Journal Home > Volume 12 , Issue 2

A new water-soluble heteropolysaccharide with a molecular weight of 15 kDa was isolated from the fruiting bodies of Boletus reticulatus Schaeff. Structural characterization results revealed that B. reticulatus Schaeff polysaccharide (BRS-X) had a backbone of 1,6-linked α-Dgalactose and 1,2,6-linked α-D-galactose which branches were mainly composed of a terminal 4-linked β-D-glucose and the ratio of D-galactose and D-glucose was 5:1. Bioactivity assays indicated that BRS-X displayed a strong proliferative activity in T cells and B cells and promoted the secretion of immunoglobulin G (IgG), IgE, IgD and IgM. In addition, BRS-X could facilitate the proliferation and phagocytosis of RAW264.7 cells and could significantly inhibit the growth of tumors in S180-bearing mice. The results of transcriptome sequencing analysis illustrated that total 46 genes enriched in MAPK and total 34 genes enriched in PI3K/Akt signaling pathways in BRS-X group. The protein VEGF and VEGFR expression were significantly reduced under the treatment with BRS-X. These findings provide a scientific basis for the edible and medicinal value of BRS-X.


menu
Abstract
Full text
Outline
About this article

Structure elucidation, immunomodulatory activity, antitumor activity and its molecular mechanism of a novel polysaccharide from Boletus reticulatus Schaeff

Show Author's information Siyuan Sua,b,1Xiang Dingc,1Yiling Houa( )Binbin LiubZhouhe DubJunfeng Liub
Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637009, China
Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong 637000, China
College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China

1 Authors contributed equally to this article.Peer review under responsibility of KeAi Communications Co., Ltd.]]>

Abstract

A new water-soluble heteropolysaccharide with a molecular weight of 15 kDa was isolated from the fruiting bodies of Boletus reticulatus Schaeff. Structural characterization results revealed that B. reticulatus Schaeff polysaccharide (BRS-X) had a backbone of 1,6-linked α-Dgalactose and 1,2,6-linked α-D-galactose which branches were mainly composed of a terminal 4-linked β-D-glucose and the ratio of D-galactose and D-glucose was 5:1. Bioactivity assays indicated that BRS-X displayed a strong proliferative activity in T cells and B cells and promoted the secretion of immunoglobulin G (IgG), IgE, IgD and IgM. In addition, BRS-X could facilitate the proliferation and phagocytosis of RAW264.7 cells and could significantly inhibit the growth of tumors in S180-bearing mice. The results of transcriptome sequencing analysis illustrated that total 46 genes enriched in MAPK and total 34 genes enriched in PI3K/Akt signaling pathways in BRS-X group. The protein VEGF and VEGFR expression were significantly reduced under the treatment with BRS-X. These findings provide a scientific basis for the edible and medicinal value of BRS-X.

Keywords: Polysaccharides, Structure identification, Boletus reticulatus Schaeff, Immunomodulatory activity, Antitumor activity

References(91)

[1]

Y. Zheng, W.D. Wang, Y. Li, Antitumor and immunomodulatory activity of polysaccharide isolated from Trametes orientalis, Carbohydr. Polym. 131 (2015) 248-254. https://doi.org/10.1016/j.carbpol.2015.05.074.

[2]

A. Ouhtit, R.L. Gaur, M. Abdraboh, et al., Simultaneous inhibition of cell-cycle, proliferation, survival, metastatic pathways and induction of apoptosis in breast cancer cells by a phytochemical super-cocktail: genes that underpin its mode of action, J. Cancer, 4 (2013) 703-715. https://doi.org/10.7150/jca.7235.

[3]

Y.L. Hou, L. Liu, X. Ding, et al., Structure elucidation, proliferation effect on macrophage and its mechanism of a new heteropolysaccharide from Lactarius deliciosus Gray, Carbohydr. Polym. 152 (2016) 648-657. https://doi.org/10.1016/j.carbpol.2016.07.064.

[4]

M. Friedman, Mushroom polysaccharides: Chemistry and antiobesity, antidiabetes, anticancer, and antibiotic properties in cells, rodents, and humans, Foods 5 (2016) 80. https://doi.org/10.3390/foods5040080.

