Journal Home > Volume 12 , Issue 1

Excessive alcohol consumption (≥15 drinks per week) causes chronic diseases and multiple other health conditions. Nevertheless, alcohol beverages have been used as a vital medicine ingredient in various cultures since ancient times. A wealth of epidemiological and experimental research has shown that light-moderate alcohol consumption, regardless of beverage type, is associated with reducing cardiovascular incidence and mortality rate. Due to the disparities in raw materials, fermentation techniques, production environment, etc., alcoholic beverages tend to possess different non-ethanol component profiles, thus resulting in varying degrees of health effects. Furthermore, bioactive compounds in alcohol are continuously discovered as well as the mechanisms underlying their cardioprotective contributions at a molecular level. This article elucidates the epidemiology of moderate alcohol consumption and various cardiovascular conditions, along with the limitations and controversies of current studies. In addition, protective effects and putative mechanisms of both ethanol and non-ethanol components of wine, beer, and Chinese Baijiu, the three most representative alcoholic beverages worldwide, are to be evaluated within the context of a rational drinking pattern.


menu
Abstract
Full text
Outline
About this article

Wine, beer and Chinese Baijiu in relation to cardiovascular health: the impact of moderate drinking

Show Author's information Qiao Kanga,bJinyuan Suna,b( )Bowen Wanga,bBaoguo Suna,b( )
Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Abstract

Excessive alcohol consumption (≥15 drinks per week) causes chronic diseases and multiple other health conditions. Nevertheless, alcohol beverages have been used as a vital medicine ingredient in various cultures since ancient times. A wealth of epidemiological and experimental research has shown that light-moderate alcohol consumption, regardless of beverage type, is associated with reducing cardiovascular incidence and mortality rate. Due to the disparities in raw materials, fermentation techniques, production environment, etc., alcoholic beverages tend to possess different non-ethanol component profiles, thus resulting in varying degrees of health effects. Furthermore, bioactive compounds in alcohol are continuously discovered as well as the mechanisms underlying their cardioprotective contributions at a molecular level. This article elucidates the epidemiology of moderate alcohol consumption and various cardiovascular conditions, along with the limitations and controversies of current studies. In addition, protective effects and putative mechanisms of both ethanol and non-ethanol components of wine, beer, and Chinese Baijiu, the three most representative alcoholic beverages worldwide, are to be evaluated within the context of a rational drinking pattern.

Keywords: Wine, Cardiovascular disease, Alcohol, Distilled spirits, Beer, Chines Baijiu

References(152)

[1]
World Health Organization, Cardiovascular diseases (CVDs), (2017). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
[2]

E. Yu, E. Rimm, L. Qi, et al., Diet, Lifestyle, biomarkers, genetic factors, and risk of cardiovascular disease in the nurses' health studies, Am. J. Public Health 106 (2016) 1616-1623. http://dx.doi.org/10.2105/AJPH.2016.303316.

[3]

P.E. Ronksley, S.E. Brien, B.J. Turner, et al., Association of alcohol consumption with selected cardiovascular disease outcomes: a systematic review and meta-analysis, BMJ 342 (2011) d671. http://dx.doi.org/10.1136/bmj.d671.

[4]

A.L. Klatsky, Alcohol and cardiovascular diseases: where do we stand today? J. Intern. Med. 278 (2015) 238-250. http://dx.doi.org/10.1111/joim.12390.

[5]

M. Roerecke, J. Rehm, Alcohol consumption, drinking patterns, and ischemic heart disease: a narrative review of meta-analyses and a systematic review and meta-analysis of the impact of heavy drinking occasions on risk for moderate drinkers, BMC Med. 12 (2014) 182. http://dx.doi.org/10.1186/s12916-014-0182-6.

[6]

M. Roerecke, J. Rehm, Cause-specific mortality risk in alcohol use disorder treatment patients: a systematic review and meta-analysis, Int. J. Epidemiol. 43 (2014) 906-919. http://dx.doi.org/10.1093/ije/dyu018.

[7]

E. Ceni, T. Mello, A. Galli, Pathogenesis of alcoholic liver disease: role of oxidative metabolism, World J. Gastroenterol. 20 (2014) 17756-17772. http://dx.doi.org/10.3748/wjg.v20.i47.17756.

[8]

J. Jacobus, S.F. Tapert, Neurotoxic effects of alcohol in adolescence, Annu. Rev. Clin. Psychol. 9 (2013) 703-721. http://dx.doi.org/10.1146/annurevclinpsy-050212-185610.

[9]

S.A. Smith-Warner, D. Spiegelman, S.S. Yaun, et al., Alcohol and breast cancer in women: a pooled analysis of cohort studies, JAMA 279 (1998) 535-540. http://dx.doi.org/10.1001/jama.279.7.535.

[10]

P. Ferrari, M. Jenab, T. Norat, et al., Lifetime and baseline alcohol intake and risk of colon and rectal cancers in the European prospective investigation into cancer and nutrition (EPIC), Int. J. Cancer 121 (2007) 2065-2072. http://dx.doi.org/10.1002/ijc.22966.

[11]

H.F.J. Hendriks, Alcohol and human health: what is the evidence? Annu. Rev. Food Sci. Technol. 11 (2020) 1-21. http://dx.doi.org/10.1146/annurevfood-032519-051827.

[12]

L. Djousse, D.K. Arnett, J.H. Eckfeldt, et al., Alcohol consumption and metabolic syndrome: does the type of beverage matter, Obes. Res. 12 (2004) 1375-1385. http://dx.doi.org/10.1038/oby.2004.174.

