Journal Home > Volume 11 , Issue 5

Green tea and its bioactive components possess many health-promoting and disease-preventing benefits, especially anti-inflammatory, antioxidant, anticancer, and metabolic modulation effects with multi-target modes of action. In contrast, the effects and mechanisms of tea and its components on the immune system are rarely reviewed. The study aimed to review the most potent compounds in tea that affect the immune systems and mechanisms associated with it. As a result of in vitro studies, animal models, and human trials, researchers have found that green tea extracts and compounds have the possibility of modulating the innate immune system, adaptive immune system, and intestinal immune system. In immune-related diseases, tea polyphenols are the most significant compounds that modify immune functions, though other compounds are being investigated and cannot be ruled out. The review provides a new perspective on how the immune-regulatory effects of tea and its components are exerted on immune systems, as well as how they affect the emergence and treatment of diseases.


menu
Abstract
Full text
Outline
About this article

A comprehensive review on the effects of green tea and its components on the immune function

Show Author's information Jiachen Suna( )Shengjie Dongb,cJianying LiaHui Zhaoa
School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300133, China
School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
Faculty of Education and Sports, Guangdong Baiyun University, Guangzhou 510450, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Abstract

Green tea and its bioactive components possess many health-promoting and disease-preventing benefits, especially anti-inflammatory, antioxidant, anticancer, and metabolic modulation effects with multi-target modes of action. In contrast, the effects and mechanisms of tea and its components on the immune system are rarely reviewed. The study aimed to review the most potent compounds in tea that affect the immune systems and mechanisms associated with it. As a result of in vitro studies, animal models, and human trials, researchers have found that green tea extracts and compounds have the possibility of modulating the innate immune system, adaptive immune system, and intestinal immune system. In immune-related diseases, tea polyphenols are the most significant compounds that modify immune functions, though other compounds are being investigated and cannot be ruled out. The review provides a new perspective on how the immune-regulatory effects of tea and its components are exerted on immune systems, as well as how they affect the emergence and treatment of diseases.

Keywords: Green tea, Active components, Innate immune system, Adaptive immune system, Intestinal immune system

References(150)

[1]

P.J. Delves, I.M. Roitt, The immune system, New Engl. J. Med. 343 (2000) 37-49. https://doi.org/10.1056/NEJM200007063430107.

[2]

D.L. Farber, M.G. Netea, A. Radbruch, et al., Immunological memory: lessons from the past and a look to the future, Nat. Rev. Immunol. 16 (2016) 124-128. https://doi.org/10.1038/nri.2016.13.

[3]

J.R. Calvo, C. Gonzalez-Yanes, M.D. Maldonado, The role of melatonin in the cells of the innate immunity: a review, J. Pineal Res. 55 (2013) 103-120. https://doi.org/10.1111/jpi.12075.

[4]

N. Germic, Z. Frangez, S. Yousefi, et al., Regulation of the innate immune system by autophagy: neutrophils, eosinophils, mast cells, NK cells, Cell Death Differ. 26 (2019) 703-714. https://doi.org/10.1038/s41418-019-0295-8.

[5]

T. Boehm, N. McCurley, Y. Sutoh, et al., VLR-based adaptive immunity, Annu. Rev. Immunol. 30 (2012) 203-220. https://doi.org/10.1146/annurev-immunol-020711-075038.

[6]

A.M. Mowat, W.W. Agace, Regional specialization within the intestinal immune system, Nat. Rev. Immunol. 14 (2014) 667-685. https://doi.org/10.1038/nri3738.

[7]

T. Takiishi, C.I.M. Fenero, N.O.S. Câmara. Intestinal barrier and gut microbiota: shaping our immune responses throughout life, Tissue Barriers 5 (2017) 1-12. https://doi.org/10.1080/21688370.2017.1373208.

[8]

F. Asamoah, A. Kakourou, S. Dhami, et al., Allergen immunotherapy for allergic asthma: a systematic overview of systematic reviews, Clin. Transl. Allergy 7 (2017) 1-12. https://doi.org/10.1186/s13601-017-0160-0.

[9]

J.A. Bluestone, J.H. Buckner, M. Fitch, et al., Type 1 diabetes immunotherapy using polyclonal regulatory T cells, Science Translational Medicine 7 (2015) 1-34. https://doi.org/10.1126/scitranslmed.aad4134.