[5]

X. Ding, J. Li, Y.L. Hou, et al., Comparative analysis of macrophage transcriptomes reveals a key mechanism of the immunomodulatory activity of Tricholoma matsutake polysaccharide, Oncol. Rep. 36 (2016) 503-513. https://doi.org/10.3892/or.2016.4814.

[6]

Y.L. Hou, M. Wang, D.Q. Zhao, et al., Effect on macrophage proliferation of a novel polysaccharide from Lactarius deliciosus (L. ex Fr.) Gray, Oncol. Lett. 17 (2019) 2507-2515. https://doi.org/10.3892/ol.2018.9879.

[7]

G.L. Song, Q.Z. Du, Structure characterization and antitumor activity of an α β-glucan polysaccharide from Auricularia polytricha, Food Res. Int. 45 (2012) 381-387. https://doi.org/10.1016/j.foodres.2011.10.035.

[8]

Y.X. Sun, H.T. Liang, G.Z. Cai, et al., Sulfated modification of the water-soluble polysaccharides from Polyporus albicans mycelia and its potential biological activities, Int. J. Biol. Macromol. 44 (2009) 14-17. https://doi.org/10.1016/j.ijbiomac.2008.09.010.

[9]

L. Zhang, Y. Hu, X.Y. Duan, et al., Characterization and antioxidant activities of polysaccharides from thirteen Boletus mushrooms, Int. J. Biol. Macromol. 113 (2018) 1-7. https://doi.org/10.1016/j.ijbiomac.2018.02.084.

[10]

Q.Z. Li, X.F. Wang, X.W. Zhou, Recent status and prospects of the fungal immunomodulatory protein family, Crit. Rev. Biotechnol. 31 (2011) 365-375. https://doi.org/10.3109/07388551.2010.543967.

[11]

X.H. Kong, J.C. Zhang, X. Han, et al., High-yield production in Escherichia coli of fungal immunomodulatory protein isolated from Flammulina velutipes and its bioactivity assay in vivo, Int. J. Mol. Sci. 14 (2013) 2230-2241. https://doi.org/10.3390/ijms14022230.

[12]

Q.Z. Li, Y.Z. Zheng, X.W. Zhou, Fungal immunomodulatory proteins: characteristic, potential antitumor activities and their molecular mechanisms, Drug Discov. Today, 24 (2019) 307-314. https://doi.org/10.1016/j.drudis.2018.09.014.

[13]

Y.X. Zhao, W.F. Zheng, Deciphering the antitumoral potential of the bioactive metabolites from medicinal mushroom Inonotus obliquus, J. Ethnopharmacol. 265 (2021) 113321. https://doi.org/10.1016/j.jep.2020.113321.

[14]

Q.X. Yue, F.B. Xie, S.H. Guan, et al., Interaction of Ganoderma triterpenes with doxorubicin and proteomic characterization of the possible molecular targets of Ganoderma triterpenes, Canc. Sci. 99 (2008) 1461-1470. https://doi.org/10.1111/j.1349-7006.2008.00824.x.

[15]

Y.H. Gao, S.F. Zhou, G.L. Chen, et al., A phase Ⅰ/Ⅱ study of a Ganoderma lucidum (Curt: Fr.) P. Karst. Extract (ganopoly) in patients with advanced cancer, Int. J. Med. Mushrooms, 4 (2003) 207-214. https://doi.org/10.1615/IntJMedMushr.v4.i3.30.

[16]

X.Y. Zhang, S.W. Zhao, X.B. Song, et al., Inhibition effect of glycyrrhiza polysaccharide (GCP) on tumor growth through regulation of the gut microbiota composition, J. Pharmacol. Sci. 137 (2018) 324-332. https://doi.org/10.1016/j.jphs.2018.03.006.

[17]

F.F. Wu, C.H. Zhou, D.D. Zhou, et al., Structural characterization of a novel polysaccharide fraction from Hericium erinaceus and its signaling pathways involved in macrophage immunomodulatory activity, J. Funct. Foods 37 (2017) 574-585. https://doi.org/10.1016/j.jff.2017.08.030.

[18]

N.L. Li, J.C. Fang, J.H. Wong, et al., Isolation and identification of a novel polysaccharide-peptide complex with antioxidant, anti-proliferative and hypoglycemic activities from the abalone mushroom, Biosci. Rep. 32 (2012) 221-228. https://doi.org/10.1042/BSR20110012.

