Journal Home > Volume 12 , Issue 3

With the prevalence of food allergy increasing every year, food allergy has become a common public health problem. More and more studies have shown that probiotics can intervene in food allergy based on the intestinal mucosal immune system. Probiotics and their metabolites can interact with immune cells and gut microbiota to alleviate food allergy. This review outlines the relationship between the intestinal mucosal immune system and food allergy. This review also presents the clinical application and potential immunomodulation mechanisms of probiotics on food allergy. We aim at providing a reference for further studies to explore the key active substances and immunomodulation mechanisms of anti-allergic probiotics.


menu
Abstract
Full text
Outline
About this article

The role of probiotics in prevention and treatment of food allergy

Show Author's information Shimin GuaDong YangbChenglong LiuaWentong Xuea( )
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China

Abstract

With the prevalence of food allergy increasing every year, food allergy has become a common public health problem. More and more studies have shown that probiotics can intervene in food allergy based on the intestinal mucosal immune system. Probiotics and their metabolites can interact with immune cells and gut microbiota to alleviate food allergy. This review outlines the relationship between the intestinal mucosal immune system and food allergy. This review also presents the clinical application and potential immunomodulation mechanisms of probiotics on food allergy. We aim at providing a reference for further studies to explore the key active substances and immunomodulation mechanisms of anti-allergic probiotics.

Keywords: Gut microbiota, Probiotics, Food allergy, Intestinal mucosal immune system

References(127)

[1]

A. Urisu, M. Ebisawa, K. Ito, et al., Japanese guideline for food allergy 2014, Allergol. Int. 63 (2014) 399-419. https://doi.org/10.2332/allergolint.14-RAI-0770.

[2]

S. Prescott, K.J. Allen, Food allergy: riding the second wave of the allergy epidemic, Pediatr. Allergy Immunol. 22 (2011) 155-160. https://doi.org/10.1111/j.13993038.2011.01145.x.

[3]

M. Vazquez-Ortiz, P.J. Turner, Improving the safety of oral immunotherapy for food allergy, Pediatr. Allergy Immunol. 27 (2016) 117-125. https://doi.org/10.1111/pai.12510.

[4]

C.H. Huang, C.C. Shen, Y.C. Liang, et al., The probiotic activity of Lactobacillus murinus against food allergy, J. Funct. Food 25 (2016) 231-241. https://doi.org/10.1016/j.jff.2016.06.006.

[5]

P.J. Turner, D.E. Campbell, R.J. Boyle, et al., Primary prevention of food allergy: translating evidence from clinical trials to population-based recommendations, J. Allergy Clin. Immunol.-Pract. 6 (2018) 367-375. https://doi.org/10.1016/j.jaip.2017.12.015.

[6]

H.J. Kang, S.H. Im, Probiotics as an immune modulator, J. Nutr. Sci. Vitaminol. 61 (2015) S103-S105. https://doi.org/10.3177/jnsv.61.S103.

[7]

H. Chung, S.J. Pamp, J.A. Hill, et al., Gut immune maturation depends on colonization with a host-specific microbiota, Cell 149 (2012) 1578-1593. https://doi.org/10.1016/j.cell.2012.04.037.

[8]

S.M. Lim, D.H. Kim, Bifidobacterium adolescentis IM38 ameliorates high-fat diet-induced colitis in mice by inhibiting NF-κB activation and lipopolysaccharide production by gut microbiota, Nutr. Res. 41(2017) 86-96. https://doi.org/10.1016/j.nutres.2017.04.003.

[9]

M. Schwarzer, K. Makki, G. Storelli, et al., Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition, Science 351 (2016) 854-857. https://doi.org/10.1126/science.aad8588.

[10]

J. Gao, K. Xu, H.N. Liu, et al., Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism, Front. Cell Infect. Microbiol. 8 (2018) 13. https://doi.org/10.3389/fcimb.2018.00013.

[11]

J.Y. Ma, J. Zhang, Q.H. Li, et al., Oral administration of a mixture of probiotics protects against food allergy via induction of CD103+ dendritic cells and modulates the intestinal microbiota, J. Funct. Food 55 (2019) 65-75. https://doi.org/10.1016/j.jff.2019.02.010.

[12]

M. Ebisawa, K. Ito, T. Fujisawa, et al., Japanese guidelines for food allergy 2020, Allergol. Int. 69 (2020) 370-386. https://doi.org/10.1016/j.alit.2020.03.004.