[13]
U.S. Department of Agriculture and U.S. Department of Health and Human Services, Dietary guidelines for Americans, 2020-2025. (2020). https://dietaryguidelines.gov./.
[14]
National Health Service, Alcohol units, (2018). https://www.nhs.uk/livewell/alcohol-support/calculating-alcohol-units/.
[15]
Chinese Nutrition Society, Dietary guidelines for Chinese residents 2016, (2016).
[16]

T. Stockwell, J. Zhao, S. Macdonald, Who under-reports their alcohol consumption in telephone surveys and by how much? An application of the 'yesterday method' in a national Canadian substance use survey, Addiction 109 (2014) 1657-1666. http://dx.doi.org/10.1111/add.12609.

[17]
World Health Organization, WHO global status report on alcohol and health 2018, (2018). https://apps.who.int/iris/handle/10665/274603.
[18]

Y. Wang, J.Y. Sun, Q. Meng, Comparison of Chinese liquor and vodka on liver health using a hepatic spheroid model, J. Chem. Eng. Chin. Univ. 33 (2019) 1141-1147. http://dx.doi.org/10.3969/j.issn.1003-9015.2019.05.015.

[19]

A.B. Hill, The environment and disease: association or causation? Proc. R. Soc. Med. 58 (2016) 295-300. http://dx.doi.org/10.1177/003591576505800503.

[20]

M.V. Holmes, C.E. Dale, L. Zuccolo, et al., Association between alcohol and cardiovascular disease: mendelian randomisation analysis based on individual participant data, BMJ 349 (2014) g4164. http://dx.doi.org/10.1136/bmj.g4164.

[21]

Y. Cho, S.Y. Shin, S. Won, et al., Alcohol intake and cardiovascular risk factors: a mendelian randomisation study, Sci. Rep. 5 (2015) 18422. http://dx.doi.org/10.1038/srep18422.

[22]

J. Fernandez-Sola, Cardiovascular risks and benefits of moderate and heavy alcohol consumption, Nat. Rev. Cardiol. 12 (2015) 576-587. http://dx.doi.org/10.1038/nrcardio.2015.91.

[23]

V.G. Athyros, E.N. Liberopoulos, D.P. Mikhailidis, et al., Association of drinking pattern and alcohol beverage type with the prevalence of metabolic syndrome, diabetes, coronary heart disease, stroke, and peripheral arterial disease in a mediterranean cohort, Angiology 58 (2007) 689-697. http://dx.doi.org/10.1177/0003319707306146.

[24]

S.C. Larsson, A. Wallin, A. Wolk, et al., Differing association of alcohol consumption with different stroke types: a systematic review and meta-analysis, BMC Med. 14 (2016) 178. http://dx.doi.org/10.1186/s12916-016-0721-4.

[25]

J. Patra, B. Taylor, H. Irving, et al., Alcohol consumption and the risk of morbidity and mortality for different stroke types -a systematic review and meta-analysis, BMC Public Health 10 (2010) 258. http://dx.doi.org/10.1186/1471-2458-10-258.

[26]

J. Rehm, O.S.M. Hasan, S. Imtiaz, et al., Quantifying the contribution of alcohol to cardiomyopathy: a systematic review, Alcohol 61 (2017) 9-15. http://dx.doi.org/10.1016/j.alcohol.2017.01.011.

[27]

D. Csengeri, N.A. Sprunker, A. Di Castelnuovo, et al., Alcohol consumption, cardiac biomarkers, and risk of atrial fibrillation and adverse outcomes, Eur. Heart J. 42 (2021) 1170-1177. http://dx.doi.org/10.1093/eurheartj/ehaa953.

[28]

K.C. Marchi, J.J. Muniz, C.R. Tirapelli, Hypertension and chronic ethanol consumption: What do we know after a century of study?, World J. Cardiol. 6 (2014) 283-294. http://dx.doi.org/10.4330/wjc.v6.i5.283.

[29]

K.J. Mukamal, M.K. Jensen, M. Gronbaek, et al., Drinking frequency, mediating biomarkers, and risk of myocardial infarction in women and men, Circulation 112 (2005) 1406-1413. http://dx.doi.org/10.1161/CIRCULATIONAHA.105.537704.

[30]

S.C. Larsson, N. Orsini, A. Wolk, Alcohol consumption and risk of heart failure: a dose-response meta-analysis of prospective studies, Eur. J. Heart Fail. 17 (2015) 367-373. http://dx.doi.org/10.1002/ejhf.228.

[31]

K.J. Mukamal, R.A. Kronmal, M.A. Mittleman, et al., Alcohol consumption and carotid atherosclerosis in older adults: the Cardiovascular Health Study, Arterioscler. Thromb. Vasc. Biol. 23 (2003) 2252-2259. http://dx.doi.org/10.1161/01.ATV.0000101183.58453.39.

[32]

C.G. Solomon, F.B. Hu, M.J. Stampfer, et al., Moderate alcohol consumption and risk of coronary heart disease among women with type 2 diabetes mellitus, Circulation 102 (2000) 494-499. http://dx.doi.org/10.1161/01.cir.102.5.494.

[33]

E.B. Rimm, A. Klatsky, D. Grobbee, et al., Review of moderate alcohol consumption and reduced risk of coronary heart disease: is the effect due to beer, wine, or spirits, BMJ 312 (1996) 731-736. http://dx.doi.org/10.1136/bmj.312.7033.731.

[34]

L. Gunzerath, V. Faden, S. Zakhari, et al., National institute on alcohol abuse and alcoholism report on moderate drinking, Alcohol. Clin. Exp. Res. 28 (2004) 829-847. http://dx.doi.org/10.1097/01.alc.0000128382.79375.b6.

[35]

G. Corrao, L. Rubbiati, V. Bagnardi, et al., Alcohol and coronary heart disease: a meta-analysis, Addiction 95 (2000) 1505-1523. http://dx.doi.org/10.1046/j.1360-0443.2000.951015056.x.