[19]

L.J. Li, M.Y. Li, Y.T. Li, et al., Adjuvant activity of Sargassum pallidum polysaccharides against combined newcastle disease, infectious bronchitis and avian influenza inactivated vaccines, Mar. Drugs 10 (2012) 2648-2660. https://doi.org/10.3390/md10122648.

[20]

A. Plato, S.E. Hardison, G.D. Brown, Pattern recognition receptors in antifungal immunity, Semin. Immunopathol. 37 (2015) 97-106. https://doi.org/10.1007/s00281-014-0462-4.

[21]

J. Martel, Y.F. Ko, D.M. Ojcius, et al., Immunomodulatory properties of plants and mushrooms, Trends Pharmacol. Sci. 38 (2017) 967-981. https://doi.org/10.1016/j.tips.2017.07.006.

[22]

X. Meng, H.B. Liang, L.X. Luo, Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities, Carbohydr. Res. 424 (2016) 30-41. https://doi.org/10.1016/j.carres.2016.02.008.

[23]

G. Chihara, Y. Maeda, J. Hamuro, et al., Inhibition of mouse sarcoma 180 by polysaccharides from Lentinus edodes (Berk.) Sing, Nature 222 (1969) 687-688. https://doi.org/10.1038/222687a0.

[24]

L.P. Sun, X.J. Su, Y.L. Zhuang, Preparation, characterization and antiglycation activities of the novel polysaccharides from Boletus snicus, Int. J. Biol. Macromol. 92 (2016) 607-614. https://doi.org/10.1016/j.ijbiomac.2016.07.014.

[25]

S.A. Heleno, L. Barros, M.J. Sousa, et al., Targeted metabolites analysis in wild Boletus species, LWT-Food Sci. Technol. 44 (2011) 1343-1348. https://doi.org/10.1016/j.lwt.2011.01.017.

[26]

G.E. Pelin, A. Ilgaz, K. Fatih, et al., Fatty acid compositions of six wild edible mushroom species, The Scientific World Jo. 4 (2013) 163964. https://doi.org/10.1155/2013/163964.

[27]

A.Q. Zhang, N.N. Xiao, P.F. He, et al., Chemical analysis and antioxidant activity in vitro of polysaccharides extracted from Boletus edulis, Int. J. Biol. Macromol. 49 (2011) 1092-1095. https://doi.org/10.1016/j.ijbiomac.2011.09.005.

[28]

A.Q. Zhang, Y. Liu, N.N. Xiao, et al., Structural investigation of a novel heteropolysaccharide from the fruiting bodies of Boletus edulis, Food Chem. 146 (2014) 334-338. https://doi.org/10.1016/j.foodchem.2013.09.073.

[29]

D. Wang, S.Q. Sun, W.Z. Wu, et al., Characterization of a water-soluble polysaccharide from Boletus edulis and its antitumor and immunomodulatory activities on renal cancer in mice, Carbohydr. Polym. 105 (2014) 127-134. https://doi.org/10.1016/j.carbpol.2013.12.085.

[30]

Q.H. You, X.L. Yin, C.W. Ji, Pulsed counter-current ultrasound-assisted extraction and characterization of polysaccharides from Boletus edulis, Carbohydr. Polym. 101 (2014) 379-385. https://doi.org/10.1016/j.carbpol.2013.09.031.

[31]

A.X. Luo, A.S. Luo, J.D., Huang, et al., Purification, characterization and antioxidant activities in vitro and in vivo of the polysaccharides from Boletus edulis Bull, Molecules, 17 (2012) 8079-8090. https://doi.org/10.3390/molecules17078079.

[32]

A. Pessoa, C.F. Miranda, M. Batista, et al., Action of bioactive compounds in cellular oxidative response, Energy Rep. 6 (2020) 891-896. https://doi.org/10.1016/j.egyr.2019.11.035.

[33]

Y.L. Hou, X. Ding, W.R. Hou, et al., Pharmacological evaluation for anticancer and immune activities of a novel polysaccharide isolated from Boletus speciosus Frost, Mol. Med. Rep. 9 (2014) 1337-1344. https://doi.org/10.3892/mmr.2014.1976.