[13]

B.I. Nwaru, L. Hickstein, S.S. Panesar, et al., Prevalence of common food allergies in Europe: a systematic review and meta-analysis, Allergy 69 (2014) 992-1007. https://doi.org/10.1111/all.12423.

[14]

R.S. Gupta, E.E. Springston, M.R. Warrier, et al., The prevalence, severity, and distribution of childhood food allergy in the United States, Pediatrics 128 (2011) E9-E17. https://doi.org/10.1542/peds.2011-0204.

[15]

H.A. Sampson, Update on food allergy, J. Allergy Clin. Immunol. 113 (2004) 805-819. https://doi.org/10.1016/j.jaci.2004.03.014.

[16]

J.A. Boyce, A. Assa'ad, A.W. Burks, et al., Guidelines for the diagnosis and management of food allergy in the United States: summary of the NIAIDsponsored expert panel report, J. Allergy Clin. Immunol. 126 (2010) 1105-1118. https://doi.org/10.1016/j.jaci.2010.10.008.

[17]

K.J. Allen, J.J. Koplin, Prospects for prevention of food allergy, J. Allergy Clin. Immunol.-Pract. 4 (2016) 215-220. https://doi.org/10.1016/j.jaip.2015.10.010.

[18]

G.D. Toit, R.X. Foong, G. Lack, Prevention of food allergy: early dietary interventions, Allergol. Int. 65 (2016) 370-377. https://doi.org/10.1016/j.alit.2016.08.001.

[19]

M. Greenhawt, C. Weiss, M.L. Conte, et al., Racial and ethnic disparity in food allergy in the United States: a systematic review, J. Allergy Clin. Immunol.-Pract. 1 (2013) 378-386. https://doi.org/10.1016/j.jaip.2013.04.009.

[20]

S.H. Sicherer, K. Allen, G. Lack, et al., Critical issues in food allergy: a national academies consensus report, Pediatrics 140 (2017) e20170194. https://doi.org/10.1542/peds.2017-0194.

[21]

X. Hong, K. Hao, C. Ladd-Acosta, et al., Genome-wide association study identifies peanut allergy-specific loci and evidence of epigenetic mediation in US children, Nat. Commun. 6 (2015) 1-12. https://doi.org/10.1038/ncomms7304.

[22]

S.H. Sicherer, H.A. Sampson, Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention, and management, J. Allergy Clin. Immunol. 141 (2018) 41-58. https://doi.org/10.1016/j.jaci.2017.11.003.

[23]

R.S. Chinthrajah, J.D. Hernandez, S.D. Boyd, et al., Molecular and cellular mechanisms of food allergy and food tolerance, J. Allergy Clin. Immunol. 137 (2016) 984-997. https://doi.org/10.1016/j.jaci.2016.02.004.

[24]

M. Chehade, L. Mayer, Oral tolerance and its relation to food hypersensitivities, J. Allergy Clin. Immunol. 115 (2005) 3-12. https://doi.org/10.1016/j.jaci.2004.11.008.

[25]

N. Yahfoufi, J.F. Mallet, E. Graham, et al., Role of probiotics and prebiotics in immunomodulation, Curr. Opin. Food Sci. 20 (2018) 82-91. https://doi.org/10.1016/j.cofs.2018.04.006.

[26]

J.M. Allaire, S.M. Crowley, H.T. Law, et al., The intestinal epithelium: central coordinator of mucosal immunity, Trends Immunol. 39 (2018) 677-696. https://doi.org/10.1016/j.it.2018.04.002.

[27]

M.E.V. Johansson, G.C. Hansson, Immunological aspects of intestinal mucus and mucins, Nat. Rev. Immunol. 16 (2016) 639-649. https://doi.org/10.1038/nri.2016.88.

[28]

F.M. Gribble, F. Reimann, Enteroendocrine cells: chemosensors in the intestinal epithelium, Annu. Rev. Physiol. 78 (2016) 277-299. https://doi.org/10.1146/annurevphysiol-021115-105439.

[29]

L. Tordesillas, M.C. Berin, H.A. Sampson, Immunology of food allergy, Immunity 47 (2017) 32-50. https://doi.org/10.1016/j.immuni.2017.07.004.

[30]

E. Jaensson, H. Uronen-Hansson, O. Pabst, et al., Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans, J. Exp. Med. 205 (2008) 2139-2149. https://doi.org/10.1084/jem.20080414.