[10]

I. Catalan-Serra, Ø. Brenna, Immunotherapy in inflammatory bowel disease: novel and emerging treatments, Hum. Vaccin. Immunother. 14 (2018) 2597-2611. https://doi.org/10.1080/21645515.2018.1461297.

[11]

A. Ribas, J.D. Wolchok, Cancer immunotherapy using checkpoint blockade, Science 359 (2018) 1350-1355. https://doi.org/10.1126/science.aar4060.

[12]

S. Shukla, V.K. Bajpai, M. Kim, Plants as potential sources of natural immunomodulators, Rev. Environ. Sci. Bio. 13 (2014) 17-33. https://doi.org/10.1007/s11157-012-9303-x.

[13]

W.N. Abood, Immunomodulatory and natural immunomodulators, J. Allergy. Inflamm. 1 (2017) e101.

[14]

M. Samec, A. Liskova, L. Koklesova, et al., The role of plant-derived natural substances as immunomodulatory agents in carcinogenesis, J. Cancer R. Clin. 146 (2020) 3137-3154. https://doi.org/10.1007/s00432-020-03424-2.

[15]
H. Wagner, Immunomodulatory Agents from Plants, Springer Science & Business Media, 1999.
DOI
[16]

A.B. Sharangi, Medicinal and therapeutic potentialities of tea (Camellia sinensis L.)–a review, Food Res. Int. 42 (2009) 529-535. https://doi.org/10.1016/j.foodres.2009.01.007.

[17]

J. Kochman, K. Jakubczyk, J. Antoniewicz, et al., Health benefits and chemical composition of matcha green tea: a review, Molecules 26 (2021) 85. https://doi.org/10.3390/molecules26010085.

[18]

L. Wang, L.H. Gong, C.J. Chen, et al., Column-chromatographic extraction and separation of polyphenols, caffeine and theanine from green tea, Food Chem. 131 (2012) 1539-1545. https://doi.org/10.1016/j.foodchem.2011.09.129.

[19]

C. Rongyi, Z. Xinshen, S. Jinshan, Study on comprehensive extraction of tea polyphenols, caffeine, theanine and tea polysaccharides, Shipin Kexue 26 (2005) 174-177.

[20]

R. Chen, X. Zhang, J. Shen, et al., Study on comprehensive extraction of tea polyphenols, cafeine, theanine and tea polysaccharides, Food Science 4 (2005) 174-177.

[21]
H. Tachibana, Y. Sunada, T. Hara, et al., Effect of tea polyphenols on degranulation in human mature basophils differentiated with IL-4, in: Animal Cell Technology: Challenges for the 21st Century, Springer, 2002, pp. 301-305. https://doi.org/10.1007/0-306-46869-7_53.
DOI
[22]

D. Komes, D. Horžić, A. Belščak, et al., Green tea preparation and its influence on the content of bioactive compounds, Food Res. Int. 43 (2010) 167-176. https://doi.org/10.1016/j.foodres.2009.09.022.

[23]

S.A. Mandel, Y. Avramovich-Tirosh, L. Reznichenko, et al., Multifunctional activities of green tea catechins in neuroprotection, Neurosignals 14 (2005) 46-60. https://doi.org/10.1159/000085385.

[24]

L. Peng, X. Song, X. Shi, et al., An improved HPLC method for simultaneous determination of phenolic compounds, purine alkaloids and theanine in Camellia species, J. Food Compos. Anal. 21 (2008) 559-563. https://doi.org/10.1016/j.jfca.2008.05.002.

[25]

P.R. Das, M.T. Islam, S.H. Lee, et al., UPLC-DAD-QToF/MS analysis of green tea phenolic metabolites in their free, esterified, glycosylated, and cell wall-bound forms by ultra-sonication, agitation, and conventional extraction techniques, LWT-Food Sci. Technol. 127 (2020) 109440. https://doi.org/10.1016/j.lwt.2020.109440.

[26]

J.K. Lin, C.L. Lin, Y.C. Liang, et al., Survey of catechins, gallic acid, and methylxanthines in green, oolong, pu-erh, and black teas, J. Agr. Food Chem. 46 (1998) 3635-3642. https://doi.org/10.1021/jf980223x.