[36]

C.C. Low Wang, C.N. Hess, W.R. Hiatt, et al., Clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus-mechanisms, management, and clinical considerations, Circulation 133 (2016) 2459-2502. http://dx.doi.org/10.1161/CIRCULATIONAHA.116.022194.

[37]

A. Di Castelnuovo, S. Rotondo, L. Iacoviello, et al., Meta-analysis of wine and beer consumption in relation to vascular risk, Circulation 105 (2002) 2836-2844. http://dx.doi.org/10.1161/01.cir.0000018653.19696.01.

[38]

S. Renaud, M. de Lorgeril, Wine, alcohol, platelets, and the French paradox for coronary heart disease, The Lancet 339 (1992) 1523-1526. http://dx.doi.org/10.1016/0140-6736(92)91277-f.

[39]

S.C. Renaud, R. Gueguen, G. Siest, et al., Wine, beer, and mortality in middle-aged men from eastern France, Arch. Intern. Med. 159 (1999) 1865-1870. http://dx.doi.org/10.1001/archinte.159.16.1865.

[40]

S. Costanzo, A. Di Castelnuovo, M.B. Donati, et al., Wine, beer or spirit drinking in relation to fatal and non-fatal cardiovascular events: a meta-analysis, Eur. J. Epidemiol. 26 (2011) 833-850. http://dx.doi.org/10.1007/s10654-011-9631-0.

[41]

D.B. Panagiotakos, G.M. Kouli, E. Magriplis, et al., Beer, wine consumption, and 10-year CVD incidence: the ATTICA study, Eur. J. Clin. Nutr. 73 (2019) 1015-1023. http://dx.doi.org/10.1038/s41430-018-0296-6.

[42]

J. Hong, D. Zhao, B. Sun, Research progress on the profile of trace components in Baijiu, Food Rev. Int. (2021) 1-27. http://dx.doi.org/10.1080/87559129.2021.1936001.

[43]
IWSR Drinks Market Analysis, Baijiu: the largest spirits category the US has never heard of, https://www.theiwsr.com/baijiu-the-largest-spirit-categorythe-us-has-never-heard-of/.
[44]

K. Suzuki, A. Nemoto, I. Tanaka, et al., Induction of heme oxygenase-1 by whisky congeners in human endothelial cells, J. Food Sci. 75 (2010) H163-H166. http://dx.doi.org/10.1111/j.1750-3841.2010.01697.x.

[45]

L.M. Blanco-Colio, B. Munoz-Garcia, J.L. Martin-Ventura, et al., Ethanol beverages containing polyphenols decrease nuclear factor kappa-B activation in mononuclear cells and circulating MCP-1 concentrations in healthy volunteers during a fat-enriched diet, Atherosclerosis 192 (2007) 335-341. http://dx.doi.org/10.1016/j.atherosclerosis.2006.07.035.

[46]

G.G. Duthie, M.W. Pedersen, P.T. Gardner, et al., The effect of whisky and wine consumption on total phenol content and antioxidant capacity of plasma from healthy volunteers, Eur. J. Clin. Nutr. 52 (1998) 733-736. http://dx.doi.org/10.1038/sj.ejcn.1600635.

[47]

S.L. Wu, Q. Zhang, C.C. Qi, et al., Effect of alcohol consumption on cardio-cerebrovascular events in male diabetic population, Chin, J. Hypertens. 19 (2011) 1065-1069. http://dx.doi.org/10.16439/j.cnki.1673-7245.2011.11.031.

[48]

A.G. Shaper, G. Wannamethee, M. Walker, Alcohol and mortality in British men: explaining the U-shaped curve, The Lancet 2 (1988) 1267-1273. http://dx.doi.org/10.1016/s0140-6736(88)92890-5.

[49]

T. Stockwell, J. Zhao, S. Panwar, et al., Do "moderate" drinkers have reduced mortality risk? a systematic review and meta-analysis of alcohol consumption and all-Cause mortality, J. Stud. Alcohol Drugs 77 (2016) 185-198. http://dx.doi.org/10.15288/jsad.2016.77.185.

[50]

A. Di Castelnuovo, S. Costanzo, M. Bonaccio, et al., Alcohol intake and total mortality in 142,960 individuals from the MORGAM project: a population-based study, Addiction (2021). http://dx.doi.org/10.1111/add.15593.

[51]

J. Rehm, H. Irving, Y. Ye, et al., Are lifetime abstainers the best control group in alcohol epidemiology? on the stability and validity of reported lifetime abstention, Am. J. Epidemiol. 168 (2008) 866-871. http://dx.doi.org/10.1093/aje/kwn093.

[52]

M.A. Bellis, K. Hughes, J. Nicholls, et al., The alcohol harm paradox: using a national survey to explore how alcohol may disproportionately impact health in deprived individuals, BMC Public Health 16 (2016) 111. http://dx.doi.org/10.1186/s12889-016-2766-x.

[53]

L.N. Fat, N. Shelton, Associations between self-reported illness and non-drinking in young adults, Addiction 107 (2012) 1612-1620. http://dx.doi.org/10.1111/j.1360-0443.2012.03878.x.

[54]

J. Rehm, M. Roerecke, Cardiovascular effects of alcohol consumption, Trends Cardiovasc. Med. 27 (2017) 534-538. http://dx.doi.org/10.1016/j.tcm.2017.06.002.

[55]

A. Di Castelnuovo, S. Costanzo, V. Bagnardi, et al., Alcohol dosing and total mortality in men and women: an updated meta-analysis of 34 prospective studies, Arch. Intern. Med. 166 (2006) 2437-2445. http://dx.doi.org/10.1001/archinte.166.22.2437.

