Journal Home > Volume 11 , Issue 5

Development of functional bioinspired hydrogels that have good releases control character is necessary for the application of these materials in biomedical engineering. Herein, we report a composite hydrogel prepared from several biocompatible carboxymethyl konjac glucomannan (CKGM)/gelatin (G)/tannic acid (TA) functional nano-hydroxyapatite (TA@n-HA), which has good biodegradability and pH sensitivity. The mechanism of interaction between hydrogels was confirmed by Fourier transform infrared spectroscopy, X-ray diffraction, Scanning electron microscopy and Thermogravimetric analysis. The physico-chemical properties of CKGM/G hydrogels have been significantly improved through the incorporation of TA@n-HA within the matrix. Studies in the sustained release of epigallocatechin gallate (EGCG) demonstrated that the TA@n-HA/CKGM/G hydrogels exhibit not only better pH sensitive properties, but also enhanced biocompatibility and encapsulation in comparison to the matrix devoid of TA@n-HA. Consequently, TA@n-HA/CKGM/G hydrogels using EGCG as a drug release model show the potential for drug delivery.


menu
Abstract
Full text
Outline
About this article

Formation of composite hydrogel of carboxymethyl konjac glucomannan/gelatin for sustained release of EGCG

Show Author's information Lin Wanga,bNing ZhoucShengxuan ZhengcJie Pangc( )
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
Institute of Superlubricity Technology, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Abstract

Development of functional bioinspired hydrogels that have good releases control character is necessary for the application of these materials in biomedical engineering. Herein, we report a composite hydrogel prepared from several biocompatible carboxymethyl konjac glucomannan (CKGM)/gelatin (G)/tannic acid (TA) functional nano-hydroxyapatite (TA@n-HA), which has good biodegradability and pH sensitivity. The mechanism of interaction between hydrogels was confirmed by Fourier transform infrared spectroscopy, X-ray diffraction, Scanning electron microscopy and Thermogravimetric analysis. The physico-chemical properties of CKGM/G hydrogels have been significantly improved through the incorporation of TA@n-HA within the matrix. Studies in the sustained release of epigallocatechin gallate (EGCG) demonstrated that the TA@n-HA/CKGM/G hydrogels exhibit not only better pH sensitive properties, but also enhanced biocompatibility and encapsulation in comparison to the matrix devoid of TA@n-HA. Consequently, TA@n-HA/CKGM/G hydrogels using EGCG as a drug release model show the potential for drug delivery.

Keywords: Hydrogel, Sustained release, Biodegradation, Tannic acid, Gelatin, Carboxymethyl konjac glucomannan

References(91)

[1]

K. Wang, K.C. Nune, R.D.K. Misra, The functional response of alginategelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules, Acta Biomater. 36 (2016) 143-151.https://doi.org/10.1016/j.actbio.2016.03.016.

[2]

A. Abaee, M. Mohammadian, S.M. Jafari, Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems, Trends Food Sci. Technol. 70 (2017) 69-81. https://doi.org/10.1016/j.tifs.2017.10.011.

[3]

M. Jarzębski, W. Smułek, H.M. Baranowska, et al., Characterization of St.John's wort (Hypericum perforatum L.) and the impact offiltration process on bioactive extracts incorporated into carbohydrate-based hydrogels, Food Hydrocoll. (2020) 105748. https://doi.org/10.1016/j.foodhyd.2020.105748.

[4]

K. Liu, R.L. Huang, X.Q. Zha, et al., Encapsulation and sustained release of curcumin by a composite hydrogel of lotus root amylopectin and chitosan, Carbohydr. Polym. 232 (2020) 115810. https://doi.org/10.1016/j.carbpol.2019.115810.

[5]

X. Huang, D. Zhou, Y. Wang, et al., A green approach towards functional hydrogel particles from synthetic polymers via spherical capsule minireactors, Chem. Eng. J. 359 (2019) 1360-1371. https://doi.org/10.1016/j.cej.2018.11.042.

[6]

H. Dai, H. Zhang, L. Ma, et al., Green pH/magnetic sensitive hydrogels based on pineapple peel cellulose and polyvinyl alcohol: synthesis, characterization and naringin prolonged release, Carbohydr. Polym. 209(2019) 51-61. https://doi.org/10.1016/j.carbpol.2019.01.014.