[27]

H.N. Graham, Green tea composition, consumption, and polyphenol chemistry, Prev. Med. 21 (1992) 334-350. https://doi.org/10.1016/0091-7435(92)90041-F.

[28]

D.A. Balentine, S.A. Wiseman, L.C.M. Bouwens, The chemistry of tea flavonoids, Crit. Rev. Food Sci. 37 (1997) 693-704. https://doi.org/10.1080/10408399709527797.

[29]

M.S. El-Shahawi, A. Hamza, S.O. Bahaffi, et al., Analysis of some selected catechins and caffeine in green tea by high performance liquid chromatography, Food Chem. 134 (2012) 2268-2275. https://doi.org/10.1016/j.foodchem.2012.03.039.

[30]

E. Alinia-Ahandani, Z. Alizadeh-Terepoei, A. Boghozian, Positive role of green tea as an anti-cancer biomedical source in iran northern, Health-Promotion 6 (2019) 15-18. http://dx.doi.org/10.34297/AJBSR.2019.05.000870.

[31]

D. Ramdani, A.S. Chaudhry, C.J. Seal, Alkaloid and polyphenol analysis by HPLC in green and black tea powders and their potential use as additives in ruminant diets, AIP Conference Proceedings 1927 (2018) 030008. https://doi.org/10.1063/1.5021201.

[32]

H. Jiang, U.H. Engelhardt, C. Thräne, et al., Determination of flavonol glycosides in green tea, oolong tea and black tea by UHPLC compared to HPLC, Food Chem. 183 (2015) 30-35. https://doi.org/10.1016/j.foodchem.2015.03.024.

[33]

S.A. Aherne, N.M. O'Brien, Dietary flavonols: chemistry, food content, and metabolism, Nutrition 18 (2002) 75-81. https://doi.org/10.1016/S0899-9007(01)00695-5.

[34]

M. Jeszka-Skowron, A. Zgoła-Grześkowiak, Analysis of antioxidant activity, chlorogenic acid, and rutin content of Camellia sinensis infusions using response surface methodology optimization, Food Anal. Method. 7(10) (2014) 2033-2041. https://doi.org/10.1007/s12161-014-9847-1.

[35]

H. Wang, K. Helliwell, Determination of flavonols in green and black tea leaves and green tea infusions by high-performance liquid chromatography, Food Res. Int. 34 (2001) 223-227. https://doi.org/10.1016/S0963-9969(00)00156-3.

[36]

K. Unno, D. Furushima, S. Hamamoto, et al., Stress-reducing function of matcha green tea in animal experiments and clinical trials, Nutrients 10 (2018) 1468. https://doi.org/10.3390/nu10101468.

[37]

M.W.L. Koo, C.H. Cho, Pharmacological effects of green tea on the gastrointestinal system, Eur. J. Pharmacol. 500 (2004) 177-185. https://doi.org/10.1016/j.ejphar.2004.07.023.

[38]

J. Yan, T. Horng, Lipid metabolism in regulation of macrophage functions, Trends Cell Bio. 30 (2020) 979-989. https://doi.org/10.1016/j.tcb.2020.09.006.

[39]

H.R. Park, D. Hwang, H.J. Suh, et al., Antitumor and antimetastatic activities of rhamnogalacturonan-Ⅱ-type polysaccharide isolated from mature leaves of green tea via activation of macrophages and natural killer cells, Int. J. Biol. Macromol. 99 (2017) 179-186. https://doi.org/10.1016/j.ijbiomac.2017.02.043.

[40]

M. Monobe, K. Ema, Y. Tokuda, et al., Enhancement of the phagocytic activity of macrophage-like cells with a crude polysaccharide derived from green tea (Camellia sinensis) extract, Biosci. Biotech. Biochem. 74 (2010) 1306-1308. https://doi.org/10.1271/bbb.100087.

[41]

S. Su, X. Li, X. Guo, et al., Tea polyphenols reducing lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages via NF-κB pathway, Chem. Res. Chinese U. 35 (2019) 1105-1110. https://doi.org/10.1007/s40242-019-8376-2.

[42]

A.B. Lagha, D. Grenier, Tea polyphenols inhibit the activation of NF-κB and the secretion of cytokines and matrix metalloproteinases by macrophages stimulated with Fusobacterium nucleatum. Sci. Rep. 6 (2016) 1-11. https://doi.org/10.1038/srep34520.