[34]

X. Ding, Y.L. Hou, W.R. Hou, Structure elucidation and antioxidant activity of a novel polysaccharide isolated from Boletus speciosus Forst, Int. J. Biol. Macromol. 50 (2012) 613-618. https://doi.org/10.1016/j.ijbiomac.2012.01.021.

[35]

H.Q. Zhu, X. Ding, Y.L. Hou, et al., Structure elucidation and bioactivities of a new polysaccharide from Xiaojin Boletus speciosus Frost, Int. J. Biol. Macromol. 126 (2019) 697-716. https://doi.org/10.1016/j.ijbiomac.2018.12.216.

[36]

J.Q. Zheng, J.Z. Wang, C.W. Shi, et al., Characterization and antioxidant activity for exopolysaccharide from submerged culture of Boletus aereus, Process Biochem. 49 (2014) 1047-1053. https://doi.org/10.1016/j.procbio.2014.03.009.

[37]

L. Zhang, Y.X. Liu, Y. Ke, et al., Antidiabetic activity of polysaccharides from Suillellus luridus in streptozotocin-induced diabetic mice, Int. J. Biol. Macromol. 119 (2018) 134-140. https://doi.org/10.1016/j.ijbiomac.2018.07.109.

[38]

Y.T. Liu, Y.X. Liu, M.Y. Zhang, et al., Structural characterization of a polysaccharide from Suillellus luridus and its antidiabetic activity via Nrf2/HO-1 and NF-κB pathways, Int. J. Biol. Macromol. 162 (2020) 935-945. https://doi.org/10.1016/j.ijbiomac.2020.06.212.

[39]

Y.M. Li, L.J. You, F. Dong, et al., Structural characterization, antiproliferative and immunoregulatory activities of a polysaccharide from Boletus Leccinum rugosiceps, Int. J. Biol. Macromol. 157 (2020) 106-118. https://doi.org/10.1016/j.ijbiomac.2020.03.250.

[40]

Y.L. Hou, X. Ding, W.R. Hou, et al., Anti-microorganism, anti-tumor, and immune activities of a novel polysaccharide isolated from Tricholoma matsutake, Pharmacogn. Mag. 9 (2013) 244-249. https://doi.org/10.4103/0973-1296.113278.

[41]

Y.S. Jing, L.J. Huang, W.J. Lv, et al., Structure characterization of a novel polysaccharide from pulp tissues of Litchi chinensis and its immnunomodulatory activity, J. Agric. Food Chem. 62 (2014) 902-911. https://doi.org/10.1021/jf404752c.

[42]

P. Maity, A.K. Nandi, D.K. Manna, et al., Structural characterization and antioxidant activity of a glucan from Meripilus giganteus, Carbohydr. Polym. 157 (2017) 1237-1245. https://doi.org/10.1016/j.carbpol.2016.11.006.

[43]

L. Liu, X. Ding, Y.L. Hou, Structural characterization and immune regulation of a new heteropolysaccharide from Catathelasma imperiale (Fr.) Sing, Phcog. Mag. 15 (2019) 621-630. https://doi.org/10.4103/pm.pm-673-18.

[44]

L. Liu, J. Jia, G. Zeng, et al., Studies on immunoregulatory and anti-tumor activities of a polysaccharide from Salvia miltiorrhiza Bunge, Carbohydr. Polym. 92 (2013) 479-483. https://doi.org/10.1016/j.carbpol.2012.09.061.

[45]

T.T. Zheng, D.H. Gu, X.F. Wang, et al., Purification, characterization and immunomodulatory activity of polysaccharides from Leccinum crocipodium (Letellier.) Watliag, Int. J. Biol. Macromol. 148 (2020) 647-656. https://doi.org/10.1016/j.ijbiomac.2020.01.155.

[46]

S.M.A. Razavi, S.W. Cui, Q.B. Guo, et al., Some physicochemical properties of sage (Salvia macrosiphon) seed gum, Food Hydrocoll. 35 (2014) 453-462. https://doi.org/10.1016/j.foodhyd.2013.06.022.

[47]

N.F. Wang, G.G. Jia, X.F. Wang, et al., Fractionation, structural characteristics and immunomodulatory activity of polysaccharide fractions from asparagus (Asparagus officinalis L.) skin, Carbohydr. Polym. 256 (2021) 117514. https://doi.org/10.1016/j.carbpol.2020.117514.

