02.006.

Publication history
Copyright
Rights and permissions

Publication history

Received: 07 June 2021
Revised: 10 September 2021
Accepted: 09 November 2021
Published: 15 October 2022
Issue date: May 2023

Copyright

© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return