[43]

A.B. Lagha, D. Grenier, Tea polyphenols protect gingival keratinocytes against TNF-α-induced tight junction barrier dysfunction and attenuate the inflammatory response of monocytes/macrophages, Cytokine 115 (2019) 64-75. https://doi.org/10.1016/j.cyto.2018.12.009.

[44]

A.W.B. Reyes, L.T. Arayan, H.T. Hop, et al., Effects of gallic acid on signaling kinases in murine macrophages and immune modulation against Brucella abortus 544 infection in mice, Microb. Pathog. 119 (2018) 255-259. https://doi.org/10.1016/j.micpath.2018.04.032.

[45]

M. Tanaka, A. Sato, Y. Kishimoto, et al., Gallic acid inhibits lipid accumulation via AMPK pathway and suppresses apoptosis and macrophage-mediated inflammation in hepatocytes, Nutrients 12 (2020) 1479. https://doi.org/10.3390/nu12051479.

[46]

M. Tanaka, A. Sugama, K. Sumi, et al., Gallic acid regulates adipocyte hypertrophy and suppresses inflammatory gene expression induced by the paracrine interaction between adipocytes and macrophages in vitro and in vivo, Nutr. Res. 73 (2020) 58-66. https://doi.org/10.1016/j.nutres.2019.09.007.

[47]

H.A. Lee, Y.R. Song, M.H. Park, et al., Catechin ameliorates Porphyromonas gingivalis-induced inflammation via the regulation of TLR2/4 and inflammasome signaling, J. Periodontol. 91 (2020) 661-670. https://doi.org/10.1002/JPER.18-0004.

[48]

C. Guruvayoorappan, G. Kuttan, (+)-Catechin inhibits tumour angiogenesis and regulates the production of nitric oxide and TNF-α in LPS-stimulated macrophages, Innate Immun. 14 (2008) 160-174. https://doi.org/10.1177%2F1753425908093295.

[49]

H. Wang, Z. Cao, Anti-inflammatory effects of (–)-epicatechin in lipopolysaccharide-stimulated RAW 264.7 macrophages, Trop. J. Pharm. Res. 13 (2014) 1415-1419. https://doi.org/10.4314/tjpr.v13i9.6.

[50]

D.J. Yang, S.C. Liu, Y.C. Chen, et al., Three pathways assess anti-inflammatory response of epicatechin with lipopolysaccharide-mediated macrophage RAW 264.7 cells, J. Food Biochem. 39 (2015) 334-343. https://doi.org/10.1111/jfbc.12134.

[51]

Y. Kawai, H. Tanaka, K. Murota, et al., (−)-Epicatechin gallate accumulates in foamy macrophages in human atherosclerotic aorta: implication in the anti-atherosclerotic actions of tea catechins, Biochem. Bioph. Res. Co. 374 (2008) 527-532. https://doi.org/10.1016/j.bbrc.2008.07.086.

[52]

S.Y. Lyu, W.B. Park, Production of cytokine and NO by RAW 264.7 macrophages and PBMC in vitro incubation dwith flavonoids, Arch. Pharm. Res. 28 (2005) 573-581. https://doi.org/10.1007/BF02977761.

[53]

E. Melgarejo, M. Á. Medina, F. Sánchez-Jiménez, et al., Epigallocatechin gallate reduces human monocyte mobility and adhesion in vitro, Br. J. Pharmacol. 158 (2009) 1705-1712. https://doi.org/10.1111/j.1476-5381.2009.00452.x.

[54]

Y. Yang, X. Han, Y. Chen, et al., EGCG Induces Pro-inflammatory response in macrophages to prevent bacterial infection through the 67LR/p38/JNK signaling pathway, J. Agr. Food Chem. 69 (2021) 5638-5651. https://doi.org/10.1021/acs.jafc.1c01353.

[55]

A.C. Huang, H.Y. Cheng, T.S. Lin, et al., Epigallocatechin gallate (EGCG), influences a murine WEHI-3 leukemia model in vivo through enhancing phagocytosis of macrophages and populations of T- and B-cells, In Vivo 27 (2013) 627-634.

