Journal Home > Volume 11 , Issue 6

Insulin resistance leads to impaired glucose metabolism by disrupting both insulin secretion and sensitivity. Insulin resistance plays a key role in the pathophysiology of type 2 diabetes and metabolic syndrome. Reviews on the mechanisms of action of bioactive peptides on glucose homeostasis and insulin resistance are scarce. The recent discoveries of pathways and target cells in the management of glucose and energy metabolism have opened up new opportunities for identification of novel bioactive peptides on enhancing adipocyte differentiation and insulin signaling, glucose uptake, cholecystokinin receptor expression and activation, as well as insulin mimetics and incretin stimulants. Examples of food-derived bioactive peptides with glucoregulatory properties include Trp-Glu-Lys-Ala-Phe-Lys-Asp-Glu-Asp (WEKAFKDED), Gln-Ala-Met-Pro-Phe-Arg-Val-Thr-Glu-Gln-Glu (QAMPFRVTEQE), Glu-Arg-Tyr-Pro-Ile-Leu (ERKPIL), Val-Phe-Lys-Gly-Leu (VFKGL), Phe-Leu-Val (FLV), Val-Pro-Pro (VPP), Ile-Arg-Trp (IRW), Ala-Lys-Ser-Pro-Leu-Phe (AKSPLF), Ala-Thr-Gln-Pro-Leu-Phe (ATNPLF), Phe-Glu-Glu-Leu-Gln (FEELN), Leu-Ser-Val-Ser-Val-Leu (LSVSVL), Val-Arg-Ileu-Arg-Leu-Leu-Gln-Arg-Phe-Asn-Lys-Arg-Ser (VRIRLLQRFNKRS), and Ala-Gly-Phe-Ala-Gly-Asp-Asp-Ala-Pro-Arg (AGFAGDDAPR). However, as yet, clinical evidence on the efficacy of such bioactive peptides is rare but is inevitable to establish their applications against glucose intolerance and insulin resistance.


menu
Abstract
Full text
Outline
About this article

A review on mechanisms of action of bioactive peptides against glucose intolerance and insulin resistance

Show Author's information Forough Jahandideha,bJianping Wua,b( )
Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, T6G 2P5, Canada
Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2S2, Canada

Peer review under responsibility of KeAi Communications Co., Ltd.

Abstract

Insulin resistance leads to impaired glucose metabolism by disrupting both insulin secretion and sensitivity. Insulin resistance plays a key role in the pathophysiology of type 2 diabetes and metabolic syndrome. Reviews on the mechanisms of action of bioactive peptides on glucose homeostasis and insulin resistance are scarce. The recent discoveries of pathways and target cells in the management of glucose and energy metabolism have opened up new opportunities for identification of novel bioactive peptides on enhancing adipocyte differentiation and insulin signaling, glucose uptake, cholecystokinin receptor expression and activation, as well as insulin mimetics and incretin stimulants. Examples of food-derived bioactive peptides with glucoregulatory properties include Trp-Glu-Lys-Ala-Phe-Lys-Asp-Glu-Asp (WEKAFKDED), Gln-Ala-Met-Pro-Phe-Arg-Val-Thr-Glu-Gln-Glu (QAMPFRVTEQE), Glu-Arg-Tyr-Pro-Ile-Leu (ERKPIL), Val-Phe-Lys-Gly-Leu (VFKGL), Phe-Leu-Val (FLV), Val-Pro-Pro (VPP), Ile-Arg-Trp (IRW), Ala-Lys-Ser-Pro-Leu-Phe (AKSPLF), Ala-Thr-Gln-Pro-Leu-Phe (ATNPLF), Phe-Glu-Glu-Leu-Gln (FEELN), Leu-Ser-Val-Ser-Val-Leu (LSVSVL), Val-Arg-Ileu-Arg-Leu-Leu-Gln-Arg-Phe-Asn-Lys-Arg-Ser (VRIRLLQRFNKRS), and Ala-Gly-Phe-Ala-Gly-Asp-Asp-Ala-Pro-Arg (AGFAGDDAPR). However, as yet, clinical evidence on the efficacy of such bioactive peptides is rare but is inevitable to establish their applications against glucose intolerance and insulin resistance.

Keywords: Insulin resistance, Metabolic syndrome, Bioactive peptides, Glucose homeostasis, Adipose tissue

References(173)

[1]

L. Mayans, Metabolic syndrome: insulin resistance and prediabetes, FP essentials 435 (2015) 11-16.

[2]

K.G.M.M. Alberti, R.H. Eckel, S.M. Grundy, et al., Harmonizing the metabolic syndrome a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity, Circulation 120 (2009) 1640-1645. http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192644.

[3]

S.M. Grundy, Metabolic syndrome pandemic, Arterioscl. Throm. Vas. 28 (2008) 629-636. http://dx.doi.org/10.1161/ATVBAHA.107.151092.

[4]

E. Kassi, P. Pervanidou, G. Kaltsas, et al., Metabolic syndrome: definitions and controversies, BMC Medicine 9 (2011) 48. http://dx.doi.org/10.1186/1741-7015-9-48.

[5]

N. Mikhail, The metabolic syndrome: insulin resistance, Curr. hypertens. Rep. 11 (2009) 156-158. http://dx.doi.org/10.1007/s11906-009-0027-4.

[6]

R.H. Eckel, S.M. Grundy, P.Z. Zimmet, The metabolic syndrome, Lancet 365 (2005) 1415-1428. http://dx.doi.org/10.1016/S0140-6736(05)66378-7.

[7]

K. Erdmann, B.W.Y. Cheung, H. Schroder, The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease, J. Nutr. Biochem. 19 (2008) 643-654. http://dx.doi.org/10.1016/j.jnutbio.2007.11.010.

[8]

C.C. Udenigwe, R.E. Aluko, Food protein-derived bioactive peptides: production, processing, and potential health benefits, J. Food Sci. 77 (2012) R11-R24. http://dx.doi.org/10.1111/j.1750-3841.2011.02455.x.

[9]

S. Chakrabarti, F. Jahandideh, J.P. Wu, Food-derived bioactive peptides on inflammation and oxidative stress, Biomed. Res. Int. 2014 (2014) 608979. http://dx.doi.org/10.1155/2014/608979.

[10]

S. Guha, K. Majumder, Structural-features of food-derived bioactive peptides with anti-inflammatory activity: a brief review, J. Food Biochem. 43(1) (2019) e12531. http://dx.doi.org/10.1111/jfbc.12531.

[11]

K. Majumder, J.P. Wu, Molecular targets of antihypertensive peptides: understanding the mechanisms of action based on the pathophysiology of hypertension, Int. J. Mol. Sci. 16 (2015) 256-283. http://dx.doi.org/10.3390/ijms16010256.

