Journal Home > Volume 12 , Issue 2

This is the first report on a polysaccharide (RCJ2-Ⅰb) isolated from Rosa Chinensis Flos. RCJ2-Ⅰb was obtained through the extraction with water, precipitation with ethanol, separation with DEAE-52 column and purification with DEAE-Sepharose Fast Flow column and Sephadex G100 column. GC, FT-IR and NMR analyses revealed that RCJ2-Ⅰb (3.3 kDa) was a 1,4-linked polymannuronic acid containing substantial β-D-anomers units. The anticoagulant effect of RCJ2-Ⅰb evaluated by using rabbit ear venous blood and an acute blood stasis rat model showed that RCJ2-Ⅰb had obvious anticoagulant activity in regulating endogenous and exogenous coagulation pathways and reducing serum thromboxane B2 and endothelin-1. In addition, RCJ2-Ⅰb could also increase the number of Lactobacillus and Escherichia coli. As a result, RCJ2-Ⅰb has the potential to inhibit thrombosis and maintain the intestinal environment.


menu
Abstract
Full text
Outline
About this article

Structural characteristics, anticoagulant and antithrombotic mechanism of a novel polysaccharide from Rosa Chinensis Flos

Show Author's information Xiaofeng Zhanga,b,1Zhenhua Lianga,b,1Geoffrey Ivan Neil WaterhousecShengjun JiangaDongxiao Sun-WaterhousecJinmei Wanga,bChangyang Maa,dWenyi Kanga,b,d( )
National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
Kaifeng Key Laboratory of Functional Components in Health Food, Kaifeng 475004, China

1 These authors contributed equally to this work.Peer review under responsibility of KeAi Communications Co., Ltd.]]>

Abstract

This is the first report on a polysaccharide (RCJ2-Ⅰb) isolated from Rosa Chinensis Flos. RCJ2-Ⅰb was obtained through the extraction with water, precipitation with ethanol, separation with DEAE-52 column and purification with DEAE-Sepharose Fast Flow column and Sephadex G100 column. GC, FT-IR and NMR analyses revealed that RCJ2-Ⅰb (3.3 kDa) was a 1,4-linked polymannuronic acid containing substantial β-D-anomers units. The anticoagulant effect of RCJ2-Ⅰb evaluated by using rabbit ear venous blood and an acute blood stasis rat model showed that RCJ2-Ⅰb had obvious anticoagulant activity in regulating endogenous and exogenous coagulation pathways and reducing serum thromboxane B2 and endothelin-1. In addition, RCJ2-Ⅰb could also increase the number of Lactobacillus and Escherichia coli. As a result, RCJ2-Ⅰb has the potential to inhibit thrombosis and maintain the intestinal environment.

Keywords: Intestinal flora, Rosa Chinensis Flos, Polysaccharide isolation, Antithrombotic activity

References(49)

[1]

J. Mlcek, O. Rop, Fresh edible flowers of ornamental plants: a new source of nutraceutical foods, Trends Food Sci. Technol. 22 (2011) 561-569. https://doi.org/10.1016/j.tifs.2011.04.006.

[2]

H.Y. Liu, L.Y. Wang, C.H. Jia, et al., A study on production of Chinese Rose yoghurt, Food Res. 32 (2011) 74-77. https://doi.org/10.3969/j.issn.1005-6521.2011.12.021.

[3]

O. Rop, J. Mlcek, T. Jurikova, et al., Edible flowers-a new promising source of mineral elements in human nutrition, Molecules 17 (2012) 6672-6683. https://doi.org/10.3390/molecules17066672.

[4]

C.W. Barash, Edible Flowers: Desserts & Drinks, Fulcrum Publishing, Golden, 1997.

[5]

F. Wang, Y.L. Yang, Nutrient analysis of edible Rosa chinensu, J. Shanxi Agricultural University (Natural Science Edition) 26 (2006) 184-185. https://doi.org/10.3969/j.issn.1671-8151.2006.02.023.

[6]

L. Zhang, H. Lin, W. Liu, et al., Antifungal activity of the ethanol extract from flos rosae chinensis with activity against fluconazole-resistant clinical Candida, Evid-Based. Compl. Alt. 2017 (2017) 1-10. https://doi.org/10.1155/2017/4780746.

