Journal Home > Volume 12 , Issue 2

Mushrooms are experiencing a kind of renaissance as a part of the contemporary human diet. These valuable organisms are more than food, they fit in perfectly as a novel market group known as nutra-mycoceuticals. Immune-balancing mushroom dietary fibers and secondary metabolites such as polyphenols are the main focus of the healthcare industry. Wellness and cosmetic companies are increasingly using mushroom extracts rich in these ingredients. This review considers the basic molecular immunomodulatory mechanisms of action of the most commonly used mushroom dietary fibers, β-glucans. The literature data on their bioavailability, metabolic transformations, preclinical and human clinical research, and safety are discussed. Immunomodulatory mechanisms of polyphenol ingredients are also considered. These molecules present great potential in the design of the new immunity balancer formulations according to their widespread structural diversity. Finally, we draw attention to the perspectives of modern trends in mushroom nutraceutical and cosmeceutical formulations to strengthen and balance immunity.


menu
Abstract
Full text
Outline
About this article

Mushroom β-glucan and polyphenol formulations as natural immunity boosters and balancers: nature of the application

Show Author's information Maja Kozarskia( )Anita KlausaLeo van GriensvenbDragica JakovljeviccNina TodoroviccWan Abd Al Qadr Imad Wan-MohtardJovana Vunduke
Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade 11080, Serbia
Plant Research International, Wageningen University and Research Centre, Wageningen 6700 AA, the Netherlands
Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade 11000, Serbia
Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
Institute of General and Physical Chemistry, University of Belgrade, Belgrade 11158, Serbia

Abstract

Mushrooms are experiencing a kind of renaissance as a part of the contemporary human diet. These valuable organisms are more than food, they fit in perfectly as a novel market group known as nutra-mycoceuticals. Immune-balancing mushroom dietary fibers and secondary metabolites such as polyphenols are the main focus of the healthcare industry. Wellness and cosmetic companies are increasingly using mushroom extracts rich in these ingredients. This review considers the basic molecular immunomodulatory mechanisms of action of the most commonly used mushroom dietary fibers, β-glucans. The literature data on their bioavailability, metabolic transformations, preclinical and human clinical research, and safety are discussed. Immunomodulatory mechanisms of polyphenol ingredients are also considered. These molecules present great potential in the design of the new immunity balancer formulations according to their widespread structural diversity. Finally, we draw attention to the perspectives of modern trends in mushroom nutraceutical and cosmeceutical formulations to strengthen and balance immunity.

Keywords: Mushrooms, Polyphenols, β-Glucan, Immunity boosters, Superfood, Natural cosmetics

References(153)

[1]

F. Cateni, M.L. Gargano, G. Procida, et al., Mycochemicals in wild and cultivated mushrooms: nutrition and health, Phytochem. Rev. (2021). https://doi.org/10.1007/s11101-021-09748-2.

[2]

Y. Zhang, D. Wang, Y. Chen, et al., Healthy function and high valued utilization of edible fungi, Food Sci. Hum. Wellness 10 (2021) 408-420. https://doi.org/10.1016/j.fshw.2021.04.003.

[3]
S.T. Chang, P.G. Miles, The nutritional attributes of edible mushrooms, in: S.T. Chang P.G. Miles (Ed.), Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact (Second Edition), CRC Press, Boca Raton, 2004, pp. 27-36. ISBN 0-8493-1043-1 Available online from: https://sayedmaulana.files.wordpress.com/2011/02/mushrooms.pdf.
[4]

M.P. Singh, S.N. Rai, S.K. Dubey, et al., Biomolecules of mushroom: a recipe of human wellness, Crit. Rev. Biotechnol. Online ahead of print (2021) 1-18. https://doi.org/10.1080/07388551.2021.1964431.

[5]

A.T. Pandey, I. Pandey, Y. Hachenberger, et al., Emerging paradigm against global antimicrobial resistance via bioprospecting of mushroom into novel nanotherapeutics development, Trends Food Sci. Technol. 106 (2020) 333- 344. https://doi.org/10.1016/j.tifs.2020.10.025.

[6]

D. Sande, G. Pereira de Oliveira, M.A.F. e Moura, et al., Edible mushrooms as a ubiquitous source of essential fatty acids, Food Res. Int. 125 (2019) 108524. https://doi.org/10.1016/j.foodres.2019.108524.

[7]

D. Morales, A. Gil-Ramirez, F.R. Smiderle, et al., Vitamin D-enriched extracts obtained from shiitake mushrooms (Lentinula edodes) by supercritical fluid extraction and UV-irradiation, Innov. Food Sci. Emerg. Technol. 41 (2017) 330-336. http://dx.doi.org/10.1016/j.ifset.2017.04.008.

[8]

A. Gonzalez, M. Cruz, C. Losoya, et al., Edible mushrooms as a novel protein source for functional foods, Food Funct. 11 (2020) 7400-7414. https://doi.org/10.1039/D0FO01746A.

[9]

J. Vunduk, M. Kozarski, I. Djekic, et al., Effect of modified atmosphere packaging on selected functional characteristics of Agaricus bisporus, Eur. Food Res. Technol. 247 (2021) 829–838. https://doi.org/10.1007/s00217-020-03666-x.

[10]

S.N.N.S. Hashim, L.J.Schwarz, B. Danylec, et al., Recovery of ergosterol from the medicinal mushroom, Ganoderma tsugae var. Janniae, with a molecularly imprinted polymer derived from a cleavable monomer-template composite, J. Chromatogr. A 1468 (2016) 1-9. https://doi.org/10.1016/j.chroma.2016.09.004.