[56]

K. Matsunaga, T.W. Klein, H. Friedman, et al., Legionella pneumophila replication in macrophages inhibited by selective immunomodulatory effects on cytokine formation by epigallocatechin gallate, a major form of tea catechins, Infect. Immun. 69 (2001) 3947-3953. https://doi.org/10.1128/IAI.69.6.3947-3953.2001.

[57]

A. Novilla, D.S. Djamhuri, B. Nurhayati, et al., Anti-inflammatory properties of oolong tea (Camellia sinensis) ethanol extract and epigallocatechin gallate in LPS-induced RAW 264.7 cells, Asian Pac. J. Trop. Biomed. 7 (2017) 1005-1009. https://doi.org/10.1016/j.apjtb.2017.10.002.

[58]

S.Y. Nam, H.J. Jeong, H.M. Kim, Kaempferol impedes IL-32-induced monocyte-macrophage differentiation, Chem. Biol. Interact. 274 (2017) 107-115. https://doi.org/10.1016/j.cbi.2017.07.010.

[59]

Y.J. Kim, W. Park, Anti-inflammatory effect of quercetin on RAW 264.7 mouse macrophages induced with polyinosinic-polycytidylic acid, Molecules 21 (2016) 450. https://doi.org/10.3390/molecules21040450.

[60]

S.Y. Cho, S.J. Park, M.J. Kwon, et al., Quercetin suppresses proinflammatory cytokines production through MAP kinases and NF-κB pathway in lipopolysaccharide-stimulated macrophage, Mol. Cell. Biochem. 243 (2003) 153-160. https://doi.org/10.1023/A:1021624520740.

[61]

M. Mamani-Matsuda, T. Kauss, A. Al-Kharrat, et al., Therapeutic and preventive properties of quercetin in experimental arthritis correlate with decreased macrophage inflammatory mediators, Biochem. Pharmacol. 72 (2006) 1304-1310. https://doi.org/10.1016/j.bcp.2006.08.001.

[62]

H. Lu, L. Wu, L. Liu, et al., Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization, Biochem. Pharmacol. 154 (2018) 203-212. https://doi.org/10.1016/j.bcp.2018.05.007.

[63]

M. Gao, Y. Ma, D. Liu, Rutin suppresses palmitic acids-triggered inflammation in macrophages and blocks high fat diet-induced obesity and fatty liver in mice, Pharm. Res. 30 (2013) 2940-2950. https://doi.org/10.1007/s11095-013-1125-1.

[64]

A. Ganeshpurkar, A. Saluja, Immunomodulatory effect of rutin, catechin, and hesperidin on macrophage function, Indian J. Biochem. Bioph. (IJBB) 57 (2020) 58-63.

[65]

J.H. Hwang, E.J. Koh, Y.J. Lee, et al., Anti-inflammatory effect of caffeine by regulating NF-κB activation in murine macrophage, FASEB J. 30 (2016) lb256. https://doi.org/10.1096/fasebj.30.1_supplement.lb256.

[66]

N.H. Kim, H.J. Jeong, H.M. Kim, Theanine is a candidate amino acid for pharmacological stabilization of mast cells, Amino Acids 42 (2012) 1609-1618. https://doi.org/10.1007/s00726-011-0847-9.

[67]

J. Lei, J. Ye, R. She, et al., L-theanine inhibits foam cell formation via promoting the scavenger receptor A degradation, Eur. J. Pharmacol. 904 (2021) 174-181. https://doi.org/10.1016/j.ejphar.2021.174181.

[68]

V. Kumar, Natural killer cells in sepsis: underprivileged innate immune cells, Eur. J. Cell Biol. 98 (2019) 81-93. https://doi.org/10.1016/j.ejcb.2018.12.003.

[69]

C. Yuan, Z. Li, F. Peng, et al., Combination of selenium-enriched green tea polysaccharides and Huo-ji polysaccharides synergistically enhances antioxidant and immune activity in mice, J. Sci. Food Agr. 95 (2015) 3211-3217. https://doi.org/10.1002/jsfa.7287.

[70]

Iketani R., Furushima D., Nishimura T., et al., The effect of tea catechins on natural killer cell activity in the elderly: a pilot study, Jpn. J. Clin. Pharmacol. Ther. 50 (2019) 139-145. https://doi.org/10.3999/jscpt.50.139.