[12]

S. Nagaoka, Structure-function properties of hypolipidemic peptides, J. Food Biochem. 43(1) (2019) e12539. http://dx.doi.org/10.1111/jfbc.12539.

[13]

J. Tkaczewska, M. Bukowski, P. Mak, Identification of antioxidant peptides in enzymatic hydrolysates of carp (Cyprinus carpio) skin gelatin, Molecules 24(1) (2018) 97. http://dx.doi.org/10.3390/molecules24010097.

[14]

X.R. Yang, Y.T. Qiu, Y.Q. Zhao, et al., Purification and characterization of antioxidant peptides derived from protein hydrolysate of the marine bivalve mollusk Tergillarca granosa, Mar. Drugs 17 (2019).

[15]

Q. Zhang, X. Tong, Y. Li, et al., Purification and characterization of antioxidant peptides from alcalase-hydrolyzed soybean (Glycine max L.) hydrolysate and their cytoprotective effects in human intestinal Caco-2 cells, J. Agric. Food Chem. 67 (2019) 5772-5781. http://dx.doi.org/10.1021/acs.jafc.9b01235.

[16]

H. Agrawal, R. Joshi, M. Gupta, Purification, identification and characterization of two novel antioxidant peptides from finger millet (Eleusine coracana) protein hydrolysate, Food Res. Int. 120 (2019) 697-707. http://dx.doi.org/10.1016/j.foodres.2018.11.028.

[17]

J. Yang, L. Hu, T. Cai, et al., Purification and identification of two novel antioxidant peptides from perilla (Perilla frutescens L. Britton) seed protein hydrolysates, PLoS ONE 13 (2018) e0200021.

[18]

Q. Liang, M. Chalamaiah, X. Ren, et al., Identification of new anti-inflammatory peptides from zein hydrolysate after simulated gastrointestinal digestion and transport in Caco-2 cells, J. Agric. Food Chem. 66 (2018) 1114-1120. http://dx.doi.org/10.1021/acs.jafc.7b04562.

[19]

L. Zhao, X. Wang, X.L. Zhang, et al., Purification and identification of anti-inflammatory peptides derived from simulated gastrointestinal digests of velvet antler protein (Cervus elaphus Linnaeus), J. Food Drug Anal. 24 (2016) 376-384. http://dx.doi.org/10.1016/j.jfda.2015.10.003.

[20]

Y. Chen, H. Zhang, L. Mats, et al., Anti-inflammatory effect and cellular uptake mechanism of peptides from common bean (Phaseolus vulga L.) milk and yogurts in Caco-2 mono- and Caco-2/EA.hy926 co-culture models, J. Agric. Food Chem. 67 (2019) 8370-8381. http://dx.doi.org/10.1021/acs.jafc.9b03079.

[21]

J. Kan, M. Hood, C. Burns, et al., A novel combination of wheat peptides and fucoidan attenuates ethanol-induced gastric mucosal damage through anti-oxidant, anti-inflammatory, and pro-survival mechanisms, Nutrients 9(9) (2017) 978. http://dx.doi.org/10.3390/nu9090978.

[22]

M. Zhang, Y. Zhao, Y. Yao, et al., Isolation and identification of peptides from simulated gastrointestinal digestion of preserved egg white and their anti-inflammatory activity in TNF-alpha-induced Caco-2 cells, J. Nutr. Biochem. 63 (2019) 44-53. http://dx.doi.org/10.1016/j.jnutbio.2018.09.019.

[23]

N. Quintal-Bojorquez, M.R. Segura-campos, Bioactive peptides as therapeutic adjuvants for cancer, Nutr. Cancer 4 (2020) 1-13.

[24]

X. Li, L. Xia, X. Ouyang, et al., Bioactive peptides sensitize cells to anticancer effects of oxaliplatin in human colorectal cancer xenografts in nude mice, Protein Pept. Lett. 26 (2019) 512-522. http://dx.doi.org/10.2174/0929866526666190405124955.

[25]

Y.H. Shih, F.A. Chen, L.F. Wang, et al., Discovery and study of novel antihypertensive peptides derived from Cassia obtusifolia seeds, J. Agric. Food Chem. 67 (2019) 7810-7820. http://dx.doi.org/10.1021/acs.jafc.9b01922.

[26]

Y.Q. Zhao, L. Zhang, J. Tao, et al., Eight antihypertensive peptides from the protein hydrolysate of Antarctic krill (Euphausia superba): isolation, identification, and activity evaluation on human umbilical vein endothelial cells (HUVECs), Food Res. Int. 121 (2019) 197-204. http://dx.doi.org/10.1016/j.foodres.2019.03.035.

[27]

Q. Xu, H. Fan, W. Yu, et al., Transport study of egg-derived antihypertensive peptides (LKP and IQW) using Caco-2 and HT29 coculture monolayers, J. Agric. Food Chem. 65 (2017) 7406-7414. http://dx.doi.org/10.1021/acs.jafc.7b02176.

[28]

U.G. Yathisha. I. Bhat, I. Karunasagar, et al., Antihypertensive activity of fish protein hydrolysates and its peptides, Crit. Rev. Food Sci. 59 (2019) 2363-2374. http://dx.doi.org/10.1080/10408398.2018.1452182.

[29]

D. Qian, B. Qiu, N. Zhou, et al., Hypotensive activity of transgenic rice seed accumulating multiple antihypertensive peptides, J. Agric. Food Chem. 68 (2020) 7162-7168. http://dx.doi.org/10.1021/acs.jafc.0c01958.

[30]

F. Jahandideh, K. Majumder, S. Chakrabarti, et al., Beneficial effects of simulated gastro-intestinal digests of fried egg and its fractions on blood pressure, plasma lipids and oxidative stress in spontaneously hypertensive rats, PLoS ONE 9 (2014).

[31]

F. Jahandideh, S. Chakrabarti, K. Majumder, et al., Egg white protein hydrolysate reduces blood pressure, improves vascular relaxation and modifies aortic angiotensin II receptors expression in spontaneously hypertensive rats, J. Funct. Foods 27 (2016) 667-673. http://dx.doi.org/10.1016/j.jff.2016.10.019.

[32]

E. Elkhtab, M. El-Alfy, M. Shenana, et al., New potentially antihypertensive peptides liberated in milk during fermentation with selected lactic acid bacteria and kombucha cultures, J. Dairy Sci. 100 (2017) 9508-9520. http://dx.doi.org/10.1515/jcim-2017-0071.

[33]

O. Abdelhedi, H. Khemakhem, R. Nasri, et al., Assessment of cholesterol, glycemia control and short- and long-term antihypertensive effects of smooth hound viscera peptides in high-salt and fructose diet-fed wistar rats, Mar. Drugs 17 (2019).