[56]

I.Y. Millwood, R.G. Walters, X.W. Mei, et al., Conventional and genetic evidence on alcohol and vascular disease aetiology: a prospective study of 500000 men and women in China, The Lancet 393 (2019) 1831-1842. http://dx.doi.org/10.1016/s0140-6736(18)31772-0.

[57]

J.M. Gaziano, J.E. Buring, J.L. Breslow, et al., Moderate alcohol intake, increased levels of high-density lipoprotein and its subfractions, and decreased risk of myocardial infarction, N. Engl. J. Med. 329 (1993) 1829-1834. http://dx.doi.org/10.1056/NEJM199312163292501.

[58]

D.P. Mikhailidis, M.A. Barradas, J.Y. Jeremy, The effect of ethanol on platelet function and vascular prostanoids, Alcohol 7 (1990) 171-180.http://dx.doi.org/10.1016/0741-8329(90)90080-v.

[59]

J.R. Greenfield, K. Samaras, C.S. Hayward, et al., Beneficial postprandial effect of a small amount of alcohol on diabetes and cardiovascular risk factors: modification by insulin resistance, J. Clin. Endocrinol. Metab. 90 (2005) 661-672. http://dx.doi.org/10.1210/jc.2004-1511.

[60]

L. Brodowski, B. Schroder-Heurich, B. Kipke, et al., Low ethanol concentrations promote endothelial progenitor cell capacity and reparative function, Cardiovasc. Ther. 2020 (2020) 4018478. http://dx.doi.org/10.1155/2020/4018478.

[61]

H.F. Hendriks, J. Veenstra, A. van Tol, et al., Moderate doses of alcoholic beverages with dinner and postprandial high density lipoprotein composition, Alcohol Alcoholism 33 (1998) 403-410. http://dx.doi.org/10.1093/oxfordjournals.alcalc.a008410.

[62]

G. Chiva-Blanch, E. Magraner, X. Condines, et al., Effects of alcohol and polyphenols from beer on atherosclerotic biomarkers in high cardiovascular risk men: a randomized feeding trial, Nutr. Metab. Cardiovasc. Dis. 25 (2015) 36-45. http://dx.doi.org/10.1016/j.numecd.2014.07.008.

[63]

J.S. Zheng, J. Yang, T. Huang, et al., Effects of Chinese liquors on cardiovascular disease risk factors in healthy young humans, Sci. World J. 2012 (2012) 372143. http://dx.doi.org/10.1100/2012/372143.

[64]

M.A. Albert, R.J. Glynn, P.M. Ridker, Alcohol consumption and plasma concentration of C-reactive protein, Circulation 107 (2003) 443-447. http://dx.doi.org/10.1161/01.cir.0000045669.16499.ec.

[65]

K.J. Mukamal, M. Cushman, M.A. Mittleman, et al., Alcohol consumption and inflammatory markers in older adults: the cardiovascular health study, Atherosclerosis 173 (2004) 79-87. http://dx.doi.org/10.1016/j.atherosclerosis.2003.10.011.

[66]

A. Sierksma, M.S. van der Gaag, C. Kluft, et al., Moderate alcohol consumption reduces plasma C-reactive protein and fibrinogen levels; a randomized, diet-controlled intervention study, Eur. J. Clin. Nutr. 56 (2002) 1130-1136. http://dx.doi.org/10.1038/sj.ejcn.1601459.

[67]

G. Vilahur, L. Casani, G. Mendieta, et al., Beer elicits vasculoprotective effects through Akt/eNOS activation, Eur. J. Clin. Invest. 44 (2014) 1177-1188. http://dx.doi.org/10.1111/eci.12352.

[68]

G. Chiva-Blanch, X. Condines, E. Magraner, et al., The non-alcoholic fraction of beer increases stromal cell derived factor 1 and the number of circulating endothelial progenitor cells in high cardiovascular risk subjects: a randomized clinical trial, Atherosclerosis 233 (2014) 518-524. http://dx.doi.org/10.1016/j.atherosclerosis.2013.12.048.

[69]

J.P. Louboutin, E. Marusich, E. Gao, et al., Ethanol protects from injury due to ischemia and reperfusion by increasing vascularity via vascular endothelial growth factor, Alcohol 46 (2012) 441-454. http://dx.doi.org/10.1016/j.alcohol.2012.02.001.

[70]

N. Oda, M. Kajikawa, T. Maruhashi, et al., Endothelial function is preserved in light to moderate alcohol drinkers but is impaired in heavy drinkers in women: Flow-mediated Dilation Japan (FMD-J) study, PLoS ONE 15 (2020) e0243216. http://dx.doi.org/10.1371/journal.pone.0243216.

[71]

K. Karatzi, V.G. Rontoyanni, A.D. Protogerou, et al., Acute effects of beer on endothelial function and hemodynamics: a single-blind, crossover study in healthy volunteers, Nutrition 29 (2013) 1122-1126. http://dx.doi.org/10.1016/j.nut.2013.02.016.

[72]

D.J. Kleinhenz, R.L. Sutliff, J.A. Polikandriotis, et al., Chronic ethanol ingestion increases aortic endothelial nitric oxide synthase expression and nitric oxide production in the rat, Alcohol. Clin. Exp. Res. 32 (2008) 148-154. http://dx.doi.org/10.1111/j.1530-0277.2007.00550.x.

[73]

C.R. Kuhlmann, F. Li, D.W. Ludders, et al., Dose-dependent activation of Ca2+-activated K+ channels by ethanol contributes to improved endothelial cell functions, Alcohol. Clin. Exp. Res. 28 (2004) 1005-1011. http://dx.doi.org/10.1097/01.alc.0000130811.92457.0d.