[71]

M. del Carmen Juárez-Vázquez, A.J. Alonso-Castro, A. García-Carrancá, Kaempferitrin induces immunostimulatory effects in vitro, J. Ethnopharmacol. 148 (2013) 337-340. https://doi.org/10.1016/j.jep.2013.03.072.

[72]

S. Kawada, K. Kobayashi, M. Ohtani, et al., Cystine and theanine supplementation restores high-intensity resistance exercise-induced attenuation of natural killer cell activity in well-trained men, J. Strength Cond. Res. 24 (2010) 846-851. https://doi.org/10.1519/JSC.0b013e3181c7c299.

[73]

A. Juszkiewicz, A. Glapa, P. Basta, et al., The effect of L-theanine supplementation on the immune system of athletes exposed to strenuous physical exercise, J. Int. Soc. Sport. Nutr. 16 (2019) 1-14. https://doi.org/10.1186/s12970-019-0274-y.

[74]

K.D. Stone, C. Prussin, D.D. Metcalfe, IgE, mast cells, basophils, and eosinophils, J. Allergy Clin. Immunol. 125 (2010) S73-S80. https://doi.org/10.1016/j.jaci.2009.11.017.

[75]

B.S. Bochner, R.P. Schleimer, Mast cells, basophils, and eosinophils: distinct but overlapping pathways for recruitment, Immunol. Rev. 179 (2001) 5-15. https://doi.org/10.1034/j.1600-065X.2001.790101.x.

[76]

X. Fei, I.G. Je, T.Y. Shin, et al., Synthesis of gallic acid analogs as histamine and pro-inflammatory cytokine inhibitors for treatment of mast cell-mediated allergic inflammation, Molecules 22 (2017) 898. https://doi.org/10.3390/molecules22060898.

[77]

S.H. Kim, C.D. Jun, K. Suk, et al., Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells, Toxicol. Sci. 91 (2006) 123-131. https://doi.org/10.1093/toxsci/kfj063.

[78]

H.Y. Kim, H.G. Kang, S.Y. Nam, et al., Blockade of RANKL/RANK signaling pathway by epigallocatechin gallate alleviates mast cell-mediated inflammatory reactions, Int. Immunopharmacol. 88 (2020) 106872. https://doi.org/10.1016/j.intimp.2020.106872.

[79]

M. Kim, S.J. Lim, S.W. Kang, et al., Aceriphyllum rossii extract and its active compounds, quercetin and kaempferol inhibit IgE-mediated mast cell activation and passive cutaneous anaphylaxis, J. Agr. Food Chem. 62 (2014) 3750-3758. https://doi.org/10.1021/jf405486c.

[80]

Y.D. Min, C.H. Choi, H. Bark, et al., Quercetin inhibits expression of inflammatory cytokines through attenuation of NF-κB and p38 MAPK in HMC-1 human mast cell line, Inflammation Research 56 (2007) 210-215. https://doi.org/10.1007/s00011-007-6172-9.

[81]

Z. Weng, B. Zhang, S. Asadi, et al., Quercetin is more effective than cromolyn in blocking human mast cell cytokine release and inhibits contact dermatitis and photosensitivity in humans, PLoS One 7 (2012) e33805. https://doi.org/10.1371/journal.pone.0033805.

[82]

P.D. Moon, H.M. Kim, Suppression of thymic stromal lymphopoietin production by rutin in mast cells, Food Chem. 133 (2012) 76-81. https://doi.org/10.1016/j.foodchem.2011.12.074.

[83]

S. Chirumbolo, M. Marzotto, A. Conforti, et al., Bimodal action of the flavonoid quercetin on basophil function: an investigation of the putative biochemical targets, Clin. Mol. Allergy 8 (2010) 1-12. https://doi.org/10.1186/1476-7961-8-13.

[84]

H.L. Lung, W.K. Ip, C.K. Wong, et al., Anti-proliferative and differentiation-inducing activities of the green tea catechin epigallocatechin-3-gallate (EGCG) on the human eosinophilic leukemia EoL-1 cell line, Life Sci. 72 (2002) 257-268. https://doi.org/10.1016/S0024-3205(02)02236-1.

[85]

H.A. Oh, N.R. Han, M.J. Kim, et al., Evaluation of the effect of kaempferol in a murine allergic rhinitis model, Eur. J. Pharmacol. 718 (2013) 48-56. https://doi.org/10.1016/j.ejphar.2013.08.045.