[31]

C.M. Sun, J.A. Hall, R.B. Blank, et al., Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 Treg cells via retinoic acid, J. Exp. Med. 204 (2007) 1775-1785. https://doi.org/10.1084/jem.20070602.

[32]

O. Pabst, A.M. Mowat, Oral tolerance to food protein, Mucosal Immunol. 5 (2012) 232-239. https://doi.org/10.1038/mi.2012.4.

[33]

T.A. Kraus, J. Brimnes, C. Muong, et al., Induction of mucosal tolerance in peyer's patch-deficient, ligated small bowel loops, J. Clin. Invest. 115 (2005) 2234-2243. https://doi.org/10.1172/JCI19102.

[34]

T. Feehley, C.R. Nagler, Cellular and molecular pathways through which commensal bacteria modulate sensitization to dietary antigens, Curr. Opin. Immunol. 31 (2014) 79-86. https://doi.org/10.1016/j.coi.2014.10.001.

[35]

J.H. Niess, G. Adler, Enteric flora expands gut lamina propria CX3CR1+ dendritic cells supporting inflammatory immune responses under normal and inflammatory conditions, J. Immunol. 184 (2010) 2026-2037. https://doi.org/10.4049/jimmunol.0901936.

[36]

J.H. Niess, S. Brand, X. Gu, et al., CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance, Science 307 (2005) 254-258. https://doi.org/10.1126/science.1102901.

[37]

S. Tomar, V.G. Msc, A. Sharma, et al., IL-4–BATF signaling directly modulates IL-9 producing mucosal mast cell (MMC9) function in experimental food allergy, J. Allergy Clin. Immunol. 147 (2021) 280-295. https://doi.org/10.1016/j.jaci.2020.08.043.

[38]

I. Nomura, H. Morita, T. Shoda, et al., Dynamics of eosinophils in non-IgEmediated gastrointestinal food allergies in neonates and infants, differences between 4 clusters, J. Allergy Clin. Immunol. 129 (2012) Ab93-Ab93. https://doi.org/10.1016/j.jaci.2011.12.676.

[39]

H. Morita, I. Nomura, K. Orihara, et al., Antigen-specific T-cell responses in patients with non-IgE-mediated gastrointestinal food allergy are predominantly skewed to Th2, J. Allergy Clin. Immunol. 131 (2013) 590-592. https://doi.org/10.1016/j.jaci.2012.09.005.

[40]

G.N. Konstantinou, R. Bencharitiwong, A. Grishin, et al., The role of caseinspecific IgA and TGF-β in children with food protein-induced enterocolitis syndrome to milk, Pediatr. Allergy Immunol. 25 (2014) 651-656. https://doi.org/10.1111/pai.12288.

[41]

H.L. Chung, J.B. Hwang, J.J. Park, et al., Expression of transforming growth factor β1, transforming growth factor type I and II receptors, and TNF-α in the mucosa of the small intestine in infants with food protein-induced enterocolitis syndrome, J. Allergy Clin. Immunol. 109 (2002) 150-154. https://doi.org/10.1067/mai.2002.120562.

[42]

R.B. Canani, L. Paparo, R. Nocerino, et al., Gut microbiome as target for innovative strategies against food allergy, Front. Immunol. 10 (2019) 191. https://doi.org/10.3389/fimmu.2019.00191.

[43]

S. Bunyavanich, M.C. Berin, Food allergy and the microbiome: current understandings and future directions, J. Allergy Clin. Immunol. 144 (2019) 1468-1477. https://doi.org/10.1016/j.jaci.2019.10.019.

[44]

G. Sharma, S.H. Im, Probiotics as a potential immunomodulating pharmabiotics in allergic diseases: current status and future prospets, Allergy Asthma Immunol. Res. 10 (2018) 575-590. https://doi.org/10.4168/aair.2018.10.6.575.

[45]

M.N. Rivas, O.T. Burton, P. Wise, et al., A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis, J. Allergy Clin. Immunol. 131 (2013) 201-212. https://doi.org/10.1016/j.jaci.2012.10.026.

[46]

A. Abdel-Gadir, E. Stephen-Victor, G.K. Gerber, et al., Microbiota therapy acts via a regulatory T cell MyD88/RORγt pathway to suppress food allergy, Nat. Med. 25 (2019) 1164-1174. https://doi.org/10.1038/s41591-019-0461-z.

[47]

J. Cahenzli, Y. Koller, M. Wyss, et al., Intestinal microbial diversity during early-life colonization shapes long-term IgE levels, Cell Host Microbe. 14 (2013) 559-570. https://doi.org/10.1016/j.chom.2013.10.004.