[74]

D. Gazzieri, M. Trevisani, F. Tarantini, et al., Ethanol dilates coronary arteries and increases coronary flow via transient receptor potential vanilloid 1 and calcitonin gene-related peptide, Cardiovasc. Res. 70 (2006) 589-599. http://dx.doi.org/10.1016/j.cardiores.2006.02.027.

[75]

R.H. Michel, P.E. McGovern, V.R. Badler, The first wine & beer. Chemical detection of ancient fermented beverages, Anal. Chem. 65 (2008) 408A-413A. http://dx.doi.org/10.1021/ac00056a002.

[76]

L. Snopek, J. Mlček, V. Fic, et al., Interaction of polyphenols and wine antioxidants with its sulfur dioxide preservative, Potravinarstvo. 12 (2018). http://dx.doi.org/10.5219/899.

[77]

H.S. Demrow, P.R. Slane, J.D. Folts, Administration of wine and grape juice inhibits in vivo platelet activity and thrombosis in stenosed canine coronary arteries, Circulation 91 (1995) 1182-1188. http://dx.doi.org/10.1161/01.cir.91.4.1182.

[78]

D.P. Makris, S. Kallithraka, P. Kefalas, Flavonols in grapes, grape products and wines: Burden, profile and influential parameters, J. Food Compost. Anal. 19 (2006) 396-404. http://dx.doi.org/10.1016/j.jfca.2005.10.003.

[79]

L. Castaldo, A. Narvaez, L. Izzo, et al., Red wine consumption and cardiovascular health, Molecules 24 (2019). http://dx.doi.org/10.3390/molecules24193626.

[80]

K.V. Kiselev, Perspectives for production and application of resveratrol, Appl. Microbiol. Biotechnol. 90 (2011) 417-425. http://dx.doi.org/10.1007/s00253-011-3184-8.

[81]

R.G. Somkuwar, M.A. Bhange, D.P. Oulkar, et al., Estimation of polyphenols by using HPLC-DAD in red and white wine grape varieties grown under tropical conditions of India, J. Food Sci. Technol. 55 (2018) 4994-5002. http://dx.doi.org/10.1007/s13197-018-3438-x.

[82]

M. Springer, S. Moco, Resveratrol and its human metabolites-effects on metabolic health and obesity, Nutrients 11 (2019). http://dx.doi.org/10.3390/nu11010143.

[83]

N. Parsamanesh, A. Asghari, S. Sardari, et al., Resveratrol and endothelial function: a literature review, Pharmacol. Res. 170 (2021) 105725. http://dx.doi.org/10.1016/j.phrs.2021.105725.

[84]

K. Magyar, R. Halmosi, A. Palfi, et al., Cardioprotection by resveratrol: a human clinical trial in patients with stable coronary artery disease, Clin. Hemorheol. Microcirc. 50 (2012) 179-187. http://dx.doi.org/10.3233/CH-2011-1424.

[85]

K. Fujitaka, H. Otani, F. Jo, et al., Modified resveratrol longevinex improves endothelial function in adults with metabolic syndrome receiving standard treatment, Nutr. Res. 31 (2011) 842-847. http://dx.doi.org/10.1016/j.nutres.2011.09.028.

[86]

C. Romain, S. Gaillet, J. Carillon, et al., Vineatrol and cardiovascular disease: beneficial effects of a vine-shoot phenolic extract in a hamster atherosclerosis model, J. Agric. Food. Chem. 60 (2012) 11029-11036.http://dx.doi.org/10.1021/jf303549t.

[87]

A. Csiszar, K. Smith, N. Labinskyy, et al., Resveratrol attenuates TNFalfa‐induced activation of coronary arterial endothelial cells: role of NF‐kB inhibition, FASEB J. 21 (2007). http://dx.doi.org/10.1096/fasebj.21.5.A450-a.

[88]

G. Sadi, D. Bozan, H.B. Yildiz, Redox regulation of antioxidant enzymes: post-translational modulation of catalase and glutathione peroxidase activity by resveratrol in diabetic rat liver, Mol. Cell. Biochem. 393 (2014) 111-122. http://dx.doi.org/10.1007/s11010-014-2051-1.

[89]

T. Walle, F. Hsieh, M.H. DeLegge, et al., High absorption but very low bioavailability of oral resveratrol in humans, Drug Metab. Dispos. 32 (2004) 1377-1382. http://dx.doi.org/10.1124/dmd.104.000885.

[90]

S. Weiskirchen, R. Weiskirchen, Resveratrol: how much wine do you have to drink to stay healthy? Adv. Nutr. 7 (2016) 706-718. http://dx.doi.org/10.3945/an.115.011627.

[91]

P. Jeandet, R. Bessis, B.F. Maume, et al., Analysis of resveratrol in Burgundy wines, J. Wine Res. 4 (2007) 79-85. http://dx.doi.org/10.1080/09571269308717954.

[92]

A.I. Romero-Pérez, R.M. Lamuela-Raventós, S. Buxaderas, et al., Resveratrol and piceid as varietal markers of white wines, J. Agric. Food Chem. 44 (1996) 1975-1978. http://dx.doi.org/10.1021/jf960211g.

[93]

J.M. Cvejic, S.V. Djekic, A.V. Petrovic, et al., Determination of trans- and cis-resveratrol in Serbian commercial wines, J. Chromatogr. Sci. 48 (2010) 229-234. http://dx.doi.org/10.1093/chromsci/48.3.229.

[94]

M.M. Markoski, J. Garavaglia, A. Oliveira, et al., Molecular properties of red wine compounds and cardiometabolic benefits, Nutr. Metab. Insights. 9 (2016) 51-57. http://dx.doi.org/10.4137/NMI.S32909.