[86]

M. Sakai-Kashiwabara, S. Abe, K. Asano, Suppressive activity of quercetin on the production of eosinophil chemoattractants from eosinophils in vitro, In Vivo 28 (2014) 515-522.

[87]

M. Sakai-Kashiwabara, K. Asano, Inhibitory action of quercetin on eosinophil activation in vitro, Evid. -Based Compl. Alt. 2013. https://doi.org/10.1155/2013/127105.

[88]

V. Papayannopoulos, Neutrophil extracellular traps in immunity and disease, Nature Rev. Immunol. 18 (2018) 134-147. https://doi.org/10.1038/nri.2017.105.

[89]

K. Albuquerque, M.P. Marinovic, A.C. Morandi, et al., Green tea polyphenol extract in vivo attenuates inflammatory features of neutrophils from obese rats, Eur. J. Nutri. 55 (2016) 1261-1274. https://doi.org/10.1007/s00394-015-0940-z.

[90]

O. Handa, Y. Naito, T. Takagi, et al., Inhibitory effects of catechins on neutrophil-dependent gastric inflammation, Redox Rep. 7 (2002) 324-328. https://doi.org/10.1179/135100002125000901.

[91]

G.V. Haute, E., Caberlon, E., Squizani, et al., Gallic acid reduces the effect of LPS on apoptosis and inhibits the formation of neutrophil extracellular traps, Toxicol. In Vitro 30 (2015) 309-317. https://doi.org/10.1016/j.tiv.2015.10.005.

[92]

D. Jiang, M. Zhang, Q. Zhang, et al., Influence of gallic acid on porcine neutrophils phosphodiesterase 4, IL-6, TNF-α and rat arthritis model, J. Integr. Agr. 14 (2015) 758-764. https://doi.org/10.1016/S2095-3119(14)60824-8.

[93]

M. Donà, I. Dell'Aica, F. Calabrese, et al., Neutrophil restraint by green tea: inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis, J. Immunol. 170 (2003) 4335-4341.

[94]

K. Takano, K. Nakaima, M. Nitta, et al., Inhibitory effect of (−)-epigallocatechin 3-gallate, a polyphenol of green tea, on neutrophil chemotaxis in vitro and in vivo, J. Agr. Food Chem. 52 (2004) 4571-4576. https://doi.org/10.1021/jf0355194.

[95]

J. Zeng, H. Xu, P. Fan, et al., Kaempferol blocks neutrophil extracellular traps formation and reduces tumour metastasis by inhibiting ROS-PAD4 pathway, J. Cell. Mol. Med. 24 (2020) 7590-7599. https://doi.org/10.1111/jcmm.15394.

[96]

J. Liu, X. Li, Y. Yue, et al., The inhibitory effect of quercetin on IL-6 production by LPS-stimulated neutrophils, Cell. Mol. Immunol. 2 (2005) 455-460.

[97]

F.O. Souto, A.C. Zarpelon, L. Staurengo-Ferrari, et al., Quercetin reduces neutrophil recruitment induced by CXCL8, LTB4, and fMLP: inhibition of actin polymerization, J. Nat. Prod. 74 (2011) 113-118. https://doi.org/10.1021/np1003017.

[98]

J.J. Liu, C.W. Song, Y. Yue, et al., Quercetin inhibits LPS-induced delay in spontaneous apoptosis and activation of neutrophils, Inflam. Res. 54 (2005) 500-507. https://doi.org/10.1007/s00011-005-1385-2.

[99]

K. Yuan, Q. Zhu, Q. Lu, et al., Quercetin alleviates rheumatoid arthritis by inhibiting neutrophil inflammatory activities, J. Nutr. Biochem. 84 (2020) 108454. https://doi.org/10.1016/j.jnutbio.2020.108454.

[100]

B.A. Nikfarjam, M. Adineh, F. Hajiali, et al., Treatment with rutin-A therapeutic strategy for neutrophil-mediated inflammatory and autoimmune diseases-anti-inflammatory effects of rutin on neutrophils, J. Pharmacopuncture 20 (2017) 52-56. https://doi.org/10.3831/KPI.2017.20.003.