[7]

D. Salarbashi, J. Bazeli, M. Tafaghodi, Environment-friendly green composites based on soluble soybean polysaccharide: a review, Int.J. Biol. Macromol. 122 (2019) 216-223. https://doi.org/10.1016/j.ijbiomac.2018.10.110.

[8]

D. Salarbashi, M.S. Noghabi, B.S.F. Bazzaz, et al., Eco-friendly soluble soybean polysaccharide/nanoclay Na+ bionanocomposite: properties and characterization, Carbohydr. Polym. 169 (2017) 524-532.https://doi.org/10.1016/j.carbpol.2017.04.011.

[9]

M. Guo, Y. Ma, C. Wang, et al., Synthesis, anti-oxidant activity, and biodegradability of a novel recombinant polysaccharide derived from chitosan and lactose, Carbohydr. Polym. 118 (2015) 218-223.https://doi.org/10.1016/j.carbpol.2014.11.027.

[10]

Saruchi, V. Kumar, H. Mittal, et al., Biodegradable hydrogels of tragacanth gum polysaccharide to improve water retention capacity of soil and environment-friendly controlled release of agrochemicals, Int. J. Biol. Macromol. 132 (2019) 1252-1261. https://doi.org/10.1016/j.ijbiomac.2019.04.023.

[11]

H. Zhang, S. Cui, H. Lv, et al., A crosslinking strategy to make neutral polysaccharide nanofibers robust and biocompatible: with konjac glucomannan as an example, Carbohydr. Polym. 215 (2019) 130-136.https://doi.org/10.1016/j.carbpol.2019.03.075.

[12]

V. Lobaz, M. Hladik, M. Steinhart, et al., Tungsten (Ⅵ) based "molecular puzzle" photoluminescent nanoparticles easily covered with biocompatible natural polysaccharides via direct chelation, J. Colloid Interface Sci. 512(2018) 308-317. https://doi.org/10.1016/j.jcis.2017.10.056.

[13]

H.P. Lim, K.W. Ho, C.K. Surjit Singh, et al., Pickering emulsion hydrogel as a promising food delivery system: synergistic effects of chitosan Pickering emulsifier and alginate matrix on hydrogel stability and emulsion delivery, Food Hydrocoll. 103 (2020) 105659. https://doi.org/10.1016/j.foodhyd.2020.105659.

[14]

C. Zhang, Y. Dai, Y. Wu, et al., Facile preparation of polyacrylamide/chitosan/Fe3O4 composite hydrogels for effective removal of methylene blue from aqueous solution, Carbohydr. Polym. 234 (2020) 115882.https://doi.org/10.1016/j.carbpol.2020.115882.

[15]

H. Yang, X. Ji, Y. Tan, et al., Modified supramolecular carboxylated chitosan as hydrogel electrolyte for quasi-solid-state supercapacitors, J. Power Sources 441 (2019) 227174. https://doi.org/10.1016/j.jpowsour.2019.227174.

[16]

L. Zhou, T. Xu, J. Yan, et al., Fabrication and characterization of matrine-loaded konjac glucomannan/fish gelatin composite hydrogel as antimicrobial wound dressing, Food Hydrocoll. 104 (2020) 105702.https://doi.org/10.1016/j.foodhyd.2020.105702.

[17]

Y. Chen, C. Song, Y. Lv, et al., Konjac glucomannan/kappa carrageenan interpenetrating network hydrogels with enhanced mechanical strength and excellent self-healing capability, Polym. 184 (2019) 121913.https://doi.org/10.1016/j.polymer.2019.121913.

[18]

Y. Lin, Y. Sun, Y. Dai, et al., A "signal-on" chemiluminescence biosensor for thrombin detection based on DNA functionalized magnetic sodium alginate hydrogel and metalloporphyrinic metal-organic framework nanosheets, Talanta 207 (2020) 120300. https://doi.org/10.1016/j.talanta.2019.120300.

[19]

S.B.R. Berton, G.A.M. de Jesus, R.M. Sabino, et al., Properties of a commercial κ-carrageenan food ingredient and its durable superabsorbent hydrogels, Carbohydr. Res. 487 (2020) 107883. https://doi.org/10.1016/j.carres.2019.107883.

[20]

L. Yan, L. Wang, S. Gao, et al., Celery cellulose hydrogel as carriers for controlled release of short-chain fatty acid by ultrasound, Food Chem. 309(2020) 125717. https://doi.org/10.1016/j.foodchem.2019.125717.