[11]

S. Salemi, A. Saedisomeolia, F. Azimi, et al., Optimizing the production of vitamin D in white button mushrooms (Agaricus bisporus) using ultraviolet radiation and measurement of its stability, LWT-Lebensm. Wiss. Technol. 137 (2021) 110401. https://doi.org/10.1016/j.lwt.2020.110401.

[12]

M.J. Feeney, A. Myrdal Miller, P. Roupas, Mushrooms-biologically distinct and nutritionally unique: Exploring a “Third food kingdom”, Nutr. Today 49 (2014) 301-307. https://doi.org/10.1097/NT.0000000000000063.

[13]
S.P. Plaami, M. Dekker, W. van Dokkum, et al., Functional foods: position and future perspectives, The Hague: National Council for Agricultural Research, The Hague: Council for Health Research, (2001) NRLO-rapport, nr. 2000/15E. Available online from: https://agris.fao.org/agris-search/search.do?recordID=NL2001002333.
[14]

A.K. Mohiuddin, Can medicinal mushrooms fight against SARS-CoV-2/ COVID-19? Journal of Internal Medicine: Science & Art 2 (2021) 23-24. https://doi.org/10.36013/jimsa.v2i1.57.

[15]

D. Yadav, P.S. Negi, Bioactive components of mushrooms: processing effects and health benefits, Food Res. Int. 148 (2021) 110599. https://doi.org/10.1016/j.foodres.2021.110599.

[16]

F.S. Reis, A. Martins, M.H. Vasconcelos, et al., Functional foods based on extracts or compounds derived from mushrooms, Trends Food Sci Technol. 66 (2017) 48-62. https://doi.org/10.1016/j.tifs.2017.05.010.

[17]

G. Ma, W. Yang, L. Zhao, et al., A critical review on the health promoting effects of mushrooms nutraceuticals, Food Sci. Hum. Wellness 7 (2018) 125- 133. https://doi.org/10.1016/j.fshw.2018.05.002.

[18]

J.T.G. de Carvalho, D. da Silva Baldivia, D.T.H. de Castro, et al., The immunoregulatory function of polyphenols: implications in cancer immunity, J. Nutr. Biochem. 85 (2020) 108428. https://doi.org/10.1016/j.jnutbio.2020.108428.

[19]

C. Cerletti, S. Esposito, L. Iacoviello, Edible mushrooms and beta-glucans: impact on human health, Nutrients 13 (2021) 2195. https://doi.org/10.3390/nu13072195.

[20]

I. Mironczuk-Chodakowska, K. Kujawowicz, A.M. Witkowska, Betaglucans from fungi: biological and health-promoting potential in the COVID-19 Pandemic Era, Nutrients 13 (2021) 3960. https://doi.org/10.3390/nu13113960.

[21]

H. Shakoor, J. Feehan, V. Apostolopoulos, et al., Immunomodulatory effects of dietary polyphenols, Nutrients 13(2021) 728. https://doi.org/10.3390/nu13030728.

[22]

M. Jeitler, A. Michalsen, D. Frings, et al., Significance of medicinal mushrooms in integrative oncology: a narrative review, Front. Pharmacol. 11 (2020) 580656. https://doi.org/10.3389/fphar.2020.580656.

[23]

K.D. Hyde, J. Xu, S. Rapior, et al., The amazing potential of fungi: 50 ways we can exploit fungi industrially, Fungal Divers. 97 (2019) 1-136. https://doi.org/10.1007/s13225-019-00430-9.

[24]

E.J. Murphy, C. Masterson, E. Rezoagli, et al., β-Glucan extracts from the same edible shiitake mushroom Lentinus edodes produce differential in-vitro immunomodulatory and pulmonary cytoprotective effects-implications for coronavirus disease (COVID-19) immunotherapies, Sci. Total Environ. 732 (2020) 139330. https://doi.org/10.1016/j.scitotenv.2020.139330.

[25]

P. Rangsinth, C. Sillapachaiyaporn, S. Nilkhet, Mushroom-derived bioactive compounds potentially serve as the inhibitors of SARS-CoV-2 main protease: an in silico approach, J. Tradit. Complement. Med. 11 (2021) 158- 172. https://doi.org/10.1016/j.jtcme.2020.12.002.

[26]

Y. Liu, S. Bastiaan-Net, H.J. Wichers, Current understanding of the structure and function of fungal immunomodulatory proteins, Front. Nutr. 7 (2020) 132. https://doi.org/10.3389/fnut.2020.00132.

[27]

S. Tanaka, K. Ko, K. Kino, et al., Complete amino acid sequence of an immunomodulatory protein, ling zhi-8 (LZ-8), an immunomodulator from a fungus, Ganoderma lucidium, having similarity to immunoglobulin variable regions, J. Biol. Chem. 264 (1989) 16372-16377. https://doi.org/10.1016/ S0021-9258(19)84715-4.

[28]

M. Kurakula, N.N. Raghavendra, Prospection of recent chitosan biomedical trends: evidence from patent analysis (2009–2020), Int. J. Biol. Macromol. 165 (2020) 1924-1938. https://doi.org/10.1016/j.ijbiomac.2020.10.043.

[29]

S.P. Wasser , Medicinal mushroom science: current perspectives, advances, evidences, and challenges, Biomed. J. 37 (2014) 345-356. https://doi.org/10.4103/2319-4170.138318.