[7]
C.P. Commission, Pharmacopoeia of the People's Republic of China, China, 2015.
[8]

X. Liu, P. Du, X. Liu, et al., Anticoagulant properties of a green algal rhamnan-type sulfated polysaccharide and its low-molecular-weight fragments prepared by mild acid degradation, Mar. Drugs 16 (2018) 445. https://doi.org/10.3390/md16110445.

[9]

Y. Song, M. Zhu, H. Hao, et al., Structure characterization of a novel polysaccharide from Chinese wild fruits (Passiflora foetida) and its immune-enhancing activity, Int. J. Biol. Macromol. 136 (2019) 324-331. https://doi.org/10.1016/j.ijbiomac.2019.06.090.

[10]

P. Xie, Y. Zhang, X. Wang, et al., Antithrombotic effect and mechanism of Rubus spp. Blackberry, Food Funct. 8 (2017) 2000-2012. https://doi.org/10.1039/C6FO01717G.

[11]

Z.H. Yin, Z.H. Liang, C.Q. Li, et al., Immunomodulatory effects of polysaccharides from edible fungus: a review, Food Sci. Hum. Well. 10 (2021) 393-400. http://doi.org/10.1016/j.fshw.2021.04.001.

[12]

J. Wang, P. Lian, Q. Yu, et al., Antithrombotic mechanism of polysaccharides in Blackberry (Rubus spp.) seeds, Food Nutr. Res. 61 (2017) 1-10. https://doi.org/10.1080/16546628.2017.1379862.

[13]

L. Wang, X. Zhang, Y. Niu, et al., Anticoagulant activity of two novel polysaccharides from flowers of Apocynum venetum L., Int. J. Biol. Macromol. 124 (2019) 1230-1237. https://doi.org/10.1016/j.ijbiomac.2018.12.015.

[14]

D. Sun-Waterhouse, B.G. Smith, C.J. O'Connor, et al., Effect of raw and cooked onion dietary fibre on the antioxidant activity of ascorbic acid and quercetin, Food Chem. 111 (2008) 580-585. https://doi.org/10.1016/j.foodchem.2008.04.023.

[15]

C.Q. Li, M.Y. Hu, S.J. Jiang, et al., Evaluation procoagulant activity and mechanism of astragalin, Molecules 25 (2020) 1-16. https://doi.org/10.3390/molecules25010177.

[16]

Z.H. Liang, K.W. Zheng, Q.H. Zhao, et al., Structural identification and coagulation effect of Flammulina velutipes polysaccharides. Appl. Sci. 11 (2021) 1736-1742. https://doi.org/10.3390/app11041736.

[17]

J. Wang, P. Lian, Q. Yu, et al., Purification, characterization and procoagulant activity of polysaccharides from Angelica dahurice roots, Chem. Cent. J. 11 (2017) 1-10. https://doi.org/10.1186/s13065-017-0243-y.

[18]

A.S. Sivam, D. Sun-Waterhouse, C.O. Perera, et al., Exploring the interactions between blackcurrant polyphenols, pectin and wheat biopolymers in model breads; a FTIR and HPLC investigation, Food Chem. 131 (2012) 802-810. https://doi.org/10.1016/j.foodchem.2011.09.047.

[19]

Z.H. Liang, M.M. Song, Z.H. Yin, et al., Structural characterization and anticoagulant activity of homogalacturonan from durian peel, J. Mol. Struct. 1248 (2022) 1-12. https://doi.org/10.1016/j.molstruc.2021.131467.

[20]

A.S. Sivam, D. Sun-Waterhouse, C.O. Perera, et al., Application of FT-IR and Raman spectroscopy for the study of biopolymers in breads fortified with fibre and polyphenols, Food Res. Int. 50 (2013) 574-585. https://doi.org/10.1016/j.foodres.2011.03.039.

[21]

H.K. Jeong, D. Lee, H.P. Kim, et al., Structure analysis and antioxidant activities of an amylopectin-type polysaccharide isolated from dried fruits of Terminalia chebula, Carbohyd. Polym. 211 (2019) 100-108. https://doi.org/10.1016/j.carbpol.2019.01.097.