[48]

X. Meng, H.B. Liang, L.X. Luo, Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities, Carbohydr. Res. 424 (2016) 30-41. https://doi.org/10.1016/j.carres.2016.02.008.

[49]

A.E.E. Hesham, H.K. Rajni, Mushroom immunomodulators: unique molecules with unlimited applications, Trends Biotechnol. 31 (2013) 668-677. https://doi.org/10.1016/j.tibtech.2013.09.003.

[50]

Y. Adachi, N. Ohno, M. Ohsawa, et al., Change of biological activities of (1→3)-β-D-glucan from Grifola frondosa upon molecular weight reduction by heat treatment, Chem. Pharm. Bull. 38 (1990) 477-481. https://doi.org/10.1248/cpb.38.477.

[51]

M. Zhang, S.W. Cui, P.C.K. Cheung, et al., Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity, Trends Food Sci. Tech. 18 (2007) 4-19. https://doi.org/10.1016/j.tifs.2006.07.013.

[52]

S.P. Wasser, Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides, Appl. Microbiol. Biotechnol. 60 (2002) 258-274. https://doi.org/10.1007/s00253-002-1076-7.

[53]

H. Zhang, P. Zou, H.T. Zhao, et al., Isolation, purification, structure and antioxidant activity of polysaccharide from pinecones of Pinus koraiensis, Carbohydr. Polym. 251 (2021) 117078. https://doi.org/10.1016/j.carbpol.2020.117078.

[54]

F.K. Zeng, W.B. Chen, P. He, et al., Structural characterization of polysaccharides with potential antioxidant and immunomodulatory activities from Chinese water chestnut peels, Carbohydr. Polym. 246 (2020) 116551. https://doi.org/10.1016/j.carbpol.2020.116551.

[55]

Y.X. Sun, J.C. Liu, Purification, structure and immunobiological activity of a water-soluble polysaccharide from the fruiting body of Pleurotus ostreatus, Bioresour. Technol. 100 (2009) 983-986. https://doi.org/10.1016/j.biortech.2008.06.036.

[56]

L.B. Ye, J.S. Zhang, X.J. Ye, et al., Structural elucidation of the polysaccharide moiety of a glycopeptide (GLPCW-Ⅱ) from Ganoderma lucidum fruiting bodies, Carbohydr. Res. 343 (2008) 746-752. https://doi.org/10.1016/j.carres.2007.12.004.

[57]

M.Q. Zhu, R.M. Huang, P. Wen, et al., Structural characterization and immunological activity of pectin polysaccharide from kiwano (Cucumis metuliferus) peels, Carbohydr. Polym. 254 (2021) 117371. https://doi.org/10.1016/j.carbpol.2020.117371.

[58]

W.Z. Liao, Z. Luo, D. Liu, et al., Structure characterization of a novel polysaccharide from Dictyophora indusiata and its macrophage immunomodulatory activities, J. Agric. Food Chem. 63 (2015) 535-544. https://doi.org/10.1021/jf504677r.

[59]

X.N. Zhao, Y.G. Wang, Y. Peng, et al., Effects of polysaccharides from Platycodon grandiflorum on immunity-enhancing activity in vitro, Molecules 22 (2017) 1918-1929. https://doi.org/10.3390/molecules22111918.

[60]

S.Y. Su, X. Ding, L. Fu, et al., Structural characterization and immune regulation of a novel polysaccharide from Maerkang Lactarius deliciosus Gray, Int. J. Mol. Med. 44 (2019) 713-724. https://doi.org/10.3892/ijmm.2019.4219.

[61]

Y.L. Hou, X. Ding, W.R. Hou, et al., Structure elucidation and antitumor activity of a new polysaccharide from Maerkang Tricholoma matsutake, Int. J. Biol. Sci. 13 (2017) 935-948. https://doi.org/10.7150/ijbs.18953.

[62]

L.X. Huang, M.Y. Shen, T. Wu, et al., Mesona chinensis Benth polysaccharides protect against oxidative stress and immunosuppression in cyclophosphamide-treated mice via MAPKs signal transduction pathways, Int. J. Biol. Macromol. 152 (2020) 766-774. https://doi.org/10.1016/j.ijbiomac.2020.02.318.