[30]
Lentifom, Agarikon, Agarikon Plus, Professional medicinal mushrooms extract for cancer patient support. Available online from: https://www.zdravljeizgljiva.hr/rak-karcinom-melanom-sarkom-tumor/.
[31]
Ganoherb Organic Reishi Mushroom Powder, Available online from: https://www.ganoherb.com/ganoherb-organic-reishi-mushroom-powder- 100g-product/.
[32]
Glyca Nova. LentinanXP/Lentinex®, Available online from: http://glycanova.com/products/nutraceuticals/ lentinanxp-lentinex/.
[33]
AndoSan is a potent immue stimulating substance, Available online from: https://www.immunopharma.net/andosan.
[34]
Imunoglukan P4H®, Available online from: https://www.imunoglukan.com/ en/products.
[35]
Link Nutrition, Mushroom Plus, Available online from: https://linknutrition.com/collections/immunity/products/mushroom-plus.
[36]
Pure Health, MycoNutri Organic Mesima 60 Capsules (Phellinus linteus), Available online from: https://www.purehealthonline.co.uk/featuredproducts-245/myconutri-organic-mesima-60-capsules.html.
[37]
Concord Mushroom Supplements, Concord PSP PSK-Trametes versicolorTurkey Tail-Yunzhi-Liver Immunity Support-TCM, Available online from: http://www.concordhealth.net/product/concord-psp-psk.
[38]
MYKOTHEKE, Lion’s mane (Hericium Erinaceus) ORGANIC highly concentrated extract. Available online from: https://mykotheke.com/products/italpilz-liquide/lions-mane-hericium-erinaceus-organic-highlyconcentrated-extract-50ml/.
[39]
[40]
Murad, Invisiblur Perfecting Shield Broad Spectrum SPF 30 | PA+++, Available online from: https://www.murad.co.uk/product/invisiblurperfecting-shield-spf-30/.
[41]
Sephora, dr Andrew Weil for origins mega mushroom relief resilience soothing cream, Available online from: https://www.sephora.com/product/dr-andrew-weil-for-origins-mega-mushroom-relief-resilience-soothingcream-P443549.
[42]
GlycaNova, GanodexTM, Moisturising cream for sufferers psoriasis and eczema, Available online from: https://glycanova.com/products/.
[43]
Amazing Grace, Moisturizing and Whitening Facial Mask, Available online from: https://www.amazinggrace.co.th/product/134988-109971/moisturizing-and-whitening-facial-mask.
[44]
La Bella Figura, Gentle Enzyme Cleanser, Available online from: https://www.labellafigurabeauty.com/products/new-gentle-enzyme-cleanser.
[45]
Fragrances and Cosmetics CO, Yves Saint Laurent Temps Majeur Elixir De Nuit - Intensive Skin Supplement for the Night Skincare, Available online from: https://www.fragrancesandcosmeticsco.com/skincare/yvessaint-laurent/temps-majeur/night-care/59438/temps-majeur-elixir-de-nuitintensive-skin-supplement-for-the-night.
[46]
Aloha Medicinals-natural products, Pure Agaricus BlazeiTM-Aloha Medicinals, Available online from:https://alohamedicinals.com/product/organic-agaricus-blazei-murill-abm/.
[47]

F. Motta, M.E. Gershwin, C. Selmi, Mushrooms and immunity, J. Autoimmun. 117 (2021) 102576. https://doi.org/10.1016/j.jaut.2020.102576.

[48]
Global Medicinal Mushroom Market Report, History and Forecast 2016- 2027, Breakdown Data by Manufacturers, Key Regions, Types and Application, Report Code: QYRE-Auto-5H4690. Available online from: https://reports.valuates.com/market-reports/QYRE-Auto-5H4690/globalmedicinal-mushroom-sales.
[49]

S. Patel, A. Goyal, Recent developments in mushrooms as anti-cancer therapeutics: a review, 3 Biotech. 2 (2012) 1-15. https://doi.org/10.1007/s13205-011-0036-2.

[50]

Y. Wu, M.-H. Choi, J. Li, et al., Mushroom cosmetics: the present and future, Cosmetics 3 (2016) 22. https://doi.org/10.3390/cosmetics3030022

[51]

G. Ozkan, P. Franco, I. de Marco, et al., A review of microencapsulation methods for food antioxidants: principles, advantages, drawbacks and applications, Food Chem. 272 (2019) 494-506. https://doi.org/10.1016/j.foodchem.2018.07.205.

[52]

S. Zhao, Q. Gao, C Rong, et al., Immunomodulatory effects of edible and medicinal mushrooms and their bioactive immunoregulatory products, J. Fungi 6 (2020) 269. https://doi.org/10.3390/jof6040269.

[53]

S. Batbayar, D.H. Lee, H.W. Kim, Immunomodulation of fungal β-glucan in host defense signaling by dectin-1, Biomol. Ther. (Seoul). 20 (2012) 433- 445. https://doi.org/10.4062/biomolther.2012.20.5.433.

[54]

P. C.K. Cheung, Mini-review on edible mushrooms as source of dietary fiber: preparation and health benefits, Food Sci. Hum. Wellness 2 (2013) 162–166. https://doi.org/10.1016/j.fshw.2013.08.001.

[55]

M.S. Kozarski, A.S. Klaus, M.P. Niksic, et al., Polysaccharides of higher fungi: biological role, structure and antioxidative activity. Hem. Ind. 68 (2014) 305-320. https://doi.org/10.2298/HEMIND121114056K.

[56]

P. de Graaff, C. Govers, H.J. Wichers, et al., Consumption of β-glucans to spice up T cell treatment of tumors: a review, Expert Opin. Biol. Ther. 18 (2018) 1023–1040. https://doi.org/10.1080/14712598.2018.1523392.

[57]

J. Vunduk, W.A.A.Q.I. Wan-Mohtar, S.A. Mohamad, et al., Polysaccharides of Pleurotus flabellatus strain Mynuk produced by submerged fermentation as a promising novel tool against adhesion and biofilm formation of foodborne pathogens, LWT-Food Sci. Technol. 112 (2019) 108221. https://doi.org/10.1016/j.lwt.2019.05.119.