[34]

R. Ben Slama-Ben Salem, N. Ktari, I. Bkhairia, et al., In vitro and in vivo anti-diabetic and anti-hyperlipidemic effects of protein hydrolysates from Octopus vulgaris in alloxanic rats, Food Res. Int. 106 (2018) 952-963. http://dx.doi.org/10.1016/j.foodres.2018.01.068.

[35]

M.R. Zanutto-Elgui, J.C.S. Vieira, D.Z.D. Prado, et al., Production of milk peptides with antimicrobial and antioxidant properties through fungal proteases, Food Chem. 278 (2019) 823-831. http://dx.doi.org/10.1016/j.foodchem.2018.11.119.

[36]

I. Dinika, D.K. Verma, R. Bali, et al., Potential of cheese whey bioactive proteins and peptides in the development of antimicrobial edible film composite: a review of recent trends, Trends Food Sci. Technol. 103 (2020) 57-67. http://dx.doi.org/10.1016/j.tifs.2020.06.017.

[37]

M. Pandey, S. Kapila, R. Kapila, et al., Evaluation of the osteoprotective potential of whey derived-antioxidative (YVEEL) and angiotensin-converting enzyme inhibitory (YLLF) bioactive peptides in ovariectomised rats, Food Funct. 9(9) (2018) 4791-4801. http://dx.doi.org/10.1039/c8fo00620b.

[38]

S. Chakrabarti, J. Ren, J. Wu, Phosvitin derived phospho-peptides show better osteogenic potential than intact phosvitin in MC3T3-E1 osteoblastic cells, Nutrients 12 (2020) 2998. http://dx.doi.org/10.3390/nu12102998.

[39]

Y.X. Chen, J.C. Chen, J. Chen, et al., Recent advances in seafood bioactive peptides and their potential for managing osteoporosis, Crit. Rev. Food Sci. (2020) 1-17. http://dx.doi.org/10.1080/10408398.2020.1836606.

[40]

S. Reddi, V.P. Shanmugam, K.S. Tanedjeu, et al., Effect of buffalo casein-derived novel bioactive peptides on osteoblast differentiation, Eur. J. Nutr. 57 (2018) 593-605. http://dx.doi.org/10.1007/s00394-016-1346-2.

[41]

J. Yan, J. Zhao,, R. Yang, et al., Bioactive peptides with antidiabetic properties: a review, Int. J. Food Sci. Technol. 54 (2019) 1909-1919. http://dx.doi.org/10.1111/ijfs.14090.

[42]

Y.Y. Ngoh, T.S. Lim, C.Y. Gan, Screening and identification of five peptides from pinto bean with inhibitory activities against alpha-amylase using phage display technique, Enzyme Microb. Technol. 89 (2016) 76-84. http://dx.doi.org/10.1016/j.enzmictec.2016.04.001.

[43]

Y.Y. Ngoh, C.Y. Gan, Identification of Pinto bean peptides with inhibitory effects on alpha-amylase and angiotensin converting enzyme (ACE) activities using an integrated bioinformatics-assisted approach, Food Chem. 267 (2018) 124-131. http://dx.doi.org/10.1016/j.foodchem.2017.04.166.

[44]

H.L. Siow, T.S. Lim, C.Y. Gan, Development of a workflow for screening and identification of alpha-amylase inhibitory peptides from food source using an integrated bioinformatics-phage display approach: case study - cumin seed, Food Chem. 214 (2017) 67-76. http://dx.doi.org/10.1016/j.foodchem.2016.07.069.

[45]

N.A. Evaristus, W.N. Wan Abdullah, C.Y. Gan, Extraction and identification of alpha-amylase inhibitor peptides from Nephelium lappacheum and Nephelium mutabile seed protein using gastro-digestive enzymes, Peptides 102 (2018) 61-67.

[46]

S.A. Ross, E.A. Gulve, M. Wang, Chemistry and biochemistry of type 2 diabetes, Chem. Rev. 104 (2004) 1255-1282. http://dx.doi.org/10.1002/chin.200421298.

[47]

F. Chaudhry, S. Naureen, R. Huma, et al., In search of new alpha-glucosidase inhibitors: imidazolylpyrazole derivatives, Bioorg. Chem. 71 (2017) 102-109. http://dx.doi.org/10.1016/j.bioorg.2017.01.017.

[48]

D. Kinariwala, G. Panchal, A. Sakure, et al., Exploring the potentiality of Lactobacillus cultures on the production of milk-derived bioactive peptides with antidiabetic activity, Int. J. Pept. Res. Ther. 26 (2020) 1613-1627.

[49]

I.M.E. Lacroix, E.C.Y. Li-Chan, Inhibition of dipeptidyl peptidase (DPP)-IV and alpha-glucosidase activities by pepsin-treated whey proteins, J. Agr. Food Chem. 61 (2013) 7500-7506. http://dx.doi.org/10.1021/jf401000s.

[50]

B. Konrad, D. Anna, S. Marek, et al., The evaluation of dipeptidyl peptidase (DPP)-IV, alpha-glucosidase and angiotensin converting enzyme (ACE) inhibitory activities of whey proteins hydrolyzed with serine protease isolated from Asian pumpkin (Cucurbita ficifolia), Int. J. Pept. Res. Ther. 20 (2014) 483-491.

[51]

R. Wang, H. Zhao, X. Pan, et al., Preparation of bioactive peptides with antidiabetic, antihypertensive, and antioxidant activities and identification of alpha-glucosidase inhibitory peptides from soy protein, Food Sci. Nutr. 7 (2019) 1848-1856. http://dx.doi.org/10.1002/fsn3.1038.

[52]

M. Gonzalez-Montoya, B. Hernandez-Ledesma, R. Mora-Escobedo, et al., Bioactive peptides from germinated soybean with anti-diabetic potential by inhibition of dipeptidyl peptidase-IV, alpha-amylase, and alpha-glucosidase enzymes, Int. J. Mol. Sci. 19 (10) (2018) 2883. http://dx.doi.org/10.3390/ijms19102883.

[53]

C. Uraipong, J. Zhao, In vitro digestion of rice bran proteins produces peptides with potent inhibitory effects on alpha-glucosidase and angiotensin I converting enzyme, J. Sci. Food Agric. 98 (2018) 758-766. http://dx.doi.org/10.1002/jsfa.8523.

[54]

J.U. Obaroakpo, L. Liu, S. Zhang, et al., α-Glucosidase and ACE dual inhibitory protein hydrolysates and peptide fractions of sprouted quinoa yoghurt beverages inoculated with Lactobacillus casei, Food Chem. 299 (2019) 124985. http://dx.doi.org/10.1016/j.foodchem.2019.124985.