[63]

B.X. Li, W.Y. Li, Y.B. Tian, et al., Polysaccharide of Atractylodes macrocephala Koidz enhances cytokine secretion by stimulating the TLR4-MyD88-NF-κB signaling pathway in the mouse spleen, J. Med. Food 22 (2019) 937-943. https://doi.org/10.1089/jmf.2018.4393.

[64]

G.P. Mariela, F. Lyvia, A.M. Mircea, et al., Neutral Red versus MTT assay of cell viability in the presence of copper compounds, Anal. Biochem. 535 (2017) 43-46. https://doi.org/10.1016/j.ab.2017.07.027.

[65]

P.A. Dunn, W.R. Eaton, E.D. Lopatin, et al., Lymphokine-stimulated macrophage phagocytosis of fluorescent microspheres: a rapid new assay, J. Immunol. Methods, 64 (1983) 71-83. https://doi.org/10.1016/0022-1759(83)90385-X.

[66]

J.N. Anastas, R.T. Moon, WNT signalling pathways as therapeutic targets in cancer, Nat. Rev. Cancer, 13 (2013) 11-26. https://doi.org/10.1038/nrc3419.

[67]

S. Jain, G. Chakraborty, R. Raja, et al., Prostaglandin E2 regulates tumor angiogenesis in prostate cancer, Cancer Res. 68 (2008) 7750-7759. https://doi.org/10.1158/0008-5472.CAN-07-6689.

[68]

I.M.N. Wortel, L.T. van der Meer, M.S. Kilberg, et al., Surviving stress: modulation of ATF4-mediated stress responses in normal and malignant cells, Trends Endocrinol. Metab. 28 (2017) 794-806. https://doi.org/10.1016/j.tem.2017.07.003.

[69]

P. Garg, S. Pandey, S. Hoon, et al., JNK2 silencing and caspase-9 activation by hyperosmotic polymer inhibits tumor progression, Int. J. Biol. Macromol. 120 (2018) 2215-2224. https://doi.org/10.1016/j.ijbiomac.2018.07.019.

[70]

S. Fransson, A. Uv, H. Eriksson, et al., p37 is a new isoform of PI3K p110 that increases cell proliferation and is overexpressed in tumors, Oncogene, 31 (2012) 3277-3286. https://doi.org/10.1038/onc.2011.492.

[71]

S.B. Liu, L.F. Lu, X.B. Lu, et al., Zebrafish FGFR3 is a negative regulator of RLR pathway to decrease IFN expression, Fish Shellfish Immunol. 92 (2019) 224-229. https://doi.org/10.1016/j.fsi.2019.06.002.

[72]

R.R. Ji, R.W. Gereau, M. Malcangio, et al., MAP kinase and pain, Brain Res. Rev. 60 (2009) 135-148. https://doi.org/10.1016/j.brainresrev.2008.12.011.

[73]

J.S. Arthur, S.C. Ley, Mitogen-activated protein kinases in innate immunity, Nat. Rev. Immunol. 13 (2013) 679-692. https://doi.org/10.1038/nri3495.

[74]

X.C. Wang, M.X. Fan, X.Y. Chu, et al., Deoxynivalenol induces toxicity and apoptosis in piglet hippocampal nerve cells via the MAPK signaling pathway, Toxicon, 155 (2018) 1-8. https://doi.org/10.1016/j.toxicon.2018.09.006.

[75]

C. Frelin, Y. Ofran, J. Ruston, et al., Grb2 regulates the proliferation of hematopoietic stem and progenitors cells, BBA-Mol. Cell Res. 1864 (2017) 2449-2459. https://doi.org/10.1016/j.bbamcr.2017.09.018.

[76]

S.A. Moodie, B.M. Willumsen, M.J. Weber, et al., Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase, Science 260 (1993) 1658-1661. https://doi.org/10.1126/science.8503013.

[77]

M.M. Gounder, D.B. Solit, W.D. Tap, Trametinib in histiocytic sarcoma with an activating MAP2K1 (MEK1) mutation, N. Engl. J. Med. 378 (2018) 1945-1947. https://doi.org/10.1056/NEJMc1511490.

[78]

A.E.V. Quaglio, A.C.S. Castilho, L.C.D. Stasi, Experimental evidence of MAP kinase gene expression on the response of intestinal anti-inflammatory medicines, Life Sci. 136 (2015) 60-66. https://doi.org/10.1016/j.lfs.2015.06.012.