[21]

K. Song, W. Zhu, X. Li, et al., A novel mechanical robust, self-healing and shape memory hydrogel based on PVA reinforced by cellulose nanocrystal, Mater. Lett. 260 (2020) 126884. https://doi.org/10.1016/j.matlet.2019.126884.

[22]

Y. Zhou, R. Jiang, W.S. Perkins, et al., Morphology evolution and gelation mechanism of alkali induced konjac glucomannan hydrogel, Food Chem.269 (2018) 80-88. https://doi.org/10.1016/j.foodchem.2018.05.116.

[23]

P. K. Veerasubramanian, P. Thangavel, R. Kannan, et al., An investigation of konjac glucomannan-keratin hydrogel scaffold loaded with Avena sativa extracts for diabetic wound healing, Colloids Surf. B Biointerfaces 165(2018) 92-102. https://doi.org/10.1016/j.colsurfb.2018.02.022.

[24]

K. Pal, A.K. Banthia, D.K. Majumdar, Preparation and characterization of polyvinyl alcohol-gelatin hydrogel membranes for biomedical applications, AAPS PharmSciTech. 8(1) (2007) E142-E146. https://doi.org/10.1208/pt080121.

[25]

Y. Yuan, R. Mu, L. Wang, et al., Effects of konjac glucomannan on the structure, properties, and drug release characteristics of agarose hydrogels, Carbohydr. Polym. 190(15) (2018) 196-203. http://dx.doi.org/10.1016/j.carbpol.2018.02.049.

[26]

J. Yang, N. Vittori, W. Wang, et al., Molecular weight distribution and fermentation of mechanically pre-treated konjac enzymatic hydrolysates, Carbohydr. Polym. 159 (2017) 58-65. https://doi.org/10.1016/j.carbpol.2016.12.014.

[27]

J. Yin, L. Ma, M. Xie, et al., Shao ping Niea, Molecular properties and gut health benefits of enzyme-hydrolyzed konjac glucomannans, Carbohydr.Polym. 237 (2020). http://dx.doi.org/10.1016/j.carbpol.2020.116117.

[28]

Y. Jiang, J. Huang, X. Wu, et al., Controlled release of silver ions from AgNPs using a hydrogel based on konjac glucomannan and chitosan for infected wounds, Int. J. Biol. Macromol. 149 (2020) 148-157.https://doi.org/10.1016/j.ijbiomac.2020.01.221.

[29]

D. Tian, Y. Zhou, K. An, et al., Preparation and flocculation properties of biodegradable konjac glucomannan-grafted poly(trimethyl allyl ammonium chloride), Polym. Bull. (2019). https://doi.org/10.1007/s00289-019-02836-6.

[30]

T. Chen, P. Shi, J. Zhang, et al., Natural polymer konjac glucomannan mediated assembly of graphene oxide as versatile sponges for water pollution control, Carbohydr. Polym. 202 (2018) 425-433. https://doi.org/10.1016/j.carbpol.2018.08.133.

[31]

W. Jian, H. Wu, L. Wu, et al., Effect of molecular characteristics of konjac glucomannan on gelling and rheological properties of tilapia myofibrillar protein, Carbohydr. Polym. 150 (2016) 21-31. https://doi.org/10.1016/j.carbpol.2016.05.001.

[32]

N. Almeida, L. Rakesh, A. Mueller, et al., Viscoelastic properties of konjac glucomannan in the presence of salts, J. Therm Anal. Calorim. 131(3) (2018)2547-2553. https://doi.org/10.1007/s10973-017-6854-7.

[33]

C. Wu, Y. Li, J. Sun, et al., Novel konjac glucomannan films with oxidized chitin nanocrystals immobilized red cabbage anthocyanins for intelligent food packaging, Food Hydrocoll. 98 (2020) 105245. https://doi.org/10.1016/j.foodhyd.2019.105245.

[34]

L.H. Wang, G.Q. Huang, T.C. Xu, et al., Characterization of carboxymethylated konjac glucomannan for potential application in colon-targeted delivery, Food Hydrocoll. 94 (2019) 354-362.https://doi.org/10.1016/j.foodhyd.2019.03.045.

[35]

J.X. Xiao, L.H. Wang, T.C. Xu, et al., Complex coacervation of carboxymethyl konjac glucomannan and chitosan and coacervate characterization, Int. J. Biol. Macromol. 123 (2019) 436-445.https://doi.org/10.1016/j.ijbiomac.2018.11.086.