[22]

J. Valles, A. Lago, A. Moscardo, et al., TXA2 synthesis and COX1-independent platelet reactivity in aspirin-treated patients soon after acute cerebral stroke or transient ischaemic attack. Thrombosis Research: An International Journal on Vascular Obstruction, Hemor. Hemost. 132 (2013) 211-216. https://doi.org/10.1016/j.thromres.2013.06.010.

[23]

C. Wang, S.S. Shi, Q.M. Hong, et al., Isolation, purification and structural analysis of polymannuronic acid from Undaria pinnatifida, Chem. J. Chin. Universities 30 (2009) 2189-2192. https://doi.org/10.3321/j.issn:0251-0790.2009.11.018.

[24]

Y. Zhang, T. Zhou, H. Wang, et al., Structural characterization and in vitro antitumor activity of an acidic polysaccharide from Angelica sinensis (Oliv.) Diels, Carbohyd. Polym. 147 (2016) 401-408. https://doi.org/10.1016/j.carbpol.2016.04.002.

[25]

E. Malinowska, M. Klimaszewska, T. Strczek, et al., Selenized polysaccharides–Biosynthesis and structural analysis, Carbohyd. Polym. 198 (2018) 407-417. https://doi.org/10.1016/j.carbpol.2018.06.057.

[26]

F. Lai, Q. Wen, L. Li, et al., Antioxidant activities of water-soluble polysaccharide extracted from mung bean (Vigna radiata L.) hull with ultrasonic assisted treatment, Carbohyd. Polym. 81 (2010) 323-329. https://doi.org/10.1016/j.carbpol.2010.02.011.

[27]

H. Komiyama, A. Kato, H. Aimi, et al., Chemical structure of kenaf xylan, Carbohyd. Polym. 72 (2008) 638-645. https://doi.org/10.1016/j.carbpol.2007.10.003.

[28]

L. Chiarini, P. Cescutti, L. Drigo, et al., Exopolysaccharides produced by Burkholderia cenocepacia recA lineages ⅢA and ⅢB, J. Cyst. Fibros. 3 (2004) 165-172. https://doi.org/10.1016/j.jcf.2004.04.004.

[29]

H. Zhang, S. Nie, S.W. Cui, et al., Characterization of a bioactive polysaccharide from Ganoderma atrum: re-elucidation of the fine structure, Carbohyd. Polym. 158 (2017) 58-67. https://doi.org/10.1016/j.carbpol.2016.11.088.

[30]

A.G. Walton, J. Blackwell, The Polysaccharides, Academic Press, New York, 1982. https://doi.org/10.1016/B978-0-12-734350-1.50015-1.

DOI
[31]

U.K. Jana, N. Kango, Characteristics and bioactive properties of mannooligosaccharides derived from agro-waste mannans, Int. J. Biol. Macromol. 149 (2020) 931-940. https://doi.org/10.1016/j.ijbiomac.2020.01.304.

[32]

H. Grasdalen, 13C-NMR studies of monomeric composition and sequence in alginate, Carbohyd. Res. 89 (1981) 179-191. https://doi.org/10.1016/S0008-6215(00)85243-X.

[33]

E. Westerlund, P. Åman, R.E. Andersson, et al., Investigation of the distribution of methyl ester groups in pectin by high-field 13C NMR, Carbohyd. Polym. 14 (1990) 179-187. https://doi.org/10.1016/0144-8617(90)90029-R.

[34]

C.N. Jol, T.G. Neiss, B. Penninkhof, et al., A novel high-performance anion-exchange chromatographic method for the analysis of carrageenans and agars containing 3,6-anhydrogalactose, Anal. Biochem. 268 (1999) 213-222. https://doi.org/10.1006/abio.1998.3059.

[35]

J.M. Igartuburu, E. Pando, F. Rodríguez Luis, et al., A hemicellulose B fraction from grape skin (Vitis vinifera, Palomino variety), J. Nat. Prod. 64 (2001) 1174-1178. https://doi.org/10.1021/np000363c.