[55]

A. Connolly, C.O. Piggott, R.J. FitzGerald, In vitro alpha-glucosidase, angiotensin converting enzyme and dipeptidyl peptidase-IV inhibitory properties of brewers' spent grain protein hydrolysates, Food Res. Int. 56 (2014) 100-107. http://dx.doi.org/10.1016/j.foodres.2013.12.021.

[56]

T. Oki, T. Matsui, Y. Osajima, Inhibitory effect of alpha-glucosidase inhibitors varies according to its origin, J. Agric. Food Chem. 47 (1999) 550-553. http://dx.doi.org/10.1021/jf980788t.

[57]

P.V. Roder, B. Wu, Y. Liu, et al., Pancreatic regulation of glucose homeostasis, Exp. Mol. Med. 48 (2016) e219. http://dx.doi.org/10.1038/emm.2016.6.

[58]

A.R. Saltiel, C.R. Kahn, Insulin signalling and the regulation of glucose and lipid metabolism, Nature 414 (2001) 799-806. http://dx.doi.org/10.1038/414799a.

[59]

Y.H. Wang, J. Viscarra, S.J. Kim, et al., Transcriptional regulation of hepatic lipogenesis, Nat. Rev. Mol. Cell Bio. 16 (2015) 678-689. http://dx.doi.org/10.1038/nrm4074.

[60]

B.E. Grayson, R.J. Seeley, D.A. Sandoval, Wired on sugar: the role of the CNS in the regulation of glucose homeostasis, Nat. Rev. Neurosci. 14 (2013) 24-37. http://dx.doi.org/10.1038/nrn3409.

[61]
R. Bilous, R. Donnelly, Chapter 5: Normal physiology of insulin secretion and action, in Handbook of Diabetes. 2010, John Wiley & Sons, Ltd.
[62]

R. Meshkani, K. Adeli, Hepatic insulin resistance, metabolic syndrome and cardiovascular disease, Cli. Biochem. 42 (2009) 1331-1346. http://dx.doi.org/10.1016/j.clinbiochem.2009.05.018.

[63]

J. Jeppesen, T.W. Hansen, S. Rasmussen, et al., Metabolic syndrome, low-density lipoprotein cholesterol, and risk of cardiovascular disease: a population-based study, Atherosclerosis 189 (2006) 369-374. http://dx.doi.org/10.1016/j.atherosclerosis.2005.12.010.

[64]

R. Schmid, E. Schultefrohlinde, V. Schusdziarra, et al., Contribution of postprandial amino-acid levels to stimulation of insulin, glucagon, and pancreatic-polypeptide in humans, Pancreas 7 (1992) 698-704. http://dx.doi.org/10.1097/00006676-199211000-00011.

[65]

J.C. Floyd, S.S. Fajans, J.W. Conn, et al., Stimulation of insulin secretion by amino acids, J. Clin. Invest. 45 (1966) 1487-1502. http://dx.doi.org/10.1172/JCI105456.

[66]

V. Lang, F. Bellisle, C. Alamowitch, et al., Varying the protein source in mixed meal modifies glucose, insulin and glucagon kinetics in healthy men, has weak effects on subjective satiety and fails to affect food intake, Eur. J. Clin. Nutr. 53 (1999) 959-965. http://dx.doi.org/10.1038/sj.ejcn.1600881.

[67]

J.A.L. Calbet, D.A. MacLean, Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans, J. Nutr. 132 (2002) 2174-2182.

[68]

R.L. Adams, K.S. Broughton, Insulinotropic effects of whey: mechanisms of action, recent clinical trials, and clinical applications, Ann. Nutr. Metab. 69 (2016) 56-63. http://dx.doi.org/10.1159/000448665.

[69]

M. Nilsson, M. Stenberg, A.H. Frid, et al., Glycemia and insulinemia in healthy subjects after lactoseequivalent meals of milk and other food proteins: the role of plasma amino acids and incretins, Am. J. Clin. Nutr. 80(5) (2004) 1246-1253. http://dx.doi.org/10.1093/ajcn/80.5.1246.

[70]

M. Nilsson, J.J. Holst, I.M.E. Bjorck, Metabolic effects of amino acid mixtures and whey protein in healthy subjects: studies using glucose-equivalent drinks, Am. J. Clin. Nutr. 85 (2007) 996-1004. http://dx.doi.org/10.1186/1476-511X-6-9.

[71]

C. Gaudel, A.B. Nongonierma, S. Maher, et al., A whey protein hydrolysate promotes insulinotropic activity in a clonal pancreatic beta-cell line and enhances glycemic function in ob/ob mice, J. Nutr. 143 (2013) 1109-1114. http://dx.doi.org/10.3945/jn.113.174912.

[72]

V. Parthsarathy, C.M. McLaughlin, P.A. Harnedy, et al., Boarfish (Capros aper) protein hydrolysate has potent insulinotropic and GLP-1 secretory activity in vitro and acute glucose lowering effects in mice, Int. J. Food Sci. Tech. 54 (2019) 271-281. http://dx.doi.org/10.1111/ijfs.13975.

[73]

P.A. Harnedy-Rothwell, C.M. McLaughlin, M.B. O'Keeffe, et al., Identification and characterisation of peptides from a boarfish (Capros aper) protein hydrolysate displaying in vitro dipeptidyl peptidase-IV (DPP-IV) inhibitory and insulinotropic activity, Food Res. Int. 131 (2020) 108989. http://dx.doi.org/10.1016/j.foodres.2020.108989.

[74]

K.D. Copps, M.F. White, Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2, Diabetologia 55 (2012) 2565-2582. http://dx.doi.org/10.1007/s00125-012-2644-8.

[75]

B. Mlinar, J. Marc, A. Janez, et al., Molecular mechanisms of insulin resistance and associated diseases, Clin. Chim. Acta 375 (2007) 20-35. http://dx.doi.org/10.1016/j.cca.2006.07.005.

[76]

L. Laviola, S. Perrini, A. Cignarelli, et al., Insulin signaling in human visceral and subcutaneous adipose tissue in vivo, Diabetes 55 (2006) 952-961. http://dx.doi.org/10.2337/diabetes.55.04.06.db05-1414.

[77]

J. Boucher, A. Kleinridders, C.R. Kahn, Insulin receptor signaling in normal and insulin-resistant states, Csh. Perspect Biol. 6 (2014).

[78]

F.S. Facchini, N. Hua, F. Abbasi, et al., Insulin resistance as a predictor of age-related diseases, J. Clin. Endocr. Metab. 86 (2001) 3574-3578. http://dx.doi.org/10.1210/jcem.86.8.7763.

[79]

H.E. Resnick, K. Jones, G. Ruotolo, et al., Insulin resistance, the metabolic syndrome, and risk of incident cardiovascular disease in nondiabetic american indians - the strong heart study, Diabetes Care 26 (2003) 861-867. http://dx.doi.org/10.2337/diacare.26.3.861.