[48]

J. Tan, C. Mckenzie, P.J. Vuillermin, et al., Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways, Cell Rep. 15 (2016) 2809-2824. https://doi.org/10.1016/j.celrep.2016.05.047.

[49]

O.I. Iweala, A.W. Burks, Food allergy: our evolving understanding of its pathogenesis, prevention, and treatment, Curr. Allergy Asthma Rep. 16 (2016) 1-10. https://doi.org/10.1007/s11882-016-0616-7.

[50]

W.A. Walker, R.S. Iyengar, Breast milk, microbiota, and intestinal immune homeostasis, Pediatr. Res. 77 (2015) 220-228. https://doi.org/10.1038/pr.2014.160.

[51]

M. Weng, W.A. Walker, The role of gut microbiota in programming the immune phenotype, J. Dev. Orig. Health Dis. 4 (2013) 203-214. https://doi.org/10.1017/S2040174412000712.

[52]

K. Atarashi, T. Tanoue, K. Oshima, et al., Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota, Nature 500 (2013) 232-236. https://doi.org/10.1038/nature12331.

[53]

K. Atarashi, T. Tanoue, T. Shima, et al., Induction of colonic regulatory T cells by indigenous Clostridium species, Science 331 (2011) 337-341. https://doi.org/10.1126/science.1198469.

[54]

N. Saad, C. Delattre, M. Urdaci, et al., An overview of the last advances in probiotic and prebiotic field, LWT-Food Sci. Technol. 50 (2013) 1-16. https://doi.org/10.1016/j.lwt.2012.05.014.

[55]

R.J. Boyle, I.H. Ismail, S. Kivivuori, et al., Lactobacillus GG treatment during pregnancy for the prevention of eczema: a randomized controlled trial, Allergy 66 (2011) 509-516. https://doi.org/10.1111/j.1398-9995.2010.02507.x.

[56]

C.K. Dotterud, O. Storro, R. Johnsen, et al., Probiotics in pregnant women to prevent allergic disease: a randomized, double-blind trial, Br. J. Dermatol. 163 (2010) 616-623. https://doi.org/10.1111/j.1365-2133.2010.09889.x.

[57]

S. Rautava, E. Kainonen, S. Salminen, et al., Maternal probiotic supplementation during pregnancy and breast-feeding reduces the risk of eczema in the infant, J. Allergy Clin. Immunol. 130 (2012) 1355-1360. https://doi.org/10.1016/j.jaci.2012.09.003.

[58]

K. Mikael, K. Kaarina, J. B. Kaisu, et al., Probiotics prevent IgEassociated allergy until age 5 years in cesarean-delivered children but not in the total cohort, J. Allergy Clin. Immunol. 123 (2009) 335-341. https://doi.org/10.1016/j.jaci.2008.11.019.

[59]

M. Kalliomäki, S. Salminen, H. Arvilommi, et al., Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial, Lancet 357 (2001) 1076-1079. https://doi.org/10.1016/S0140-6736(00)04259-8.

[60]

E.L. Plummer, A.C. Lozinsky, J.M. Tobin, et al.Postnatal probiotics and allergic disease in very preterm infants: sub-study to the pretermrandomized trial, Allergy 75 (2020) 127-136. https://doi.org/10.1111/all.14088.

[61]

M. Morisset, C. Aubert-Jacquin, P. Soulaines, et al., A non-hydrolyzed, fermented milk formula reduces digestive and respiratory events in infants at high risk of allergy, Eur. J. Clin. Nutr. 65 (2011) 175-183. https://doi.org/10.1038/ejcn.2010.250.

[62]

R.B. Canani, R. Nocerino, G. Terrin, et al., Formula selection for management of children with cow’s milk allergy influences the rate of acquisition of tolerance: a prospective multicenter study, J. Pediatr. 163 (2013) 771-777. https://doi.org/10.1016/j.jpeds.2013.03.008.

[63]

S. Reddel, M. Mennini, F.D. Chierico, et al., Gut microbiota profile in infants with milk and/or egg allergy and evaluation of intestinal colonization and persistence of a probiotic mixture, World Allergy Organ. J. 13 (2020) 100424. https://doi.org/10.1016/j.waojou.2020.100424.

[64]

S.A. Shu, A.W.T. Yuen, E. Woo, et al., Microbiota and food allergy, Clin. Rev. Allergy Immunol. 57 (2019) 83-97. https://doi.org/10.1007/s12016-018-8723-y.