[36]

Y. Xie, Z. Yi, J. Wang, et al., Carboxymethyl konjac glucomannancrosslinked chitosan sponges for wound dressing, Int. J. Biol. Macromol. 112(2019) 1225-1233. http://dx.doi.org/10.1007/s13204-019-01194-z.

[37]

H. Yu, C. Xiao, Synthesis and properties of novel hydrogels from oxidized konjac glucomannan crosslinked gelatin for in vitro drug delivery, Carbohydr. Polym. 72(3) (2008) 479-489. https://doi.org/10.1016/j.carbpol.2007.09.023.

[38]

L. Deng, Y. Li, A. Zhang, et al., Study on wettability, mechanical property and biocompatibility of electrospun gelatin/zein nanofibers cross-linked by glucose, Food Hydrocoll. 87 (2019) 1-10. https://doi.org/10.1016/j.foodhyd.2018.07.042.

[39]

A. Laha, C.S. Sharma, S. Majumdar, Sustained drug release from multilayered sequentially crosslinked electrospun gelatin nano fiber mesh, Mater.Sci. Eng, C. 76 (2017) 782-786. https://doi.org/10.1016/j.msec.2017.03.110.

[40]

K.M. Rao, A. Kumar, S.S. Han, Poly(acrylamidoglycolic acid)nanocomposite hydrogels reinforced with cellulose nanocrystals for pH-sensitive controlled release of diclofenac sodium, Polym. Test. 64 (2017)175-182. https://doi.org/10.1016/j.polymertesting.2017.10.006.

[41]

M. Salimi, E. Motamedi, B. Motesharezedeh, et al., Starch-g-poly(acrylic acid-co-acrylamide) composites reinforced with natural char nanoparticles toward environmentally benign slow-release urea fertilizers, J. Environ.Chem. Eng. 8(3) (2020) 103765. https://doi.org/10.1016/j.jece.2020.103765.

[42]

M. Leena, D. Rana, T.J. Webster, et al., Accelerated synthesis of biomimetic nano hydroxyapatite using simulated body fluid, Mater. Chem. Phys. 180(2016) 166-172. https://doi.org/10.1016/j.matchemphys.2016.05.060.

[43]

J.I. González Ocampo, M.M. Machado de Paula, N.J. Bassous, et al., Osteoblast responses to injectable bone substitutes of kappa-carrageenan and nano hydroxyapatite, Acta Biomater. 83 (2019) 425-434.https://doi.org/10.1016/j.actbio.2018.10.023.

[44]

X. Li, S. Zhang, X. Zhang, et al., Biocompatibility and physicochemical characteristics of poly(Ɛ-caprolactone)/poly(lactide-co-glycolide)/nanohydroxyapatite composite scaffolds for bone tissue engineering, Mater. Des.114 (2017) 149-160. https://doi.org/10.1016/j.matdes.2016.10.054.

[45]

W. Nie, C. Peng, X. Zhou, et al., Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-hydroxyapatite composites for bone tissue engineering, Carbon. 116 (2017) 325-337.https://doi.org/10.1016/j.carbon.2017.02.013.

[46]

S. Cheng, Z. Wang, K. Sun, et al., Biomimetic fabrication of mulberrylike nano-hydroxyapatite with high specific surface area templated by dualhydrophilic block copolymer, Ceram. Int. 43(16) (2017) 13430-13437.https://doi.org/10.1016/j.ceramint.2017.07.046.

[47]

L. Jiang, L. Jiang, C. Xiong, et al., Improving the degradation behavior and in vitro biological property of nano-hydroxyapatite surface-grafted with the assist of citric acid, Colloids Surf. B Biointerfaces 146 (2016) 228-234.https://doi.org/10.1016/j.colsurfb.2016.05.062.

[48]

A. Anwar, I.U. Rehman, J.A. Darr, Low-temperature synthesis and surface modification of high surface area calcium hydroxyapatite nanorods incorporating organofunctionalized surfaces, J. Phys. Chem. C. 120(51)(2016) 29069-29076. https://doi.org/10.1021/acs.jpcc.6b05878.

[49]

F. Lin, Z. Wang, Y. Shen, et al., Natural skin-inspired versatile cellulose biomimetic hydrogels, J. Mater Chem. A. 7(46) (2019) 26442-26455.https://doi.org/10.1039/C9TA10502F.