[80]

F. Angelico, M. Del Ben, R. Conti, et al., Insulin resistance, the metabolic syndrome, and nonalcoholic fatty liver disease, J. Clin. Endocr. Metab. 90 (2005) 1578-1582.

[81]

F. Jahandideh, J. Wu, Perspectives on the potential benefits of antihypertensive peptides towards metabolic syndrome, Int. J. Mol. Sci. 21(6) (2020) 2192. http://dx.doi.org/10.3390/ijms21062192.

[82]

C. Lavigne, F. Tremblay, G. Asselin, et al., Prevention of skeletal muscle insulin resistance by dietary cod protein in high fat-fed rats, Am. J. Physiol-Endoc. M. 281 (2001) E62-E71. http://dx.doi.org/10.1152/ajpendo.2001.281.1.E62.

[83]

Z. Madani, K. Louchami, A. Sener, et al., Dietary sardine protein lowers insulin resistance, leptin and TNF-alpha and beneficially affects adipose tissue oxidative stress in rats with fructose-induced metabolic syndrome, Int. J. Mol. Med. 29 (2012) 311-318.

[84]

G. Pilon, J. Ruzzin, L.E. Rioux, et al., Differential effects of various fish proteins in altering body weight, adiposity, inflammatory status, and insulin sensitivity in high-fat-fed rats, Metab. Clin. Exp. 60 (2011) 1122-1130. http://dx.doi.org/10.1016/j.metabol.2010.12.005.

[85]

S.C. de Campos Zani, J. Wu, C.B. Chan, Egg and soy-derived peptides and hydrolysates: a review of their physiological actions against diabetes and obesity, Nutrients 10(5) (2018) 549. http://dx.doi.org/10.3390/nu10050549.

[86]

F. Jahandideh, S. Chakrabarti, S.T. Davidge, et al., Egg white hydrolysate shows insulin mimetic and sensitizing effects in 3T3-F442A pre-adipocytes, PLoS ONE 12 (2017) e0185653. http://dx.doi.org/10.1371/journal.pone.0185653.

[87]

M. Son, J. Wu, Egg white hydrolysate and peptide reverse insulin resistance associated with tumor necrosis factor-alpha (TNF-alpha) stimulated mitogen-activated protein kinase (MAPK) pathway in skeletal muscle cells, Eur. J. Nutr. 58 (2019) 1961-1969.

[88]

F. Jahandideh, S.C.C. Zani, M. Son, et al., Egg white hydrolysate enhances insulin sensitivity in high-fat diet-induced insulin-resistant rats via Akt activation, Brit. J. Nutr. 122 (2019) 14-24. http://dx.doi.org/10.1017/s0007114519000837.

[89]

S. Chakrabarti, F. Jahandideh, S.T. Davidge, et al., Milk-derived tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) enhance insulin sensitivity and prevent insulin resistance in 3T3-F442A preadipocytes, J. Agric. Food Chem. 66 (2018) 10179-10187. http://dx.doi.org/10.1021/acs.jafc.8b02051.

[90]

S. Nishitani, T. Matsumura, S. Fujitani, et al., Leucine promotes glucose uptake in skeletal muscles of rats, Biochem. Biophys. Res. Commun. 299 (2002) 693-696.

[91]

M. Doi, I. Yamaoka, M. Nakayama, et al., Isoleucine, a blood glucose-lowering amino acid, increases glucose uptake in rat skeletal muscle in the absence of increases in AMP-activated protein kinase activity, J. Nut. 135 (2005) 2103-2108. http://dx.doi.org/10.1093/jn/135.9.2103.

[92]

P.N. Morato, P.C.B. Lollo, C.S. Moura, et al., Whey protein hydrolysate increases translocation of GLUT-4 to the plasma membrane independent of insulin in Wistar rats, PLoS ONE 8 (2013).

[93]

K.A. Coughlan, R.J. Valentine, N.B. Ruderman, et al., AMPK activation: a therapeutic target for type 2 diabetes?, Diabet. Metab. Synd. Ob. 7 (2014) 241-253.

[94]

N. Jessen, L.J. Goodyear, Contraction signaling to glucose transport in skeletal muscle, J. Appl. Physiol. 99 (2005) 330-337. http://dx.doi.org/10.1152/japplphysiol.00175.2005.

[95]

N. Fujii, N. Jessen, L.J. Goodyear, AMP-activated protein kinase and the regulation of glucose transport, Am. J. Physiol-Endoc. M. 291 (2006) E867-E877. http://dx.doi.org/10.1152/ajpendo.00207.2006.

[96]

K.I. Stanford, L.J. Goodyear, Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle, Adv. Physiol. Educ. 38 (2014) 308-314. http://dx.doi.org/10.1152/advan.00080.2014.

[97]

M.J. Sanders, P.O. Grondin, B.D. Hegarty, et al., Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade, Biochem. J. 403 (2007) 139-148.

[98]

B.B. Zhang, G. Zhou, C. Li, AMPK: an emerging drug target for diabetes and the metabolic syndrome, Cell Metab. 9 (2009) 407-416. http://dx.doi.org/10.1016/j.cmet.2009.03.012.

[99]

H.A. Koistinen, D. Galuska, A.V. Chibalin, et al., 5-Amino-imidazole carboxamide riboside increases glucose transport and cell-surface GLUT4 content in skeletal muscle from subjects with type 2 diabetes, Diabetes 52(5) (2003) 1066-1072. http://dx.doi.org/10.2337/diabetes.52.5.1066.

[100]

G. Zhou, R. Myers, Y. Li, et al., Role of AMP-activated protein kinase in mechanism of metformin action, J. Clin. Invest. 108 (2001) 1167-1174. http://dx.doi.org/10.1172/JCI13505.

[101]

B. Viollet, B. Guigas, N. Sanz Garcia, et al., Cellular and molecular mechanisms of metformin: an overview, Clin. Sci. (Lond) 122 (2012) 253-270. http://dx.doi.org/10.1042/CS20110386.

[102]

C. Roblet, A. Doyen, J. Amiot, et al., Enhancement of glucose uptake in muscular cell by soybean charged peptides isolated by electrodialysis with ultrafiltration membranes (EDUF): activation of the AMPK pathway, Food Chem. 147 (2014) 124-130.

[103]

C. Lammi, C. Zanoni, A. Arnoldi, Three peptides from soy glycinin modulate glucose metabolism in human hepatic HepG2 cells, Int. J. Mol. Sci. 16 (2015) 27362-27370. http://dx.doi.org/10.3390/ijms161126029.

[104]

K.G. Murphy, S.R. Bloom, Gut hormones and the regulation of energy homeostasis, Nature 444 (2006) 854-859. http://dx.doi.org/10.1038/nature05484.