[65]

S. Rautava, M. Kalliomäki, E. Isolauri, Probiotics during pregnancy and breast-feeding might confer immunomodulatory protection against atopic disease in the infant, J. Allergy Clin. Immunol. 109 (2002) 119-121. https://doi.org/10.1067/mai.2002.120273.

[66]

S. Sestito, E. D’auria, M.E. Baldassarre, et al., The role of prebiotics and probiotics in prevention of allergic diseases in infants, Front. Pediatr. 8 (2020) 583946. https://doi.org/10.3389/fped.2020.583946.

[67]

A. Fiocchi, R. Pawankar, C. Cuello-Garcia, et al., World allergy organization-mcMaster university guidelines for allergic disease prevention (GLAD-P): probiotics, World Allergy Organ. J. 8 (2015) 1-13. https://doi.org/10.1186/s40413-015-0055-2.

[68]

B. Yousefi, M. Eslami, A. Ghasemian, et al., Probiotics importance and their immunomodulatory properties, J. Cell. Physiol. 234 (2019) 8008-8018. https://doi.org/10.1002/jcp.27559.

[69]

C. Varol, A. Vallon-Eberhard, E. Elinav, et al., Intestinal lamina propria dendritic cell subsets have different origin and functions, Immunity 31 (2009) 502-512. https://doi.org/10.1016/j.immuni.2009.06.025.

[70]

L. Fu, J. Song, C. Wang, et al., Bifidobacterium infantis potentially alleviates shrimp tropomyosin-induced allergy by tolerogenic dendritic cell-dependent induction of regulatory T cells and alterations in gut microbiota, Front. Immunol. 8 (2017) 1536. https://doi.org/10.3389/fimmu.2017.01536.

[71]

P. Konieczna, R. Ferstl, M. Ziegler, et al., Immunomodulation by Bifidobacterium infantis 35624 in the murine lamina propria requires retinoic acid-dependent and independent mechanisms, PLoS ONE 8 (2013) e62617. https://doi.org/10.1371/journal.pone.0062617.

[72]

I.A. Vint, J.C. Foreman, B.M. Chain, The gold anti-rheumatic drug auranofin governs T cell activation by enhancing oxygen free radical production, Eur. J. Immunol. 24 (1994) 1961-1965. https://doi.org/10.1002/eji.1830240904.

[73]

C.Y.W. Choo, K. W. Yeh, J. L. Huang, et al., Oxidative stress is associated with atopic indices in relation to childhood rhinitis and asthma, J. Microbiol. Immunol. Infect. S1684-1182 (2020) 466-473. https://doi.org/10.1016/j.jmii.2020.01.009.

[74]

Y. Koike, T. Hisada, M. Utsugi, et al., Glutathione redox regulates airway hyperresponsiveness and airway inflammation in mice, Am. J. Respir. Cell Mol. Biol. 37 (2007) 322-329. https://doi.org/10.1165/rcmb.2006-0423OC.

[75]

Y. Murata, T. Ohteki, S. Koyasu, et al., IFN-γ and pro-inflammatory cytokine production by antigen-presenting cells is dictated by intracellular thiol redox status regulated by oxygen tension, Eur. J. Immunol. 32 (2002) 2866-2873. https://doi.org/10.1002/1521-4141(2002010)32:10<2866::AIDIMMU2866>3.0.CO;2-V.

DOI
[76]

T.H. Wong, H.A. Chen, R.J. Gau, et al., Heme oxygenase-1-expressing dendritic cells promote Foxp3+ regulatory T cell differentiation and induce less severe airway inflammation in murine models, PLoS ONE 11 (2016) e0168919. https://doi.org/10.1371/journal.pone.0168919.

[77]

K.C. Sheng, G.A. Pietersz, C.K. Tang, et al., Reactive oxygen species level defines two functionally distinctive stages of inflammatory dendritic cell development from mouse bone marrow, J. Immunol. 184 (2010) 2863-2872. https://doi.org/10.4049/jimmunol.0903458.

[78]

S. Kantengwa, L. Jornot, C. Devenoges, et al., Superoxide anions induce the maturation of human dendritic cells, Am. J. Respir. Crit. Care Med. 167 (2003) 431-437. https://doi.org/10.1164/rccm.200205-425OC.