[50]

D. Placente, L.A. Benedini, M. Baldini, et al., Multi-drug delivery system based on lipid membrane mimetic coated nano-hydroxyapatite formulations, Int. J. Pharm. 548(1) (2018) 559-570. https://doi.org/10.1016/j.ijpharm.2018.07.036.

[51]

V. Krishnan, A. Bhatia, H. Varma, Development, characterization and comparison of two strontium doped nano hydroxyapatite molecules for enamel repair/regeneration, Dent. Mater. 32(5) (2016) 646-659.https://doi.org/10.1016/j.dental.2016.02.002.

[52]

B. Gaihre, S. Uswatta, A.C. Jayasuriya, Nano-scale characterization of nanohydroxyapatite incorporated chitosan particles for bone repair, Colloid Surface B.165 (2018) 158-164. https://doi.org/10.1016/j.colsurfb.2018.02.034.

[53]

Q.Y. Eng, P.V. Thanikachalam, S. Ramamurthy, Molecular understanding of epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases, J. Ethnopharmacology. 210 (2018) 296-310. https://doi.org/10.1016/j.jep.2017.08.035.

[54]

K.J. Min, T.K. Kwon, Anticancer effects and molecular mechanisms of epigallocatechin-3-gallate, Integr. Med. Res. 3(1) (2014) 16-24.https://doi.org/10.1016/j.imr.2013.12.001.

[55]

C.H. Lee, Y.T. Chen, H.J. Hsieh, et al., Exploring epigallocatechin gallate impregnation to inhibit 5-hydroxymethylfurfural formation and the effect on antioxidant ability of black garlic, LWT-Food Sci. Technol. 117 (2020)108628. https://doi.org/10.1016/j.lwt.2019.108628.

[56]

J. Tian, H. Tu, X. Shi, et al., Antimicrobial application of nano fibrous mats self-assembled with chitosan and epigallocatechin gallate, Colloid Surface B.145 (2016) 643-652. https://doi.org/10.1016/j.colsurfb.2016.05.008.

[57]

J. Sun, H. Jiang, M. Li, et al., Preparation and characterization of multifunctional konjac glucomannan/carboxymethyl chitosan biocomposite films incorporated with epigallocatechin gallate, Food Hydrocoll. 105 (2020)105756. https://doi.org/10.1016/j.foodhyd.2020.105756.

[58]

L.G. Gómez-Mascaraque, C. Soler, A. Lopez-Rubio, Stability and bioaccessibility of EGCG within edible micro-hydrogels. Chitosan vs. gelatin, a comparative study, Food Hydrocoll. 61 (2016) 128-138.https://doi.org/10.1016/j.foodhyd.2016.05.009.

[59]

Z. Wang, H. Yang, F. He, et al., Mussel-inspired surface engineering for water-remediation materials, Matter 1(1) (2019) 115-155.http://dx.doi.org/10.1016/j.matt.2019.05.002.

[60]

L. Han, X. Lu, K. Liu, et al., Mussel-inspired adhesive and tough hydrogel based on nanoclay con fined dopamine polymerization, ACS Nano. (2017)2561-2574. http://dx.doi.org/10.1021/acsnano.6b05318.

[61]

M. Xiao, S. Dai, L. Wang, et al., Carboxymethyl modification of konjac glucomannan affects water binding properties, Carbohydr. Polym. 130 (2015)1-8. https://doi.org/10.1016/j.carbpol.2015.05.001.

[62]

C. Shao, M. Wang, L. Meng, et al., Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties, Chem. Mater. 30(9) (2018) 3110-3121. https://doi.org/10.1021/acs.chemmater.8b01172.

[63]

Y. Liu, Y. Cai, X. Jiang, et al., Molecular interactions, characterization and antimicrobial activity of curcumin-chitosan blend films, Food Hydrocoll. 52(2016) 564-572. https://doi.org/10.1016/j.foodhyd.2015.08.005.

[64]

L. Wang, Y. Li, L. Lin, et al., Novel synthesis of mussel inspired and Fe3+induced pH-sensitive hydrogels: adhesion, injectable, shapeable, temperature properties, release behavior and rheological characterization, Carbohydr.Polym. 236 (2020) 116045. http://dx.doi.org/10.1016/j.carbpol.2020.116045.