[58]

Z. Yin, Z. Liang, C. Li, et al., Immunomodulatory effects of polysaccharides from edible fungus: a review, Food Sci. Hum. Wellness 10 (2021) 393-400. https://doi.org/10.1016/j.fshw.2021.04.001.

[59]

N. Yahfoufi, N. Alsadi, M. Jambi, et al., The immunomodulatory and anti-inflammatory role of polyphenols, Nutrients 10 (2018) 1618. https://doi.org/10.3390/nu10111618.

[60]
N. Nowacka-Jechalke, M. Olech, R. Nowak, Mushroom polyphenols as chemopreventive agents, in: R.R. Watson, V.R. Preedy, S. Zibadi (Eds.), Polyphenols: Prevention and Treatment of Human Disease (Second Edition), Academic Press-Elsevier, Cambridge, 2018, pp. 137-150. https://doi.org/10.1016/B978-0-12-813008-7.00011-4.
DOI
[61]
National Library of Medicine NCBI, The National Center for Biotechnology Information. Available online from: https://pubmed.ncbi.nlm.nih.gov.
[62]

T.K. Mohanta, Fungi contain genes associated with flavonoid biosynthesis pathway, J. Funct. Foods 68 (2020) 103910. https://doi.org/10.1016/j.jff.2020.103910.

[63]

M. Sari, A. Prange, J.I. Lelley, et al., Screening of beta-glucan contents in commercially cultivated and wild growing mushrooms, Food Chem. 216 (2017) 45-51. http://dx.doi.org/10.1016/j.foodchem.2016.08.010.

[64]

F. Zhu, B. Dua, Z. Bian, et al., Beta-glucans from edible and medicinal mushrooms: characteristics, physicochemical and biological activities, J. Food Compos. Anal. 41 (2015) 165-173. http://dx.doi.org/10.1016/j.jfca.2015.01.019.

[65]

T. Mizuno, K. Minato, S. Kawakami, et al., Contents of anti-tumor polysaccharides in certain mushrooms and their immunomodulating activities, Food Sci. Technol. Res. 7 (2001) 31-34. https://doi.org/10.3136/fstr.7.31.

[66]

F.R. Smiderle, E.R. Carbonero, C.G. Mellinger, et al., Structural characterization of a polysaccharide and a beta-glucan isolated from the edible mushroom Flammulina velutipes, Phytochemistry 67 (2006) 2189- 2196. https://doi.org/10.1016/j.phytochem.2006.06.022.

[67]

M. Kozarski, A. Klaus, D. Jakovljevic, et al., Dietary polysaccharide extracts of Agaricus brasiliensis fruiting bodies: chemical characterization and bioactivities at different levels of purification. Food Res. In. 64 (2014) 53- 64. https://doi.org/10.1016/j.foodres.2014.05.075.

[68]

Y. Liu, Q. Tang, Y. Yang, et al., Characterization of polysaccharides from the fruiting bodies of two species of genus Ganoderma (Agaricomycetes) and determination of water-soluble β-D-glucan using high-performance liquid chromatography, Int. J. Med. Mushrooms 19 (2017) 75-85. https://doi.org/10.1615/IntJMedMushrooms.v19.i1.80.

[69]

X. Wu, Z. Zheng, T. Guo, et al., Molecular dynamics simulation of lentinan and its interaction with the innate receptor dectin-1, Int. J. Biol. Macromol. 171 (2021) 527–538. https://doi.org/10.1016/j.ijbiomac.2021.01.032.

[70]

T.J.C.R. Sasaki, N. Takasuka, Further study of the structure of lentinan, an anti-tumor polysaccharide from Lentinus edodes, Carbohydr. Res. 47 (1976) 99–104. https://doi.org/10.1016/s0008-6215(00)83552-1.

[71]

K.P. Wang, Q.L. Zhang, Y. Liu, et al., Structure and inducing tumor cell apoptosis activity of polysaccharides isolated from Lentinus edodes, J. Agric. Food Chem. 61 (2013) 9849–9858. https://doi.org/10.1021/jf403291w.

[72]

S. Zhao, Q. Gao, C. Rong, et al., Immunomodulatory effects of edible and medicinal mushrooms and their bioactive immunoregulatory products, J. Fungi 6 (2020) 269. https://doi.org/10.3390/jof6040269.

[73]

A. Synytsya, M. Novak, Structural analysis of glucans, Ann. Transl. Med. 2 (2014) 17. https://doi.org/10.3978/j.issn.2305-5839.2014.02.07.

[74]

I. Urbancikova, D. Hudackova, J. Majtan, et al., Efficacy of pleuran (β-glucan from Pleurotus ostreatus) in the management of Herpes simplex virus type 1 infection, Evid. Based Complement. Alternat. Med. 2020 (2020) 8562309. https://doi.org/10.1155/2020/8562309.

[75]

C. Faugeron-Girard, V. Gloaguen , R. Koci, et al., Use of a Pleurotus ostreatus complex cell wall extract as elicitor of plant defenses: from greenhouse to field trial, Molecules 25 (2020) 1094. https://doi.org/10.3390/molecules25051094.

[76]

X. He, X. Wang, J. Fang, et al., Polysaccharides in Grifola frondosa mushroom and their health promoting properties: a review, Int. J. Biol. Macromol. 101 (2017) 910-921. https://doi.org/10.1016/j.ijbiomac.2017.03.177.