[79]

M.S. Hayden, S. Ghosh, Shared principles in NF-kappa B signaling, Cell 132 (2008) 344-362. https://doi.org/10.1016/j.cell.2008.01.020.

[80]

C. Wu, T. Yang, Y.M. Liu, et al., ARNT/HIF-1 beta links high-risk 1q21 gain and microenvironmental hypoxia to drug resistance and poor prognosis in multiple myeloma, Cancer Med. 7 (2018) 3899-3911. https://doi.org/10.1002/cam4.1596.

[81]

P.X. Liu, H.L. Cheng, T.M. Roberts, et al., Targeting the phosphoinositide 3-kinase pathway in cancer, Nat. Rev. Drug Discov. 8 (2009) 627-644. https://doi.org/10.1038/nrd2926.

[82]

R.O. Hynes, Integrins: bidirectional, allosteric signaling machines, Cell 110 (2002) 673-687. https://doi.org/10.1016/S0092-8674(02)00971-6.

[83]

F.J. Sulzmaier, C. Jean, D.D. Schlaepfer, FAK in cancer: mechanistic findings and clinical applications, Nat. Rev. Cancer, 14 (2014) 598-610. https://doi.org/10.1038/nrc3792.

[84]

F. Liu, Y.F. Xia, A.S. Parker, et al., Ikk biology, Immunol. Rev. 246 (2012) 239-253. https://doi.org/10.1111/j.1600-065x.2012.01107.x.

[85]

E. Laag, M. Majidi, M. Cekanova, et al., NNK activates ERK1/2 and CREB/ATF-1 via beta-1-AR and EGFR signaling in human lung adenocarcinoma and small airway epithelial cells, Int. J. Cancer, 119 (2006) 1547-1552. https://doi.org/10.1002/ijc.21987.

[86]

I. Fiskvik, K. Beiske, J. Delabie, et al., Combining myc, bcl2 and tp53 gene and protein expression alterations improves risk stratification in diffuse large B-cell lymphoma, Leuk. Lymphoma 56 (2015) 1742-1749. https://doi.org/10.3109/10428194.2014.970550.

[87]

M.B. Kastan, Q.M. Zhan, W.S. El-Deiry, et al., A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia, Cell 71 (1992) 587-597. https://doi.org/10.1016/0092-8674(92)90593-2.

[88]

A. Miyar, I. Habibi, A. Ebrahimi, et al., Predictive and prognostic value of TLR9 and NFKBIA gene expression as potential biomarkers for human glioma diagnosis, J. Neurol. Sci. 368 (2016) 314-317. https://doi.org/10.1016/j.jns.2016.07.046.

[89]

C.Z. Zhou, R.F. Wang, D.L. Cheng, et al., FLT3/FLT3L-mediated CD103+ dendritic cells alleviates hepatic ischemia-reperfusion injury in mice via activation of treg cells, Biomed. Pharmacother. 118 (2019) e109031. https://doi.org/10.1016/j.biopha.2019.109031.

[90]

M. Simons, E. Gordon, L.C. Welsh, Mechanisms and regulation of endothelial VEGF receptor signaling, Nat. Rev. Mol. Cell Biol. 17 (2016) 611-625. https://doi.org/10.1038/nrm.2016.87.

[91]

X.L. Ji, C.Y. Hou, Y.Z. Yan, et al., Comparison of structural characterization and antioxidant activity of polysaccharides from jujube (Ziziphus jujuba Mill.) fruit, Int. J. Biol. Macromol. 149 (2020) 1008-1018. https://doi.org/10.1016/j.ijbiomac.2020.02.018.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 24 July 2021
Revised: 17 August 2021
Accepted: 30 September 2021
Published: 07 September 2022
Issue date: March 2023

Copyright

© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

Acknowledgements

This project was supported by the Open Project Program of Irradiation Preservation Technology Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy (FZBC2020009), the Open Research Fund Program of Departmental and Municipal Co-construction of Crops Genetic Improvement of Hill Land Key Laboratory of Sichuan Province (2021CGIHL02), Science and Technology Support Project of Nanchong Science and Technology Bureau of Sichuan Province (20YFZJ0053 and 20YFZJ0054), and the Sericulture Innovation Team of Sichuan Province (SCCXTD-2021-17).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return