[65]

J. Cai, D. Jing, M. Shi, et al., Epigallocatechin gallate (EGCG) attenuates infrasound-induced neuronal impairment by inhibiting microgliamediated inflammation, J. Nutr. Biochem. 25(7) (2014) 716-725.http://dx.doi.org/10.1016/j.jnutbio.2014.02.012.

[66]

C. Liu, Y. Chen, J. Chen, Synthesis and characteristics of pH-sensitive semiinterpenetrating polymer network hydrogels based on konjac glucomannan and poly(aspartic acid) for in vitro drug delivery, Carbohydr. Polym. 79(2010) 500-506. http://dx.doi.org/10.1016/j.carbpol.2009.08.024.

[67]

J. Gong, L. Wang, J. Wu, et al., The rheological and physicochemical properties of a novel thermosensitive hydrogel based on konjac glucomannan/gum tragacanth, LWT-Food Sci. Technol. 100 (2019) 271-277.https://doi.org/10.1016/j.lwt.2018.10.080.

[68]

M. Hamidabadi Sherahi, M. Fathi, F. Zhandari, et al., Structural characterization and physicochemical properties of Descurainia sophia seed gum, Food Hydrocoll. 66 (2017) 82-89. https://doi.org/10.1016/j.foodhyd.2016.12.010.

[69]

I. Muhammad, K. Mansoor, R. Tanzil ur, et al., Synthesis and rheological survey of xanthan gum based terpolymeric hydrogels, Z. Phys. Chem. (2020).http://dx.doi.org/10.1515/zpch-2019-1574.

[70]

Li. Deng, Y. Li, A. Zhang, et al., Characterization and physical properties of electrospun gelatin nanofibrous films by incorporation of nanohydroxyapatite, Food Hydrocoll. 103 (2020). http://dx.doi.org/10.1016/j.foodhyd.2019.105640.

[71]

K.J. Le Goff, C. Gaillard, W. Helbert, et al., Rheological study of reinforcement of agarose hydrogels by cellulose nanowhiskers, Carbohydr.Polym. 116 (2015) 117-123. https://doi.org/10.1016/j.carbpol.2014.04.085.

[72]

M.A. Nazeer, E. Yilgör, I. Yilgör, Intercalated chitosan/hydroxyapatite nanocomposites: promising materials for bone tissue engineering applications, Carbohydr. Polym. 175 (2017) 38-46. https://doi.org/10.1016/j.carbpol.2017.07.054.

[73]

Y. Xie, Z.X. Yi, J.X. Wang, et al., Carboxymethyl konjac glucomannan -crosslinked chitosan sponges for wound dressing, Int. J. Biol. Macromol. 112(2018) 1225-1233. https://doi.org/10.1016/j.ijbiomac.2018.02.075.

[74]

T. Takei, R. Yoshihara, S. Danjo, et al., Hydrophobically-modified gelatin hydrogel as a carrier for charged hydrophilic drugs and hydrophobic drugs, Int. J. Biol. Macromol. 149 (2020) 140-147. https://doi.org/10.1016/j.ijbiomac.2020.01.227.

[75]

L. Wang, Y. Du, Y. Yuan, et al., Mussel-inspired fabrication of konjac glucomannan/microcrystalline cellulose intelligent hydrogel with pH-responsive sustained release behavior, Int. J. Biol. Macromol. 113 (2018)285-293. https://doi.org/10.1016/j.ijbiomac.2018.02.083.

[76]

C. Wu, Y. Li, Y. Du, et al., Preparation and characterization of konjac glucomannan-based bionanocomposite film for active food packaging, Food Hydrocoll. 89 (2019) 682-690. https://doi.org/10.1016/j.foodhyd.2018.11.001.

[77]

Y. Liu, B. Li, K. Zhang, et al., Novel hard capsule prepared by tilapia(Oreochromis niloticus) scale gelatin and konjac glucomannan: characterization, and in vitro dissolution, Carbohydr. Polym. 206 (2019)254-261. https://doi.org/10.1016/j.carbpol.2018.10.104.

[78]

R.J. Calvert, S. Tepper, W. Kammouni, et al., Elevated K-ras activity with cholestyramine and lovastatin, but not konjac mannan or niacin in lung: importance of mouse strain, Biochem. Pharmacol. 72(12) (2006) 1749-1755.https://doi.org/10.1016/j.bcp.2006.08.026.