[95]

H. Vuorinen, K. Maatta, R. Torronen, Content of the flavonols myricetin, quercetin, and kaempferol in finnish berry wines, J. Agric. Food Chem. 48 (2000) 2675-2680. http://dx.doi.org/10.1021/jf991388o.

[96]

I. Peluso, M. Palmery, Flavonoids at the pharma-nutrition interface: is a therapeutic index in demand? Biomed. Pharmacother. 71 (2015) 102-107. http://dx.doi.org/10.1016/j.biopha.2015.02.028.

[97]

H.G. Ulusoy, N. Sanlier, A minireview of quercetin: from its metabolism to possible mechanisms of its biological activities, Crit. Rev. Food Sci. Nutr. 60 (2020) 3290-3303. http://dx.doi.org/10.1080/10408398.2019.1683810.

[98]

F. Vahdat-Lasemi, S.H. Aghaee-Bakhtiari, A. Tasbandi, et al., Targeting interleukin-beta by plant-derived natural products: Implications for the treatment of atherosclerotic cardiovascular disease, Phytother. Res. 35 (2021) 5596-5622. http://dx.doi.org/10.1002/ptr.7194.

[99]

X.J. Wu, X.B. Zhou, C. Chen, et al., Systematic investigation of quercetin for treating cardiovascular disease based on network pharmacology, Comb. Chem. High Throughput Screen 22 (2019) 411-420. http://dx.doi.org/10.2174/1386207322666190717124507.

[100]

S. Egert, A. Bosy-Westphal, J. Seiberl, et al., Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study, Br. J. Nutr. 102 (2009) 1065-1074. http://dx.doi.org/10.1017/S0007114509359127.

[101]

J.F. Adams, R.E. Hodgins, L.N. Thurston, et al., Variability of tannin concentration in red wines, Am. J. Enol. Viticult. 59 (2008) 210-221.

[102]

I.E. Sallam, A. Abdelwareth, H. Attia, et al., Effect of gut microbiota biotransformation on dietary tannins and human health implications, Microorganisms 9 (2021). http://dx.doi.org/10.3390/microorganisms9050965.

[103]

K. Sharma, V. Kumar, J. Kaur, et al., Health effects, sources, utilization and safety of tannins: a critical review, Toxin Rev. (2019) 1-13. http://dx.doi.org/10.1080/15569543.2019.1662813.

[104]

A. Rauf, M. Imran, T. Abu-Izneid, et al., Proanthocyanidins: a comprehensive review, Biomed. Pharmacother. 116 (2019) 108999. http://dx.doi.org/10.1016/j.biopha.2019.108999.

[105]

F. He, N.N. Liang, L. Mu, et al., Anthocyanins and their variation in red wines I. Monomeric anthocyanins and their color expression, Molecules 17 (2012) 1571-1601. http://dx.doi.org/10.3390/molecules17021571.

[106]

W.Y. Huang, Y.M. Liu, J. Wang, et al., Anti-inflammatory effect of the blueberry anthocyanins malvidin-3-glucoside and malvidin-3-galactoside in endothelial cells, Molecules 19 (2014) 12827-12841. http://dx.doi.org/10.3390/molecules190812827.

[107]

J.F. Henriques, D. Serra, T.C.P. Dinis, et al., The anti-neuroinflammatory role of anthocyanins and their metabolites for the prevention and treatment of brain disorders, Int. J. Mol. Sci. 21 (2020). http://dx.doi.org/10.3390/ijms21228653.

[108]

G. de Gaetano, S. Costanzo, A. Di Castelnuovo, et al., Effects of moderate beer consumption on health and disease: a consensus document, Nutr. Metab. Cardiovasc. Dis. 26 (2016) 443-467. http://dx.doi.org/10.1016/j.numecd.2016.03.007.

[109]

A.W. Taylor, E. Barofsky, J.A. Kennedy, et al., Hop (Humulus lupulus L.) proanthocyanidins characterized by mass spectrometry, acid catalysis, and gel permeation chromatography, J. Agric. Food Chem. 51 (2003) 4101-4110. http://dx.doi.org/10.1021/jf0340409.

[110]

K.P. Cheiran, V.P. Raimundo, V. Manfroi, et al., Simultaneous identification of low-molecular weight phenolic and nitrogen compounds in craft beers by HPLC-ESI-MS/MS, Food Chem. 286 (2019) 113-122. http://dx.doi.org/10.1016/j.foodchem.2019.01.198.

[111]

D. Granato, G.F. Branco, J. de Assis Fonseca Faria, et al., Characterization of Brazilian lager and brown ale beers based on color, phenolic compounds, and antioxidant activity using chemometrics, J. Sci. Food Agric. 91 (2011) 563-571. http://dx.doi.org/10.1002/jsfa.4222.

[112]

J.M. Seliger, L. Misuri, E. Maser, et al., The hop-derived compounds xanthohumol, isoxanthohumol and 8-prenylnaringenin are tight-binding inhibitors of human aldo-keto reductases 1B1 and 1B10, J. Enzyme. Inhib. Med. Chem. 33 (2018) 607-614. http://dx.doi.org/10.1080/14756366.2018.1437728.

[113]

C.H. Jiang, T.L. Sun, D.X. Xiang, et al., Anticancer activity and mechanism of xanthohumol: a prenylated flavonoid from hops (Humulus lupulus L.), Front. Pharmacol. 9 (2018) 530. http://dx.doi.org/10.3389/fphar.2018.00530.

[114]

S.F. Liou, T.T.N. Nguyen, J.H. Hsu, et al., The preventive effects of xanthohumol on vascular calcification induced by vitamin D3 plus nicotine, Antioxidants (Basel) 9 (2020) 956. http://dx.doi.org/10.3390/antiox9100956.