[105]

N. Irwin, P.R. Flatt, Enteroendocrine hormone mimetics for the treatment of obesity and diabetes, Curr. Opin. Pharmacol. 13 (2013) 989-995. http://dx.doi.org/10.1016/j.coph.2013.09.009.

[106]

J. Caron, B. Cudennec, D. Domenger, et al., Simulated GI digestion of dietary protein: release of new bioactive peptides involved in gut hormone secretion, Food Res. Int. 89 (2016) 382-390. http://dx.doi.org/10.1016/j.foodres.2016.08.033.

[107]

J. Austin, D. Marks, Hormonal regulators of appetite, Int. J. Ped. Endocrinol. 2009 (2009) 141753. http://dx.doi.org/10.1155/2009/141753.

[108]

B. Cudennec, R. Ravallec, Biological active peptides from marine sources related to gut hormones, Curr. Protein Pept. Sci. 14 (2013) 231-234.

[109]

I.I. Cancre, R. Ravallec, A. Van Wormhoudt, et al., Secretagogues and growth factors in fish and crustacean protein hydrolysates, Mar. Biotechnol. 1 (1999) 489-0494. http://dx.doi.org/10.1007/PL00011805.

[110]

R. Ravallec-Ple, A.Van Wormhoudt, Secretagogue activities in cod (Gadus morhua) and shrimp (Penaeus aztecus) extracts and alcalase hydrolysates determined in AR4-2J pancreatic tumour cells, Comp. Biochem. Phys. B 134 (2003) 669-679.

[111]

R. Slizyte, R. Mozuraityte, O. Martinez-Alvarez, et al., Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (Gadus morhua) backbones, Process Biochem. 44 (2009) 668-677. http://dx.doi.org/10.1016/j.procbio.2009.02.010.

[112]

M. Foltz, P. Ansems, J. Schwarz, et al., Protein hydrolysates induce CCK release from enteroendocrine cells and act as partial agonists of the CCK1 receptor, J. Agr. Food Chem. 56 (2008) 837-843. http://dx.doi.org/10.1021/jf072611h.

[113]

N. Irwin, P. Frizelle, I.A. Montgomery, et al., Beneficial effects of the novel cholecystokinin agonist (pGlu-Gln)-CCK-8 in mouse models of obesity/diabetes, Diabetologia 55 (2012) 2747-2758. http://dx.doi.org/10.1007/s00125-012-2654-6.

[114]

R. Pais, F.M. Gribble, F. Reimann, Signalling pathways involved in the detection of peptones by murine small intestinal enteroendocrine L-cells, Peptides 77 (2016) 9-15. http://dx.doi.org/10.1016/j.peptides.2015.07.019.

[115]

D.J. Drucker, M.A. Nauck, The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes, Lancet 368 (2006) 1696-1705. http://dx.doi.org/10.1016/S0140-6736(06)69705-5.

[116]

C.M.B. Edwards, Glucagon-like peptide-1 agonists in the treatment of type 2 diabetes, Brit. J. Hosp. Med. 74 (2013) 198-201. http://dx.doi.org/10.12968/hmed.2013.74.4.198.

[117]
WHO, Obesity: preventing and managing the global epidemic. Report of a WHO consultation (WHO Technical Report Series 894). 2000. 252.
[118]

M. Veldhorst, A. Smeets, S. Soenen, et al., Protein-induced satiety: effects and mechanisms of different proteins, Physiol. Behav. 94 (2008) 300-307. http://dx.doi.org/10.1016/j.physbeh.2008.01.003.

[119]

S.M. Mellinkoff, M. Frankland, D. Boyle, et al., Relationship between serum amino acid concentration and fluctuations in appetite, J. Appl. Physiol. 8 (1956) 535-538. http://dx.doi.org/10.1152/jappl.1956.8.5.535.

[120]

J.A. Gilbert, D.R. Joanisse, J.P. Chaput, et al., Milk supplementation facilitates appetite control in obese women during weight loss: a randomised, single-blind, placebo-controlled trial, Brit. J. Nutr. 105 (2011) 133-143. http://dx.doi.org/10.1017/S0007114510003119.

[121]

B. Hernandez-Ledesma, M.J. Garcia-Nebot, S. Fernandez-Tome, et al., Dairy protein hydrolysates: peptides for health benefits, Int. Dairy. J. 38 (2014) 82-100. http://dx.doi.org/10.1016/j.idairyj.2013.11.004.

[122]

W.L. Hall, D.J. Millward, S.J. Long, et al., Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite, Brit. J. Nutr. 89 (2003) 239-248. http://dx.doi.org/10.1079/BJN2002760.

[123]

T. Akhavan, B.L. Luhovyy, P.H. Brown, et al., Effect of premeal consumption of whey protein and its hydrolysate on food intake and postmeal glycemia and insulin responses in young adults, Am. J. Clin. Nutr. 91 (2010) 966-975. http://dx.doi.org/10.3945/ajcn.2009.28406.

[124]

M.K.N.B. Sufian, T. Hira, K. Miyashita, et al., Pork peptone stimulates cholecystokinin secretion from enteroendocrine cells and suppresses appetite in rats, Biosci. Biotech. Bioch. 70 (2006) 1869-1874.

[125]

B. Cudennec, R. Ravallec-Ple, E. Courois, et al., Peptides from fish and crustacean by-products hydrolysates stimulate cholecystokinin release in STC-1 cells, Food Chem. 111 (2008) 970-975. http://dx.doi.org/10.1016/j.foodchem.2008.05.016.

[126]

B. Cudennec, M. Fouchereau-Peron, F. Ferry, et al., In vitro and in vivo evidence for a satiating effect of fish protein hydrolysate obtained from blue whiting (Micromesistius poutassou) muscle, J. Funct. Foods 4 (2012) 271-277.

[127]

J.R. Greenfield, I.S. Farooqi, J.M. Keogh, et al., Oral glutamine increases circulating glucagon-like peptide 1, glucagon, and insulin concentrations in lean, obese, and type 2 diabetic subjects, Am. J. Clin. Nutr. 89 (2009) 106-113. http://dx.doi.org/10.3945/ajcn.2008.26362.

[128]

D. Samocha-Bonet, O. Wong, E.L. Synnott, et al., Glutamine reduces postprandial glycemia and augments the glucagon-like peptide-1 response in type 2 diabetes patients, J. Nutr. 141 (2011) 1233-1238. http://dx.doi.org/10.3945/jn.111.139824.

[129]

M. Kato, T. Nakanishi, T. Tani, et al., Low-molecular fraction of wheat protein hydrolysate stimulates glucagon-like peptide-1 secretion in an enteroendocrine L cell line and improves glucose tolerance in rats, Nutr. Res. 37 (2017) 37-45. http://dx.doi.org/10.1016/j.nutres.2016.12.002.