[77]

F.R. Smiderle, G. Alquini, M.Z. Tadra-Sfeir, et al., Agaricus bisporus and Agaricus brasiliensis (1→6)-β-d-glucans show immunostimulatory activity on human THP-1 derived macrophages, Carbohydr. Polym. 94 (2013) 91-99. http://dx.doi.org/10.1016/j.carbpol.2012.12.073.

[78]

C.H. Su, M.K. Lu, T.J. Lu, et al., A (1→6)-branched (1→4)-β-D-glucan from Grifola frondosa inhibits lipopolysaccharide-induced cytokine production in RAW264.7 macrophages by binding to TLR2 rather than dectin-1 or CR3 receptors, J. Nat. Prod. 83 (2020) 231-242. https://doi.org/10.1021/acs.jnatprod.9b00584.

[79]

F.R. Smiderle, C.H. Baggio, D.G. Borato, et al., Anti-inflammatory properties of the medicinal mushroom Cordyceps militaris might be related to its linear (1→3)-β-D-glucan, PLoS One 9 (2014) e110266. https://doi.org/10.1371/journal.pone.0110266.

[80]

M.L. Gargano, L.J.L.D. Van Griensven, O.S. Isikhuemhen, et al., Medicinal mushrooms: valuable biological resources of high exploitation potential. Plant Biosyst. 151 (2017) 548-65. https://doi.org/10.1080/11263504.2017.1301590.

[81]

S.M. Wani, A. Gani, S.A. Mir, et al., β-Glucan: a dual regulator of apoptosis and cell proliferation, Int. J. Biol. Macromol. 182 (2021) 1229-1237. https://doi.org/10.1016/j.ijbiomac.2021.05.065.

[82]

H. Xu, S. Zou, X. Xu, The β-glucan from Lentinus edodes suppresses cell proliferation and promotes apoptosis in estrogen receptor positive breast cancers, Oncotarget 8 (2017) 86693-86709. https://doi.org/10.18632/oncotarget.21411.

[83]

Y. Wang, N.P. Ames, H.M. Tun, et al., High molecular weight barley β-glucan alters gut microbiota toward reduced cardiovascular disease risk, Front. Microbiol. 7 (2016) 129. https://doi.org/10.3389/fmicb.2016.00129.

[84]

Y. Xie, X. Hu, H. He, et al., Tracking translocation of glucan microparticles targeting M cells: implications for oral drug delivery, J. Mater. Chem. B4 (2016) 2864-2873. https://doi.org/10.1039/c5tb02706c.

[85]

P.J. Rice, E.L. Adams, T. Ozment-Skelton, et al., Oral delivery and gastrointestinal absorption of soluble glucans stimulate increased resistance to infectious challenge, J. Pharmacol. Exp. Ther. 314 (2005) 1079–1086. https://doi.org/10.1124/jpet.105.085415.

[86]

H. Stier, V. Ebbeskotte, J. Gruenwald, Immune-modulatory effects of dietary yeast beta-1,3/1,6-D-glucan, Nutr J. 13 (2014) 38. https://doi.org/10.1186/1475-2891-13-38.

[87]

E.L. Adams, P.J. Rice, B. Graves, et al., Differential high affinity interaction of dectin-1 with natural or synthetic glucans is dependent upon primary structure and is influenced by polymer chain length and side chain branching, J. Pharmacol. Exp. Ther. 325 (2008) 115-123. https://doi.org/10.1124/jpet.107.133124.

[88]

T.D. Gilmore, Introduction to NF-κB: players, pathways, perspectives, Oncogene 25 (2006) 6680-6684. https://doi.org/10.1038/sj.onc.1209954.

[89]

A. Sandvik, Y.Y. Wang, H.C. Morton, et al., Oral and systemic administration of β-glucan protects against lipopolysaccharide-induced shock and organ injury in rats, Clin. Exp. Immunol. 148 (2007) 168-177. https://doi.org/10.1111/j.1365-2249.2006.03320.x.

[90]

F. Hong, J. Yan, J.T. Baran, et al., Mechanism by which orally administered β-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models, J. Immunol. 173 (2004) 797–806. https://doi.org/10.4049/jimmunol.173.2.797.

[91]

Z. Zheng, Y. Zhang, Y. Liu, Metabolic degradation of lentinan in liver mediated by CYP450 enzymes and epoxide hydrolase, Carbohydr. Polym. 253 (2021) 117255. https://10.1016/j.carbpol.2020.117255.

[92]

V. Vetvicka, L. Vannucci, P. Sima et al., Beta glucan: supplement or drug? From laboratory to clinical trials, Molecules 24 (2019) 1251. https://10.3390/molecules24071251.

[93]

B. Mallard, D.N. Leach, H. Wohlmuth, et al., Synergistic immunomodulatory activity in human macrophages of a medicinal mushroom formulation consisting of Reishi, Shiitake and Maitake, PLoS One 14 (2019) e0224740-e. https://doi.org/10.1371/journal.pone.0224740.

[94]

G. Venturella, V. Ferraro, F. Cirlincione, et al., Medicinal mushrooms: bioactive compounds, use, and clinical trials. Int. J. Mol. Sci. 22 (2021) 634. https://doi.org/10.3390/ijms22020634.

[95]

J. Akagi, H. Baba, PSK may suppress CD57(+) T cells to improve survival of advanced gastric cancer patients. Int. J. Clin. Oncol. 15 (2010) 145–152. https://doi.org/10.1007/s10147-010-0033-1.

[96]

S. Hazama, S. Watanabe, M. Ohashi, et al., Efficacy of orally administered superfine dispersed lentinan (beta-1,3-glucan) for the treatment of advanced colorectal cancer, Anticancer Res. 29 (2009) 2611-2617. https://ar.iiarjournals.org/content/29/7/2611.long.