[79]

X. Hu, Y. Wang, L. Zhang, et al., Formation of self-assembled polyelectrolyte complex hydrogel derived from salecan and chitosan for sustained release of vitamin C, Carbohydr. Polym. 234 (2020) 115920.https://doi.org/10.1016/j.carbpol.2020.115920.

[80]

X. Hu, Y. Wang, L. Zhang, et al., Design of a novel polysaccharidebased cryogel using triallyl cyanurate as crosslinker for cell adhesion and proliferation, Int. J. Biol. Macromol. 126 (2019) 221-228.https://doi.org/10.1016/j.ijbiomac.2018.12.226.

[81]

M.K.M. Haa fiz, A. Hassan, Z. Zakaria, et al., Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose, Carbohydr. Polym. 98(1) (2013) 139-145. https://doi.org/10.1016/j.carbpol.2013.05.069.

[82]

S. Xu, H. Li, H. Ding, et al., Allylated chitosan-poly(N-isopropylacrylamide)hydrogel based on a functionalized double network for controlled drug release, Carbohydr. Polym. 214 (2019) 8-14. https://doi.org/10.1016/j.carbpol.2019.03.008.

[83]

H. Kang, X. Song, Z. Wang, et al., High-performance and fully renewable soy protein isolate-based film from microcrystalline cellulose via bioinspired poly(dopamine) surface modification, ACS Sustain. Chem. Eng.4(8) (2016) 4354-4360. https://doi.org/10.1021/acssuschemeng.6b00917.

[84]

L. Wang, Y. Yuan, R.J. Mu, et al., Mussel-inspired fabrication of konjac glucomannan/poly (lactic acid) cryogels with enhanced thermal and mechanical properties, Int. J. Mol. Sci. 18 (2017). https://doi.org/10.3390/ijms18122714.

[85]

I.M. El-Sherbiny, Enhanced pH-responsive carrier system based on alginate and chemically modified carboxymethyl chitosan for oral delivery of protein drugs: preparation and in-vitro assessment, Carbohydr. Polym. 80(4) (2010)1125-1136. https://doi.org/10.1016/j.carbpol.2010.01.034.

[86]

J. Zhang, X. Tao, J. Liu, et al., Fe3+-induced bioinspired chitosan hydrogels for the sustained and controlled release of doxorubicin, RSC Adv. 6(53)(2016) 47940-47947. https://doi.org/10.1039/C6RA07369G.

[87]

N. Bhattarai, F. Matsen, M. Zhang, PEG-grafted chitosan as an injectable thermoreversible hydrogel, Macromol. Biosci. 5 (2005) 107-111.https://doi.org/10.1002/mabi.200400140.

[88]

G. Ozaydin Ince, K. Gleason, M. Demirel, A stimuli-responsive coaxial nanofilm for burst release, Soft Matter. 7 (2011) 638-643.https://doi.org/10.1039/C0SM00922A.

[89]

F. De Cicco, E. Reverchon, R. Adami, et al., In situ forming antibacterial dextran blend hydrogel for wound dressing: SAA technology vs. spray drying, Carbohydr. Polym. 101 (2014) 1216-1224. https://doi.org/10.1016/j.carbpol.2013.10.067.

[90]

L. Sheikh, S. Tripathy, S. Nayar, Biomimetic matrix mediated room temperature synthesis and characterization of nano-hydroxyapatite towards targeted drug delivery, RSC Adv. 6(67) (2016) 62556-62571.https://doi.org/10.1039/C6RA06759J.

[91]

S.M. Davachi, B. Kaffashi, B. Torabinejad, et al., In-vitro investigation and hydrolytic degradation of antibacterial nanocomposites based on PLLA/triclosan/nano-hydroxyapatite, Polym. 83 (2016) 101-110. https://doi.org/10.1016/j.polymer.2015.12.015.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 23 December 2020
Revised: 13 February 2021
Accepted: 08 March 2021
Published: 02 June 2022
Issue date: September 2022

Copyright

© 2022 Beijing Academy of Food Sciences.

Acknowledgements

Acknowledgment

This research was financially supported by the National Natural Science Foundation of China (Grant No. 31772045), the program on Fujian Agriculture and Forestry University of doctoral students going abroad (Grant No. 324-112110089) and scientific research foundation graduate school of Fujian Agriculture and Forestry University (Grant No. 324-1122yb064).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return