[130]

R.A. Reimer, Meat hydrolysate and essential amino acid-induced glucagon-like peptide-1 secretion, in the human NCI-H716 enteroendocrine cell line, is regulated by extracellular signal-regulated kinase1/2 and p38 mitogen-activated protein kinases, J. Endocrinol. 191 (2006) 159-170. http://dx.doi.org/10.1677/joe.1.06557.

[131]

E. Diakogiannaki, R. Pais, G. Tolhurst, et al., Oligopeptides stimulate glucagon-like peptide-1 secretion in mice through proton-coupled uptake and the calcium-sensing receptor, Diabetologia 56 (2013) 2688-2696. http://dx.doi.org/10.1007/s00125-013-3037-3.

[132]

B.D. Green, P.R. Flatt, C.J. Bailey, Dipeptidyl peptidase IV (DPP IV) inhibitors: a newly emerging drug class for the treatment of type 2 diabetes, Diabetes Vasc. Dis. Re. 3 (2006) 159-165. http://dx.doi.org/10.3132/dvdr.2006.024.

[133]

A. Capuano, L. Sportiello, M.I. Maiorino, et al., Dipeptidyl peptidase-4 inhibitors in type 2 diabetes therapy--focus on alogliptin, Drug Des. Dev. Ther. 7 (2013) 989-1001. http://dx.doi.org/10.2147/DDDT.S37647.

[134]

S.L. Huang, C.L. Jao, K.P. Ho, et al., Dipeptidyl-peptidase IV inhibitory activity of peptides derived from tuna cooking juice hydrolysates, Peptides 35 (2012) 114-121. http://dx.doi.org/10.1016/j.peptides.2012.03.006.

[135]

E.C.Y. Li-Chan, S.L. Hunag, C.L. Jao, et al., Peptides derived from atlantic salmon skin gelatin as dipeptidyl-peptidase IV inhibitors, J. Agr. Food Chem. 60 (2012) 973-978. http://dx.doi.org/10.1021/jf204720q.

[136]

S. Ketnawa, S. Suwal, J. Huang, et al., Selective separation and characterisation of dual ACE and DPP‐IV inhibitory peptides from rainbow trout (Oncorhynchus mykiss) protein hydrolysates, Int. J. Food Sci. Tech. 54(4) (2019) 1062-1073. http://dx.doi.org/10.1111/ijfs.13939.

[137]

R. Jin, X. Teng, J. Shang, et al., Identification of novel DPP-IV inhibitory peptides from Atlantic salmon (Salmo salar) skin, Food Res. Int. 133 (2020) 109161. http://dx.doi.org/10.1016/j.foodres.2020.109161.

[138]

A.J. Velarde-Salcedo, A. Barrera-Pacheco, S. Lara-Gonzalez, et al., In vitro inhibition of dipeptidyl peptidase IV by peptides derived from the hydrolysis of amaranth (Amaranthus hypochondriacus L.) proteins, Food Chem. 136 (2013) 758-764. http://dx.doi.org/10.1016/j.foodchem.2012.08.032.

[139]

C. Lammi, C. Zanoni, A. Arnoldi, et al., Peptides derived from soy and lupin protein as dipeptidyl-peptidase IV inhibitors: in vitro biochemical screening and in silico molecular modeling study, J. Agric. Food Chem. 64 (2016) 9601-9606. http://dx.doi.org/10.1021/acs.jafc.6b04041.

[140]

C. Lammi, C. Bollati, S. Ferruzza, et al., Soybean- and lupin-derived peptides inhibit DPP-IV activity on in situ human intestinal Caco-2 cells and ex vivo human serum, Nutrients 10(8) (2018) 1082. http://dx.doi.org/10.3390/nu10081082.

[141]

R. Pugliese, C. Bollati, F. Gelain, et al., A supramolecular approach to develop new soybean and lupin peptide nanogels with enhanced dipeptidyl peptidase IV (DPP-IV) inhibitory activity, J. Agric. Food Chem. 67 (2019) 3615-3623. http://dx.doi.org/10.1021/acs.jafc.8b07264.

[142]

A.B. Nongonierma, S. Paolella, P. Mudgil, et al., Identification of novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates, Food Chem. 244 (2018) 340-348. http://dx.doi.org/10.1016/j.foodchem.2017.10.033.

[143]

P. Patil, S. Mandal, S.K. Tomar, et al., Food protein-derived bioactive peptides in management of type 2 diabetes, Eur. J. Nutr. 54 (2015) 863-880. http://dx.doi.org/10.1007/s00394-015-0974-2.

[144]

I.M.E. Lacroix, E.C.Y. Li-Chan, Food-derived dipeptidyl-peptidase IV inhibitors as a potential approach for glycemic regulation: current knowledge and future research considerations, Trends Food Sci. Technol. 54 (2016) 1-16. http://dx.doi.org/10.1016/j.tifs.2016.05.008.

[145]

E.H. Jang, J.S. Moon, J.H. Ko, et al., Novel black soy peptides with antiobesity effects: activation of leptin-like signaling and AMP-activated protein kinase, Int. J. Obesity 32 (2008) 1161-1170. http://dx.doi.org/10.1038/ijo.2008.60.

[146]

H.J. Harwood, The adipocyte as an endocrine organ in the regulation of metabolic homeostasis, Neuropharmacology 63 (2012) 57-75.

[147]

L.F. Van Gaal, I.L. Mertens, C.E.De Block, Mechanisms linking obesity with cardiovascular disease, Nature 444 (2006) 875-880. http://dx.doi.org/10.1038/nature05487.

[148]

D.Y. Oh, J.M. Olefsky, G protein-coupled receptors as targets for anti-diabetic therapeutics, Nat. Rev. Drug Discov. 15 (2016) 161-172. http://dx.doi.org/10.1038/nrd.2015.4.

[149]

E.D. Rosen, O.A. MacDougald, Adipocyte differentiation from the inside out, Nat. Rev. Mol. Cell Bio. 7 (2006) 885-896. http://dx.doi.org/10.1038/nrm2066.

[150]

T. Kadowaki, K. Hara, T. Yamauchi, et al., Molecular mechanism of insulin resistance and obesity, Exp. Bio. Med. 228 (2003) 1111-1117. http://dx.doi.org/10.1007/s12038-007-0038-8.

[151]

S.R. Farmer, Transcriptional control of adipocyte formation, Cell Metab. 4 (2006) 263-273. http://dx.doi.org/10.1016/j.cmet.2006.07.001.

[152]

M. Ahmadian, J.M. Suh, N. Hah, et al., PPAR gamma signaling and metabolism: the good, the bad and the future, Nat. Med. 19 (2013) 557-566. http://dx.doi.org/10.1038/nm.3159.