[97]

X. Wang, Y. Wang, Q. Zhou, et al., Immunomodulatory effect of lentinan on aberrant T subsets and cytokines profile in non-small cell lung cancer patients, Pathol. Oncol. Res. 26 (2020) 499–505. https://doi.org/10.1007/s12253-018-0545-y.

[98]
K. Miyamoto, Y. Watanabe, N. Iizuka, et al., Effect of a hot water extract of Agaricus blazei fruiting bodies (CJ-01) on the intracellular cytokines level in a patient with bronchitis, J. Trad Med. 19 (2002) 142-147. https://www.wakaniyaku.gr.jp/eng/wp-content/uploads/pdf/20020404_060622142822.pdf.
[99]

M. Jesenak, J. Majtan, Z. Rennerova, et al., Immunomodulatory effect of pleuran (β-glucan from Pleurotus ostreatus) in children with recurrent respiratory tract infections, Int. Immunopharmacol. 15 (2013) 395–399. https://doi.org/10.1016/j.intimp.2012.11.020.

[100]

M. Jesenak, M. Hrubisko, J. Majtan, et al., Anti-allergic effect of pleuran (β-glucan from Pleurotus ostreatus) in children with recurrent respiratory tract infections. Phytother. Res. 28 (2014) 471–474. https://doi.org/10.1002/ptr.5020.

[101]

N.K. Cheung, S. Modak, A. Vickers, et al., Orally administered beta-glucans enhance anti-tumor effects of monoclonal antibodies, Cancer Immunol. Immunother. 51 (2002) 557–564. https://doi.org/10.1007/s00262-002-0321-3.

[102]

B. Delaney, T. Carlson, S. Frazer, et al., Evaluation of the toxicity of concentrated barley β-glucan in a 28-day feeding study in Wistar rats, Food Chem. Toxicol. 41 (2003) 477-487. https://doi.org/10.1016/s0278-6915(02)00298-3.

[103]

A. Klaus, M. Kozarski, J. Vunduk, et al., Biological potential of extracts of the wild edible Basidiomycete mushroom Grifola frondosa, Food Res. Int. 67 (2015) 272-283. https://doi.org/10.1016/j.foodres.2014.11.035.

[104]

P. Sima, L. Vannucci, V. Vetvicka, β-Glucans and cholesterol (review), Int. J. Mol. Med. 41 (2018) 1799-1808. https://doi.org/10.3892/ijmm.2018.3411

[105]

N. Makela, O. Brinck, T. Sontag-Strohm, Viscosity of β-glucan from oat products at the intestinal phase of the gastrointestinal model, Food Hydrocoll. 100 (2020) 105422. https://doi.org/10.1016/j.foodhyd.2019.105422.

[106]

C. Cosola, M. De Angelis, M.T. Rocchetti, et al., Beta-glucans supplementation associates with reduction in p-cresyl sulfate levels and improved endothelial vascular reactivity in healthy individuals, PLoS One 12 (2017) e0169635. https://doi.org/10.1371/journal.pone.0169635.

[107]

D. Morales, S.A. Shetty, B. Lopez-Plaza, et al., Modulation of human intestinal microbiota in a clinical trial by consumption of a β-D-glucanenriched extract obtained from Lentinula edodes, Eur. J. Nutr. 60 (2021) 3249-3265. https://doi.org/10.1007/s00394-021-02504-4.

[108]

R. Pillai, M. Redmond, J. Roding, Anti-wrinkle therapy: significant new findings in the non-invasive cosmetic treatment of skin wrinkles with betaglucan, Int. J. Cosmet. Sci. 27 (2005) 292. https://doi.org/10.1111/j.1463-1318.2005.00268_3.x.

[109]

M. Kozarski, A. Klaus, D. Jakovljevic, et al., Ganoderma lucidum as a cosmeceutical: antiradical potential and inhibitory effect on hyperpigmentation and skin extracellular matrix degradation enzymes, Arch. Biol. Sci. 71 (2019) 253-264. https://doi.org/10.2298/ABS181217007K.

[110]

S. Tsukagoshi, Y. Hashimoto, G. Fujii, et al., Krestin (PSK), Cancer Treat. Rev. 11 (1984) 131-155. https://doi.org/10.1016/0305-7372(84)90005-7.

[111]
Beta-Glucan Market by Source (Cereal, Mushroom, Yeast, and Seaweed), Application (Food & Beverages, Personal Care, Pharmaceuticals, Dietary Supplements, and Animal Feed), Category (Soluble and Insoluble), and Region - Global Forecast to 2026”. https://www.prnewswire.com/newsreleases/beta-glucan-market-projected-to-surpass-525-million-by-2026-saysglobal-market-insights-inc-301126982.html.
[112]

O. Taofiq, A.M. González-Paramás, A. Martins, et al., Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics. Ind Crops Prod. 90 (2016) 38-48. https://doi.org/10.1016/j.indcrop.2016.06.012.

[113]

O. Taofiq, A.M. Gonzalez-Paramas, M.F. Barreiro, et al., Hydroxycinnamic acids and their derivatives: cosmeceutical significance, challenges and future perspectives, a review, Molecules 22 (2017) 281. https://doi.org/10.3390/molecules22020281.

[114]

L.J. Janjusevic, M. Karaman, F. Sibul, et al., The lignicolous fungus Trametes versicolor (L.) Lloyd (1920): a promising natural source of antiradical and AChE inhibitory agents, J. Enzyme Inhib. Med. Chem. 32 (2017) 355-362. http://dx.doi.org/10.1080/14756366.2016.1252759.