[79]

R. Sharma, R. Kapila, G. Dass, et al., Improvement in Th1/Th2 immune homeostasis, antioxidative status and resistance to pathogenic E. coli on consumption of probiotic Lactobacillus rhamnosus fermented milk in aging mice, Age 36 (2014) 1-17. https://doi.org/10.1007/s11357-014-9686-4.

[80]

I.A. Vint, J.C. Foreman, B.M. Chain, Probiotics SOD inhibited food allergy via downregulation of STAT6-TIM4 signaling on DCs, Mol. Immunol. 103 (2018) 71-77. https://doi.org/10.1016/j.molimm.2018.09.001.

[81]

S.E. Jones, M.L. Paynich, D.B. Kearns, et al., Protection from intestinal inflammation by bacterial exopolysaccharides, J. Immunol. 192 (2014) 4813-4820. https://doi.org/10.4049/jimmunol.1303369.

[82]

S. Dasgupta, D. Erturk-Hasdemir, J. Ochoa-Reparaz, et al., Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms, Cell Host Microbe. 15 (2014) 413-423. https://doi.org/10.1016/j.chom.2014.03.006.

[83]

E.S. Wittchen, J. Haskins, B.R. Stevenson, Protein interactions at the tight junction: actin has multiple binding partners, and ZO-1 forms independent complexes with ZO-2 and ZO-3, J. Biol. Chem. 274 (1999) 35179-35185. https://doi.org/10.1074/jbc.274.49.35179.

[84]

S.N. Ukena, A. Singh, U. Dringenberg, et al., Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity, PLoS ONE 2 (2007) e1308. https://doi.org/10.1371/journal.pone.0001308.

[85]

S. Resta-Lenert, K.E. Barrett, Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC), Gut 52 (2003) 988-997. https://doi.org/10.1136/gut.52.7.988.

[86]

S.S. Guo, T. Gillingham, Y.M. Guo, et al., Secretions of Bifidobacterium infantis and Lactobacillus acidophilus protect intestinal epithelial barrier function, J. Pediatr. Gastroenterol. Nutr. 64 (2017) 404-412. https://doi.org/10.1097/Mpg.0000000000001310.

[87]

P.C. Li, Y.Y. Yin, Q.H. Yu, et al., Lactobacillus acidophilus S-layer protein-mediated inhibition of Salmonella-induced apoptosis in Caco-2 cells, Biochem. Biophys. Res. Commun. 409 (2011) 142-147. https://doi.org/10.1016/j.bbrc.2011.04.131.

[88]

H. Wang, Q. Zhang, Y. Niu, et al., Surface-layer protein from Lactobacillus acidophilus NCFM attenuates tumor necrosis factor-α-induced intestinal barrier dysfunction and inflammation, Int. J. Biol. Macromol. 136 (2019) 27-34. https://doi.org/10.1016/j.ijbiomac.2019.06.041.

[89]

Y.J. Xia, Y. Chen, G.Q. Wang, et al., Lactobacillus plantarum AR113 alleviates DSS-induced colitis by regulating the TLR4/MyD88/NF-κB pathway and gut microbiota composition, J. Funct. Food 67 (2020) 103854. https://doi.org/10.1016/j.jff.2020.103854.

[90]

V.D.R. Rodovalho, B.S.R.D. Luz, H. Rabah, et al., Extracellular vesicles produced by the probiotic Propionibacterium freudenreichii CIRM-BIA 129 mitigate inflammation by modulating the NF-κB pathway, Front. Microbiol. 11 (2020) 1544. https://doi.org/10.3389/fmicb.2020.01544.

[91]

M. Toyofuku, Bacterial communication through membrane vesicles, Biosci. Biotechnol. Biochem. 83 (2019) 1599-1605. https://doi.org/10.1080/09168451.2019.1608809.

[92]

J.A. Molina-Tijeras, J. Galvez, M.E. Rodriguez-Cabezas, The immunomodulatory properties of extracellular vesicles derived from probiotics: a novel approach for the management of gastrointestinal diseases, Nutrients 11 (2019) 1038. https://doi.org/10.3390/nu11051038.

[93]

E. Behzadi, H.M. Hosseini, A.A.I. Fooladi, The inhibitory impacts of Lactobacillus rhamnosus GG-derived extracellular vesicles on the growth of hepatic cancer cells, Microb. Pathog. 110 (2017) 1-6. https://doi.org/10.1016/j.micpath.2017.06.01.