[115]

J.S. Samuels, R. Shashidharamurthy, S. Rayalam, Novel anti-obesity effects of beer hops compound xanthohumol: role of AMPK signaling pathway, Nutr. Metab. (Lond). 15 (2018) 42. http://dx.doi.org/10.1186/s12986-018-0277-8.

[116]

P. Quifer-Rada, M. Martinez-Huelamo, G. Chiva-Blanch, et al., Urinary isoxanthohumol is a specific and accurate biomarker of beer consumption, J. Nutr. 144 (2014) 484-488. http://dx.doi.org/10.3945/jn.113.185199.

[117]

L. Daimiel, V. Mico, L. Diez-Ricote, et al., Alcoholic and non-alcoholic beer modulate plasma and macrophage microRNAs differently in a pilot intervention in humans with cardiovascular risk, Nutrients 13 (2020). http://dx.doi.org/10.3390/nu13010069.

[118]

L. Legette, L. Ma, R.L. Reed, et al., Pharmacokinetics of xanthohumol and metabolites in rats after oral and intravenous administration, Mol. Nutr. Food Res. 56 (2012) 466-474. http://dx.doi.org/10.1002/mnfr.201100554.

[119]

J. Paszkot, J. Kawa-Rygielska, M. Aniol, Properties of dry hopped dark beers with high xanthohumol content, Antioxidants (Basel). 10 (2021) 763. http://dx.doi.org/10.3390/antiox10050763.

[120]

J. Tekel, D. De Keukeleire, H. Rong, et al., Determination of the hop-derived phytoestrogen, 8-prenylnaringenin, in beer by gas chromatography/mass spectrometry, J. Agric. Food Chem. 47 (1999) 5059-5063. http://dx.doi.org/10.1021/jf990645m.

[121]

H. Hirata, Yimin, S. Segawa, et al., Xanthohumol prevents atherosclerosis by reducing arterial cholesterol content via CETP and apolipoprotein E in CETP-transgenic mice, PLoS ONE 7 (2012) e49415. http://dx.doi.org/10.1371/journal.pone.0049415.

[122]

H. Hirata, H. Uto-Kondo, M. Ogura, et al., Xanthohumol, a hop-derived prenylated flavonoid, promotes macrophage reverse cholesterol transport, J. Nutr. Biochem. 47 (2017) 29-34.http://dx.doi.org/10.1016/j.jnutbio.2017.04.011.

[123]

P. Doddapattar, B. Radovic, J.V. Patankar, et al., Xanthohumol ameliorates atherosclerotic plaque formation, hypercholesterolemia, and hepatic steatosis in ApoE-deficient mice, Mol. Nutr. Food Res. 57 (2013) 1718-1728. http://dx.doi.org/10.1002/mnfr.201200794.

[124]

H. Liu, B. Sun, Effect of fermentation processing on the flavor of Baijiu, J. Agric. Food Chem. 66 (2018) 5425-5432. http://dx.doi.org/10.1021/acs.jafc.8b00692.

[125]
Global Times, Chinese distilled spirit finally granted ‘Chinese Baijiu’ as its official English terminology. (2021). https://www.globaltimes.cn/page/202101/1212603.shtml
[126]

X.W. Zheng, B.Z. Han, Baijiu (白酒), Chinese liquor: history, classification and manufacture, J. Ethnic. Foods. 3 (2016) 19-25. http://dx.doi.org/10.1016/j.jef.2016.03.001.

[127]

F. Yue, X. Zhang, H. Zhang, et al., Association of alcohol consumption with the impaired beta-cell function independent of body mass index among Chinese men, Endocr. J. 59 (2012) 425-433. http://dx.doi.org/10.1507/endocrj.ej12-0003.

[128]

C.N. Wang, T.X. Wu, L. Lei, Experimental study of the anti-fatigue effects and liver injury in mice with intragastric feeding of Jiangxiang Baijiu of different ages, Liquor-Making Science & Technology 304 (2019) 36-40. http://dx.doi.org/10.13746/j.njkj.2019153.

[129]

M.S. Liu, S.H. Xiao, P.X. Shui, et al., Effects of liquor on the immune functions of mice, Liquor-Making Science & Technology 217 (2012). http://dx.doi.org/10.13746/j.njkj.2012.07.030.

[130]

C. Fang, H. Du, X. Zheng, et al., Solid-state fermented Chinese alcoholic beverage (Baijiu) and ethanol resulted in distinct metabolic and microbiome responses, FASEB J. 33 (2019) 7274-7288. http://dx.doi.org/10.1096/fj.201802306R.

[131]

J. Huo, X. Luo, M. Huang, et al., Identification and antioxidant activity of a novel peptide from Baijiu, Int. J. Peptide Res. Therap. 26 (2019) 1199-1210. http://dx.doi.org/10.1007/s10989-019-09926-z.

[132]

Y. Shi, W. Fan, Y. Xu, et al., Preliminarystudy on antioxidant activity of Chinese liquor, Science and Technology of Food Industry 36 (2015) 95-97. http://dx.doi.org/10.13386/j.issn1002-0306.2015.02.011.

[133]

Z.C. Xu, Y.C, Z.H. Zhou, et al., Research of functional ingredients in notable Chinese liquor Jiannanchun liquor, Sichuan Food and Fermentation 44 (2008) 24-27.

[134]

D. Zhao, D. Shi, J. Sun, et al., Quantification and cytoprotection by vanillin, 4-methylguaiacol and 4-ethylguaiacol against AAPH-induced abnormal oxidative stress in HepG2 cells, RSC Adv. 8 (2018) 35474-35484. http://dx.doi.org/10.1039/c8ra06505e.

[135]

D. Shi, S. Wang, D. Zhao, et al., GC-MS/SIM method to detect 6 phenolic compounds in 103 kinds of Baijiu, Journal of Chinese Institute of Food Science and Technology 19 (2019). http://dx.doi.org/10.16429/j.1009-7848.2019.04.028.