[115]

M. Kozarski, A. Klaus, J. Vunduk et al., Health impact of the commercially cultivated mushroom Agaricus bisporus and the wild-growing mushroom Ganoderma resinaceum-a comparative overview, J. Serb. Chem. Soc. 85 (2020) 721–735. https://doi.org/10.2298/JSC190930129K.

[116]

M. Kozarski, A. Klaus, J. Vunduk, et al., Nutraceutical properties of the methanolic extract of edible mushroom Cantharellus cibarius (Fries): primary mechanisms, Food Funct. 6 (2015) 1875-1886. https://doi.org/10.1039/c5fo00312a.

[117]

A. Klaus, W.A.A.Q.I. Wan-Mohtar, B. Nikolic, et al., Pink oyster mushroom Pleurotus flabellatus mycelium produced by an airlift bioreactor-the evidence of potent in vitro biological activities, World J. Microbiol. Biotechnol. 37 (2021) e17. https://doi.org/10.1007/s11274-020-02980-6.

[118]

M. Gasecka, Z. Magdziak, M. Siwulski et al., Profile of phenolic and organic acids, antioxidant properties and ergosterol content in cultivated and wild growing species of Agaricus, Eur. Food Res. Technol. 244 (2018) 259-268. https://doi.org/10.1007/s00217-017-2952-9.

[119]

J. Miskovic, J. Karaman, M. Raseta, et al., Comparison of two Schizophyllum commune strains in production of acetylcholinesterase inhibitors and antioxidants from submerged cultivation. J. Fungi 7 (2021) 115. https://doi.org/10.3390/jof7020115.

[120]

M. Gasecka, M. Mleczek, M. Siwulski et al., Phenolic composition and antioxidant properties of Pleurotus ostreatus and Pleurotus eryngii enriched with selenium and zinc, Eur. Food Res. Technol. 242 (2016) 723-732. https://doi.org/10.1007/s00217-015-2580-1.

[121]

G. Zengin, C. Sarikurkcu, E. Gunes, et al., Two Ganoderma species: profiling of phenolic compounds by HPLC–DAD, antioxidant, antimicrobial and inhibitory activities on key enzymes linked to diabetes mellitus, Alzheimer’s disease and skin disorders, Food Funct. 6 (2015) 2794. https://doi.org/10.1039/c5fo00665a.

[122]

M.Y. Kim, P. Seguin, J.K. Ahn, et al., Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea, J. Agric. Food Chem. 56 (2008) 7265-7270. https://doi.org/10.1021/jf8008553.

[123]

K. Dhama, S.K. Latheef, M. Dadar, et al., Biomarkers in stress related diseases/disorders: diagnostic, prognostic, and therapeutic values. Front. Mol. Biosci. 6 (2019) 91. https://doi.org/10.3389/fmolb.2019.00091.

[124]

A. Gil-Ramirez, C. Pavo-Caballero, E. Baeza, et al., Mushrooms do not contain flavonoids, J. Funct. Foods 25 (2016) 1-13. https://doi.org/10.1016/j.jff.2016.05.005.

[125]

B. Jakopovic, N. Orsolic, S. Kraljevic Pavelic, Antitumor, immunomodulatory and antiangiogenic efficacy of medicinal mushroom extract mixtures in advanced colorectal cancer animal model, Molecules 25 (2020) 5005 http://dx.doi.org/doi:10.3390/molecules25215005.

[126]

S. Ding, H. Jiang, J. Fang, Regulation of immune function by polyphenols, J. Immunol. Res. 2018 (2018) 1264074. https://doi.org/10.1155/2018/1264074

[127]

I.C.F.R. Ferreira, L. Barros, R.M.V. Abreu, Antioxidants in wild mushrooms, Curr. Med. Chem. 16 (2009) 1543-1560. https://doi.org/10.2174/092986709787909587.

[128]

M.S. Kozarski, A.S. Klaus, D.M. Jakovljevic, et al., Antioxidants of edible mushrooms, Molecules 20 (2015) 19489-19525. https://doi.org/10.3390/molecules201019489.

[129]

Y. Shao, H. Guo, J. Zhang, et al., The genome of the medicinal macrofungus Sanghuang provides insights into the synthesis of diverse secondary metabolites, Front. Microbiol. 10 (2020) 3035. https://doi.org/10.3389/fmicb.2019.03035.

[130]

M. Nam, J.Y. Choi, M.S. Kim, Metabolic profiles, bioactive compounds, and antioxidant capacity in Lentinula edodes cultivated on log versus sawdust substrates, Biomolecules 11 (2021) 1654. https://doi.org/10.3390/biom11111654.

[131]

M.J. Rein, M. Renouf, C. Cruz-Hernandez, et al., Bioavailability of bioactive food compounds: a challenging journey to bioefficacy, Br. J. Clin. Pharmacol. 75 (2013) 588-602. https://doi.org/10.1111/j.1365-2125.2012.04425.x.

[132]

A.M. Mileo, P. Nistico, S. Miccadei, Polyphenols: immunomodulatory and therapeutic implication in colorectal cancer, Front. Immunol. 10 (2019) 729.https://doi.org/10.3389/fimmu.2019.00729.

[133]
M.B. Hussain, S. Hassan, M. Waheed, et al., Bioavailability and metabolic pathway of phenolic compounds, in M. Soto-Hernandez (Ed.), Plant physiological aspects of phenolic compounds, IntechOpen, London, 2019. https://doi.org10.5772/intechopen.77494.
[134]

M. Sova, L. Saso, Natural sources, pharmacokinetics, biological activities and health benefits of hydroxycinnamic acids and their metabolites, Nutrients 12 (2020) 2190. https://doi.org/doi:10.3390/nu12082190.