[94]

M.A. Canas, M.J. Fabrega, R. Gimenez, et al., Outer membrane vesicles from probiotic and commensal Escherichia coli coli activate NOD1-mediated immune responses in intestinal epithelial cells, Front. Microbiol. 9 (2018) 498. https://doi.org/10.3389/fmicb.2018.00498.

[95]

P. Kanmani, H. Kim, Functional capabilities of probiotic strains on attenuation of intestinal epithelial cell inflammatory response induced by TLR4 stimuli, Biofactors 45 (2019) 223-235. https://doi.org/10.1002/biof.1475.

[96]

S. Yanagihara, H. Goto, T. Hirota, et al., Lactobacillus acidophilus L-92 cells activate expression of immunomodulatory genes in THP-1 cells, Biosci. Microbiota Food Health 33 (2014) 157-164. https://doi.org/10.12938/bmfh.33.157.

[97]

S. Åvall-Jskelinen, A. Palva, Lactobacillus surface layers and their applications, FEMS Microbiol. Rev. 29 (2005) 511-529. https://doi.org/10.1016/j.fmrre.2005.04.003.

[98]

B. Kos, J. Suskovic, S. Vukovic, et al., Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92, J. Appl. Microbiol. 94 (2003) 981-987. https://doi.org/10.1046/j.1365-2672.2003.01915.x.

[99]

M.S. Ladinsky, L.P. Araujo, X. Zhang, et al., Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis, Science 363 (2019) aat4042. https://doi.org/10.1126/science.aat4042.

[100]

M.J. Cox, Y.J. Huang, K.E. Fujimura, et al., Lactobacillus casei abundance is associated with profound shifts in the infant gut microbiome, PLoS ONE 5 (2010) e8745. https://doi.org/10.1371/journal.pone.0008745.

[101]

R.B. Canani, N. Sangwan, A.T. Stefka, et al., Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants, ISME J. 10 (2016) 742-750. https://doi.org/10.1038/ismej.2015.151.

[102]

L. Fu, S. Fu, C. Wang, Yogurt-sourced probiotic bacteria alleviate shrimp tropomyosin-induced allergic mucosal disorders, potentially through microbiota and metabolism modifications, Allergol. Int. 68 (2019) 506-514. https://doi.org/10.1016/j.alit.2019.05.013.

[103]

I. Kepert, J. Fonseca, C. Muller, et al., D-tryptophan from probiotic bacteria influences the gut microbiome and allergic airway disease, J. Allergy Clin. Immunol. 139 (2017) 1525-1535. https://doi.org/10.1016/j.jaci.2016.09.003.

[104]

S. Kim, J.H. Kim, B.O. Park, et al., Perspectives on the therapeutic potential of short-chain fatty acid receptors, Bmb Rep. 47 (2014) 173-178. https://doi.org/10.5483/BMBRep.2014.47.3.272.

[105]

M. Thangaraju, G.A. Cresci, K. Liu, et al., GPR109A is a G-proteincoupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon, Cancer Res. 69 (2009) 2826-2832. https://doi.org/10.1158/0008-5472.Can-08-4466.

[106]

X.F. Chen, X.Q. Chen, X.Q. Tang, Short-chain fatty acid, acylation and cardiovascular diseases, Clin. Sci. 134 (2020) 657-676. https://doi.org/10.1042/Cs20200128.

[107]

H.B. Overby, J.F. Ferguson, Gut microbiota-derived short-chain fatty ccids facilitate microbiota: host cross talk and modulate obesity and hypertension, Curr. Hypertens. Rep. 23 (2021) 8. https://doi.org/10.1007/s11906-020-01125-2.

[108]

E. Pessione, Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows, Front. Cell. Infect. Microbiol. 2 (2012) 86. https://doi.org/10.3389/fcimb.2012.00086.

[109]

S. Macfarlane, G.T. Macfarlane, Regulation of short-chain fatty acid production, Proc. Nutr. Soc. 62 (2003) 67-72. https://doi.org/10.1079/PNS2002207.

[110]

J.G. Leblanc, F. Chain, R. Martin, et al., Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria, Microb. Cell. Fact. 16 (2017) 79. https://doi.org/10.1186/s12934-017-0691-z.

[111]

D. Inoue, G. Tsujimoto, I. Kimura, Regulation of energy homeostasis by GPR41, Front. Endocrinol. 5 (2014) 81. https://doi.org/10.3389/fendo.2014.00081.

[112]

A. Trompette, E.S. Gollwitzer, K. Yadava, et al., Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis, Nat. Med. 20 (2014) 159-166. https://doi.org/10.1038/nm.3444.