[136]

D. Zhao, J. Sun, B. Sun, et al., Intracellular antioxidant effect of vanillin, 4-methylguaiacol and 4-ethylguaiacol: three components in Chinese Baijiu, RSC Adv. 7 (2017) 46395-46405. http://dx.doi.org/10.1039/c7ra09302k.

[137]

D.R. Zhao, Y.S. Jiang, J.Y. Sun, et al., Anti-inflammatory mechanism involved in 4-ethylguaiacol-mediated inhibition of LPS-induced inflammation in THP-1 Cells, J. Agric. Food Chem. 67 (2019) 1230-1243. http://dx.doi.org/10.1021/acs.jafc.8b06263.

[138]

J. Liu, H. Wang, X. Liu, et al., Chinese liquor extract enhances inflammation resistance in RAW 264.7 and reduces aging in caenorhabditis elegans, RSC Advances. 8 (2018) 38529-38537. http://dx.doi.org/10.1039/c8ra06575f.

[139]

J.F. Wu, Y. Xu, Comparison of pyrazine compounds in seven Chinese liquors using headspace solid-phase micro-extraction and GC-nitrogen phosphourus detection, Food Sci Biotechnol. 22 (2013) 1-6. http://dx.doi.org/10.1007/s10068-013-0209-3.

[140]

X.S. Sun, D.Q. Shen, T.T. Shi, et al., Research on decomposition of triglycerides activities and α-glycosidase inhibitory of sulfide and pyrazine compositions in sesame-flavor liquor, Liquor Making 41 (2014) 56-59.

[141]

C.Q. Gao, T.T. Tan, Y.W. Xin, The activities of the extracts of zhimaxiang Baijiu (sesame-flavor liquor) and the 4 kinds of characteristic compounds, Liquor-Making Science & Technology 250 (2015) 61-64. http://dx.doi.org/10.13746/j.njkj.2015016.

[142]

H. Zhang, W. Tang, S. Wang, et al., Tetramethylpyrazine inhibits platelet adhesion and inflammatory response in vascular endothelial cells by inhibiting P38 MAPK and NF-kappaB signaling pathways, Inflammation 43 (2020) 286-297. http://dx.doi.org/10.1007/s10753-019-01119-6.

[143]

S.L. Liao, T.K. Kao, W.Y. Chen, et al., Tetramethylpyrazine reduces ischemic brain injury in rats, Neurosci. Lett. 372 (2004) 40-45. http://dx.doi.org/10.1016/j.neulet.2004.09.013.

[144]

J. Wu, B. Sun, X. Luo, et al., Cytoprotective effects of a tripeptide from Chinese Baijiu against AAPH-induced oxidative stress in HepG2 cells via Nrf2 signaling, RSC Adv. 8 (2018) 10898-10906. http://dx.doi.org/10.1039/c8ra01162a.

[145]

J.H. Wu, B. Sun, M. Zhao, et al., Discovery and research of angiotensin converting enzyme inhibitory peptide in Baijiu, Journal of Chinese Institute of Food Science and Technology 16 (2016) 14-20. http://dx.doi.org/10.16429/j.1009-7848.2016.09.002.

[146]

J. Wu, J. Huo, M. Huang, et al., Structural characterization of a tetrapeptide from sesame flavor-type Baijiu and its preventive effects against AAPH-induced oxidative stress in HepG2 cells, J. Agric. Food Chem. 65 (2017) 10495-10504. http://dx.doi.org/10.1021/acs.jafc.7b04815.

[147]

Y. Jiang, Q. Kang, Z. Yin, et al., Content changes of Jiupei tripeptide Tyr-Gly-Asp during simulated distillation process of baijiu and the potential in vivo antioxidant ability investigation, J. of Food Composit. Anal. 102 (2021). http://dx.doi.org/10.1016/j.jfca.2021.104034.

[148]

Y. Jiang, R. Wang, Z. Yin, et al., Optimization of Jiuzao protein hydrolysis conditions and antioxidant activity in vivo of Jiuzao tetrapeptide Asp-Arg-Glu-Leu by elevating the Nrf2/Keap1-p38/PI3K-MafK signaling pathway, Food Funct. 12 (2021) 4808-4824. http://dx.doi.org/10.1039/d0fo02852e.

[149]

L. Amigo, B. Hernandez-Ledesma, Current evidence on the bioavailability of food bioactive peptides, Molecules 25 (2020). http://dx.doi.org/10.3390/molecules25194479.

[150]

M. Neuenschwander, A. Ballon, K.S. Weber, et al., Role of diet in type 2 diabetes incidence: umbrella review of meta-analyses of prospective observational studies, BMJ 366 (2019) l2368. http://dx.doi.org/10.1136/bmj.l2368.

[151]

X. Zhang, Y. Liu, S. Li, et al., Alcohol consumption and risk of cardiovascular disease, cancer and mortality: a prospective cohort study, Nutr. J. 20 (2021) 13. http://dx.doi.org/10.1186/s12937-021-00671-y.

[152]

B. Xi, S.P. Veeranki, M. Zhao, et al., Relationship of alcohol consumption to all-cause, Cardiovascular, and Cancer-Related Mortality in U.S. Adults, J. Am. Coll. Cardiol. 70 (2017) 913-922. http://dx.doi.org/10.1016/j.jacc.2017.06.054.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 08 October 2021
Revised: 18 November 2021
Accepted: 13 December 2021
Published: 09 August 2022
Issue date: January 2023

Copyright

© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

Acknowledgements

This work was supported by the National Natural Science Foundation of P.R. China (No.31972193) and the Science and Technology Program of Tibet Autonomous Region, China (XZ202001ZY0017N).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return