[135]

C. M. Galanakis, Functionality of food components and emerging technologies, Foods 10 (2021) 128. https://doi.org/10.3390/foods1001012.

[136]

P.A. Ayeka, Potential of mushroom compounds as immunomodulators in cancer immunotherapy: a review, Evid. Based Complement. Alternat. Med. 2018 (2018) 7271509. https://doi.org/10.1155/2018/7271509.

[137]

Y. Zhou, Z. Jiang, H. Lu, et al., Recent advances of natural polyphenols activators for keap1-Nrf2 signaling pathway, Chem. Biodivers. 16 (2019) e1900400. https://doi.org/10.1002/cbdv.201900400.

[138]

M. Zhang, Y. Xie, X. Su, et al., Inonotus sanghuang polyphenols attenuate inflammatory response via modulating the crosstalk between macrophages and adipocytes, Front. Immunol. 10 (2019) 286. http://dx.doi.org/10.3389/fimmu.2019.00286.

[139]

H.J. Kang, H.W. Baik, S.J. Kim, et al., Cordyceps militaris enhances cellmediated immunity in healthy Korean men, J. Med. Food 18 (2015) 1164- 1172. http://dx.doi.org/10.1089/jmf.2014.3350.

[140]

F. Cayan, E. Deveci, G. Tel-Cayan, et al., Identification and quantification of phenolic acid compounds of twenty-six mushrooms by HPLC–DAD, J. Food Meas. Charact. 14 (2020) 1690-1698. https://doi.org/10.1007/s11694-020-00417-0.

[141]

J. Lee, E. Jung, J. Koh, et al., Effect of rosmarinic acid on atopic dermatitis, J. Dermatol. 35 (2008) 768–771. https://doi.org/10.1111/j.1346-8138.2008.00565.x.

[142]

D. Hahn, S.H. Shin, J.S. Bae, Natural antioxidant and anti-inflammatory compounds in foodstuff or medicinal herbs inducing heme oxygenase-1 expression, Antioxidants 9 (2020) 1191. https://doi.org/10.3390/antiox9121191.

[143]

E. Hassanain, J.I. Silverberg, K.B. Norowitz, et al., Green tea (Camelia sinensis) suppresses B cell production of IgE without inducing apoptosis, Ann. Clin. Lab. Sci. 40 (2010) 135-143. http://www.annclinlabsci.org/content/40/2/135.long.

[144]

C. Sanbongi, N. Suzuki, T. Sakane. Polyphenols in chocolate, which have antioxidant activity, modulate immune functions in humans in vitro, Cell. Immunol. 177 (1997) 129-136. http://dx.doi.org/10.1006/cimm.1997.1109.

[145]

S. Lacroix, J. Klicic Badoux, M.P. Scott-Boyer, et al., A computationally driven analysis of the polyphenol-protein interactome, Sci. Rep. 8 (2018) 2232. https://doi.org/10.1038/s41598-018-20625-5.

[146]

L. Jakobek, Interactions of polyphenols with carbohydrates, lipids and proteins, Food Chem. 175 (2015) 556-567. http://dx.doi.org/10.1016/j.foodchem.2014.12.013.

[147]

J. D. Lambert, S. Sang, A.Y.H. Lu, et al., Metabolism of dietary polyphenols and possible interactions with drugs, Curr. Drug Metab. 8 (2007) 499-507. https://doi.org/10.2174/138920007780866870.

[148]

S. Engdal, O.G. Nilsen, In vitro inhibition of CYP3A4 by herbal remedies frequently used by cancer patients, Phytother. Res. 23 (2009) 906-912. https://doi.org/10.1002/ptr.2750

[149]

S.K. Panda, W. Luyten, Medicinal mushrooms: clinical perspective and challenges, Drug Discov. 27 (2022) 636-651. https://doi.org/10.1016/j.drudis.2021.11.017.

[150]

W. Song, L.J.L.D. van Griensven, Pro- and antioxidative properties of medicinal mushroom extracts. Int. J. Med. Mushrooms 10 (2008) 315-324. https://doi.org/10.1615/IntJMedMushr.v10.i4.30.

[151]

P. Krivak, S. Ukic, L. Jakobek, Polyphenols and β-glucan interactions through linear adsorption models, Croat. J. Food Sci. Technol. 8 (2016) 66- 73. http://dx.doi.org/10.17508/CJFST.2016.8.2.05

[152]

L. Jakobek, P. Matic, Non-covalent dietary fiber-polyphenol interactions and their influence on polyphenol bioaccessibility, Trends Food Sci. Technol. 83 (2019) 235-247. https://doi.org/10.1016/j.tifs.2018.11.024.

[153]

M. Veverka, T. Dubaj, J. Gallovic, et al., Beta-glucan complexes with selected nutraceuticals: synthesis, characterization, and stability, J. Funct. Foods 8 (2014) 309-318. http://dx.doi.org/10.1016/j.jff.2014.03.032.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 16 February 2022
Revised: 22 March 2022
Accepted: 14 April 2022
Published: 07 September 2022
Issue date: March 2023

Copyright

© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

Acknowledgements

Acknowledgment

This review was the result of research within the “Agreement on the implementation and financing of scientific research work in 2022 between the Faculty of Agriculture in Belgrade and the Ministry of Education, Science and Technological Development of the Republic of Serbia”, contract record number: 451-03-68/2022-14/200116, 451-03-68/2022-14/200051 and supported by the Science Fund of the Republic of Serbia, #Grant No: 7748088, “Composite clays as advanced materials in animal nutrition and biomedicineAniNutBiomedCLAYs”.

Rights and permissions

This is an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return