[153]

L. Gatticchi, M. Petricciuolo, P. Scarpelli, et al., Tm7sf2 gene promotes adipocyte differentiation of mouse embryonic fibroblasts and improves insulin sensitivity, Biochim. Biophys. Acta. Mol. Cell Res. 1868 (2021) 118897. http://dx.doi.org/10.1016/j.bbamcr.2020.118897.

[154]

R.M. Evans, G.D. Barish, Y.X. Wang, PPARs and the complex journey to obesity, Nat. Med. 10 (2004) 355-361. http://dx.doi.org/10.1038/nm1025.

[155]

K.H. Yap, G.S. Yee, M. Candasamy, et al., Catalpol ameliorates insulin sensitivity and mitochondrial respiration in skeletal muscle of type-2 diabetic mice through insulin signaling pathway and AMPK/SIRT1/PGC-1alpha/PPAR-gamma activation, Biomolecules 10 (2020).

[156]

S. Yasmin, V. Jayaprakash, Thiazolidinediones and PPAR orchestra as antidiabetic agents: from past to present, Eur. J. Med. Chem. 126 (2017) 879-893. http://dx.doi.org/10.1016/j.ejmech.2016.12.020.

[157]

C.J. de Souza, M. Eckhardt, K. Gagen, et al., Effects of pioglitazone on adipose tissue remodeling within the setting of obesity and insulin resistance, Diabetes 50 (2001) 1863-1871. http://dx.doi.org/10.2337/diabetes.50.8.1863.

[158]

J.P. Ye, Regulation of PPAR gamma function by TNF-alpha, Biochem. Bioph. Res. Co. 374 (2008) 405-408. http://dx.doi.org/10.1016/j.bbrc.2008.07.068.

[159]

M. Chandra, S. Miriyala, M. Panchatcharam, PPARgamma and its role in cardiovascular diseases, PPAR Res. 2017 (2017) 6404638. http://dx.doi.org/10.1155/2017/6404638.

[160]

J. Rieusset, F. Andreelli, D. Auboeuf, et al., Insulin acutely regulates the expression of the peroxisome proliferator-activated receptor-gamma in human adipocytes, Diabetes 48 (1999) 699-705. http://dx.doi.org/10.2337/diabetes.48.4.699.

[161]

T. Goto, A. Mori, S. Nagaoka, Soluble soy protein peptic hydrolysate stimulates adipocyte differentiation in 3T3-L1 cells, Mol. Nutr. Food Res. 57 (2013) 1435-1445. http://dx.doi.org/10.1002/mnfr.201200573.

[162]

S.J. Kwak, C.S. Kim, M.S. Choi, et al., The soy peptide Phe-Leu-Val reduces TNF alpha-induced inflammatory response and insulin resistance in adipocytes, J. Med. Food 19 (2016) 678-685. http://dx.doi.org/10.1089/jmf.2016.3685.

[163]

F. Jahandideh, P. Liu, J. Wu, Purification and identification of adipogenic-differentiating peptides from egg white hydrolysate, Food Chem. 259 (2018) 25-30. http://dx.doi.org/10.1016/j.foodchem.2018.03.099.

[164]

A.F.G. Cicero, F. Fogacci, A. Colletti, Potential role of bioactive peptides in prevention and treatment of chronic diseases: a narrative review, Brit. J. Pharmacol. 174 (2017) 1378-1394. http://dx.doi.org/10.1111/bph.13608.

[165]

Z. Yu, Y. Yin, W. Zhao, et al., Anti-diabetic activity peptides from albumin against alpha-glucosidase and alpha-amylase, Food Chem. 135 (2012) 2078-2085.

[166]

M.A. Ibrahim, M.J. Bester, A.W. Neitz, et al., Rational in silico design of novel α-glucosidase inhibitory peptides and in vitro evaluation of promising candidates, Biomed. Pharmacother. 107 (2018) 234-242. http://dx.doi.org/10.1016/j.biopha.2018.07.163.

[167]

L. Mojica, E. Gonzalez de Mejia, M.A. Granados-Silvestre, et al., Evaluation of the hypoglycemic potential of a black bean hydrolyzed protein isolate and its pure peptides using in silico, in vitro and in vivo approaches, J. Funct. Foods 31 (2017) 274-286. http://dx.doi.org/10.1016/j.jff.2017.02.006.

[168]

M. Soga, A. Ohashi, M. Taniguchi, et al., The di-peptide Trp-His activates AMP-activated protein kinase and enhances glucose uptake independently of insulin in L6 myotubes, FEBS Open Bio. 4 (2014) 898-904. http://dx.doi.org/10.1016/j.fob.2014.10.008.

[169]

T. Nishi, H. Hara, K. Asano, et al., The soybean beta-conglycinin beta 51-63 fragment suppresses appetite by stimulating cholecystokinin release in rats, J. Nutr. 133 (2003) 2537-2542. http://dx.doi.org/10.1046/j.1365-277X.2003.00448.x.

[170]

Y. Lu, P. Lu, Y. Wang, et al., A novel dipeptidyl peptidase IV inhibitory tea peptide improves pancreatic beta-cell function and reduces alpha-cell proliferation in streptozotocin-induced diabetic mice, Int. J. Mol. Sci. 20 (2019). http://dx.doi.org/10.3390/ijms20020322.

[171]

Y. Zhang, R. Chen, X. Chen, et al., Dipeptidyl peptidase IV-inhibitory peptides derived from silver carp (Hypophthalmichthys molitrix Val.) proteins, J. Agric. Food Chem. 64 (2016) 831-839. http://dx.doi.org/10.1021/acs.jafc.5b05429.

[172]

K. Aihara, M. Osaka, M. Yoshida, Oral administration of the milk casein-derived tripeptide Val-Pro-Pro attenuates high-fat diet-induced adipose tissue inflammation in mice, Brit. J. Nutr. 112 (2014) 513-519. http://dx.doi.org/10.1017/S0007114514001147.

[173]

Y. Sawada, Y. Sakamoto, M. Toh, et al., Milk-derived peptide Val-Pro-Pro (VPP) inhibits obesity-induced adipose inflammation via an angiotensin-converting enzyme (ACE) dependent cascade, Mol. Nutr. Food Res. 59 (2015) 2502-2510.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 15 October 2020
Revised: 01 November 2020
Accepted: 09 February 2021
Published: 18 July 2022
Issue date: November 2022

Copyright

© 2022 Beijing Academy of Food Sciences.

Acknowledgements

The laboratory of Jianping Wu is supported by Grants from Natural Sciences and Engineering Research Council (NSERC) of Canada, Alberta Agriculture and Forestry, and Egg Farmers of Canada.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return