[113]

D.B. Gijs, V.E. Karen, G.A. K, et al., The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism, J. Lipid Res. 54 (2013) 2325-2340. https://doi.org/10.1194/jlr.R036012.

[114]

G. Goverse, R. Molenaar, L. Macia, et al., Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells, J. Immunol. 198 (2017) 2172-2181. https://doi.org/10.4049/jimmunol.1600165.

[115]

N. Arpaia, C. Campbell, X. Fan, et al., Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation, Nature 504 (2013) 451-455. https://doi.org/10.1038/nature12726.

[116]

C.L. Maynard, L.E. Harrington, K.M. Janowski, et al., Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3- precursor cells in the absence of interleukin 10, Nat. Immunol. 8 (2007) 931-941. https://doi.org/10.1038/ni1504.

[117]

J.H. Kim, E.J. Jeun, C.P. Hong et al., Extracellular vesicle-derived protein from Bifidobacterium longum alleviates food allergy through mast cell suppression, J. Allergy Clin. Immunol. 137 (2016) 507-516. https://doi.org/10.1016/j.jaci.2015.08.016.

[118]

S.Y. Lee, S.H. Lee, J. Jhun, et al., A combination with probiotic complex, zinc, and coenzyme Q10 attenuates autoimmune arthritis by regulation of Th17/Treg balance, J. Med. Food. 21 (2018) 39-46. https://doi.org/10.1089/jmf.2017.3952.

[119]

J. Zhang, H. Su, Q. Li, et al., Oral administration of Clostridium butyricum CGMCC0313-1 inhibits β-lactoglobulin-induced intestinal anaphylaxis in a mouse model of food allergy, Gut Pathogens 11 (2017) 1-10. https://doi.org/10.1186/s13099-017-0160-6.

[120]

C.H. Huang, Y.C. Lin, T.R. Jan, Lactobacillus reuteri induces intestinal immune tolerance against food allergy in mice, J. Funct. Food. 31 (2017) 44-51. https://doi.org/10.1016/j.jff.2017.01.034.

[121]

L.L. Fu, J.X. Peng, S.S. Zhao, et al., Lactic acid bacteria-specific induction of CD4+Foxp3+ T cells ameliorates shrimp tropomyosin-induced allergic response in mice via suppression of mTOR signaling, Sci Rep. 7 (2017) 1987. https://doi.org/10.1038/s41598-017-02260-8.

[122]

L.L. Reber, T. Marichal, K. Mukai, et al., Selective ablation of mast cells or basophils reduces peanut-induced anaphylaxis in mice, J. Allergy Clin. Immunol. 132 (2013) 881-888. https://doi.org/10.1016/j.jaci.2013.06.008.

[123]

L. Tordesillas, L. Mondoulet, A.B. Blazquez, et al., Epicutaneous immunotherapy induces gastrointestinal LAP+ regulatory T cells and prevents food-induced anaphylaxis, J. Allergy Clin. Immunol. 139 (2017) 189-201. https://doi.org/10.1016/j.jaci.2016.03.057.

[124]

K.E. Hyung, B.S. Moon, B. Kim, et al., Lactobacillus plantarum isolated from kimchi suppress food allergy by modulating cytokine production and mast cells activation, J. Funct. Food 29 (2017) 60-68. https://doi.org/10.1016/j.jff.2016.12.016.

[125]

A. Kulp, M.J. Kuehn, Biological functions and biogenesis of secreted bacterial outer membrane vesicles, Annu. Rev. Microbiol. 64 (2010) 163-184. https://doi.org/10.1146/annurev.micro.091208.073413.

[126]

A.E. Thomas, Platts-Mills, The allergy epidemics: 1870-2010, J. Allergy Clin. Immunol. 136 (2015) 3-13. https://doi.org/10.1016/j.jaci.2015.03.048.

[127]

K.E.C. Grimshaw, J. Maskell, E.M. Oliver, et al., Diet and food allergy development during infancy: birth cohort study findings using prospective food diary data, J. Allergy Clin. Immunol. 133 (2014) 511-519. https://doi.org/10.1016/j.jaci.2013.05.035.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 10 March 2021
Revised: 14 May 2021
Accepted: 18 July 2021
Published: 15 October 2022
Issue date: May 2023

Copyright

© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

Acknowledgements

Acknowledgment

This review is supported by the National Key Research and Development Program of China (2019YFC1605000) and the National Natural Science Foundation (31872904).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return