[36]

W.A. Bubb, NMR spectroscopy in the study of carbohydrates: characterizing the structural complexity, Concept. Magn. Reson. B. 19 (2003) 1-19. https://doi.org/10.1002/cmr.a.10080.

[37]

L. Yang, L.M. Zhang, Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources, Carbohyd. Polym. 76 (2009) 349-361. https://doi.org/10.1016/j.carbpol.2008.12.015.

[38]

N. He, P. Wang, Y. Niu, et al., Evaluation antithrombotic activity and action mechanism of myricitrin, Ind. Crop. Prod. 129 (2019) 536-541. https://doi.org/10.1016/j.indcrop.2018.12.036.

[39]

S. Cao, X. He, L. Qin, et al., Anticoagulant and antithrombotic properties in vitro and in vivo of a novel sulfated polysaccharide from marine green alga Monostroma nitidum, Mar. Drugs 17 (2019) 247-256. https://doi.org/10.3390/md17040247.

[40]

L. Cui, M. Xing, L. Xu, et al., Antithrombotic components of Malus halliana Koehne flowers, Food Chem. Toxicol. (2018) 326-333. https://doi.org/10.1016/j.fct.2018.02.049.

[41]

S. Nishimaki, K. Seki, An imbalance between prostacyclin and thromboxane in relation to cerebral blood flow in neonates with maternal preeclampsia, Prostag. Oth. Lipid. M. 58 (1999) 43-49. https://doi.org/10.1016/S0090-6980(99)00024-6.

[42]

P. Koistinen, T. Siitonen, P.M. Ntymaa, et al., Regulation of the acute myeloid leukemia cell line OCI/AML-2 by endothelial nitric oxide synthase under the control of a vascular endothelial growth factor signaling system, Leukemia 15 (2001) 1433-1441. https://doi.org/10.1038/sj.leu.2402217.

[43]

C. Otto, M.M. Ritter, W.O. Richter, et al., Hemorrheologic abnormalities in defined primary dyslipoproteinemias with both high and low atherosclerotic risks, Metabolism. 50 (2001) 166-170. https://doi.org/10.1053/meta.2001.20192.

[44]

L.F. Li, Hemorheology detection and clinical significance, Mod. J. Integrat.Tra. Chin. Wes. Med. 14 (2005) 2482. https://doi.org/10.3969/j.issn.1673-4130.2014.10.018.

[45]

D. Wei, S. Li, N. Xian, Effects of combined use of urinary kallidinogenase on ET-1, NO, hemorrheology and clinical efficacy in patients with moderate and severe cerebral watershed infarction, Chin. J. Clin. Res. 31 (2018) 467-471. https://doi.org/10.13429/j.cnki.cjcr.2018.04.009.

[46]

S. Aburawi, B. Doro, E. Awad, Effect of ciprofloxacin on S. aureus and E. coli growth in presence of vitamin C using cup cut diffusion method, J. Pharm. Pharmacol. 7 (2019) 1-10. https://doi.org/10.17265/2328-2150/2019.08.003.

[47]

S.A. Maksoud, Some properties of purified Aspergillus sydowi plasma coagulase, Microbiol. Res. 151 (1996) 157-165. https://doi.org/10.1016/S0944-5013(96)80040-1.

[48]

J.I. Weitz, J. Hirsh, New anticoagulant drugs, Chest 119 (2001) 95-107. https://doi.org/10.1378/chest.119.1_suppl.95S.

[49]

G. Vinderola, C. Matar, G. Perdigon, Role of intestinal epithelial cells in immune effects mediated by gram-positive probiotic bacteria: involvement of toll-like receptors, Clin. Vaccine. Immunol. 12 (2005) 1075-1084. https://doi.org/10.1128/CDLI.12.9.1075-1084.2005.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 20 January 2021
Revised: 16 February 2021
Accepted: 23 March 2021
Published: 07 September 2022
Issue date: March 2023

Copyright

© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

Acknowledgements

Acknowledgment

This work was supported by Research on Precision Nutrition and Health Food, Department of Science and Technology of Henan Province (CXJD2021006), and Key Project in Science and Technology Agency of Henan Province (202102110283 and 202102110149).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return