[101]

A. Abbasi, N.R. Kukia, S.M.A. Froushani, et al., Nicotine and caffeine alter the effects of the LPS-primed mesenchymal stem cells on the co-cultured neutrophils, Life Sci. 199 (2018) 41-47. https://doi.org/10.1016/j.lfs.2018.03.009.

[102]

A. Abbasi, S.M.A. Froushani, N. Delirezh, et al., Caffeine alters the effects of bone marrow-derived mesenchymal stem cells on neutrophils, Adv. Clin. Exp. Med. 27 (2018) 463-468. https://doi.org/10.17219/acem/78557.

[103]

W.J. Zeng, Z. Tan, X.F. Lai, et al., Topical delivery of L-theanine ameliorates TPA-induced acute skin inflammation via downregulating endothelial PECAM-1 and neutrophil infiltration and activation, Chem. Biol. Interact. 284 (2018) 69-79. https://doi.org/10.1016/j.cbi.2018.02.019.

[104]

G.J. Clark, N. Angel, M. Kato, et al., The role of dendritic cells in the innate immune system, Microbes Infect. 2 (2000) 257-272. https://doi.org/10.1016/S1286-4579(00)00302-6.

[105]

B.C.L. Chan, L.F. Li, S.Q. Hu, et al., Gallic acid is the major active component of cortex moutan in inhibiting immune maturation of human monocyte-derived dendritic cells, Molecules 20 (2015) 16388-16403. https://doi.org/10.3390/molecules200916388.

[106]

S. Yoneyama, K. Kawai, N.H. Tsuno, et al., Epigallocatechin gallate affects human dendritic cell differentiation and maturation, J. Aller. Clin. Immunol. 121 (2008) 209-214. https://doi.org/10.1016/j.jaci.2007.08.026.

[107]

Y.I. Jeong, I.D. Jung, J.S. Lee, et al., (–)-Epigallocatechin gallate suppresses indoleamine 2, 3-dioxygenase expression in murine dendritic cells: evidences for the COX-2 and STAT1 as potential targets, Biochem. Bioph. Res. Commun. 354 (2007) 1004-1009. https://doi.org/10.1016/j.bbrc.2007.01.076.

[108]

S.L. Jin, B.R. Zhou, D. Luo, Protective effect of epigallocatechin gallate on the immune function of dendritic cells after ultraviolet B irradiation, J. Cosmet. Dermatol. 8 (2009) 174-180. https://doi.org/10.1111/j.1473-2165.2009.00443.x.

[109]

D. Singh, H. Tanwar, S. Das, et al., A novel in vivo adjuvant activity of kaempferol: enhanced Tbx-21, GATA-3 expression and peritoneal CD11c+ MHCII+ dendritic cell infiltration, Immunopharmacol. Immunotoxicol. 40 (2018) 242-249. https://doi.org/10.1080/08923973.2018.1434794.

[110]

M.K. Lin, Y.L. Yu, K.C. Chen, et al., Kaempferol from Semen cuscutae attenuates the immune function of dendritic cells, Immunobiol. 216 (2011) 1103-1109. https://doi.org/10.1016/j.imbio.2011.05.002.

[111]

J. Michalski, A. Deinzer, L. Stich, et al., Quercetin induces an immunoregulatory phenotype in maturing human dendritic cells, Immunobiol. 225 (2020) 151929. https://doi.org/10.1016/j.imbio.2020.151929.

[112]

W. Lin, W. Wang, D. Wang, et al., Quercetin protects against atherosclerosis by inhibiting dendritic cell activation, Mol. Nutr. Food Res. 61 (2017) 1700031. https://doi.org/10.1002/mnfr.201700031.

[113]

R.Y. Huang, Y.L. Yu, W.C. Cheng, et al., Immunosuppressive effect of quercetin on dendritic cell activation and function, J. Immunol. 184 (2010) 6815-6821, https://doi.org/10.4049/jimmunol.0903991.

[114]

L. Mingsheng, Z. Jianhong, L. Min, et al., Theanine improves the function of dendritic cells via the downregulation of cyclooxygenase-2 expression, Chin. Med. J. 127 (2014) 1545-1549. https://doi.org/10.3760/cma.j.issn.0366-6999.20132287.

[115]

B.V. Kumar, T.J. Connors, D.L. Farber, Human T cell development, localization, and function throughout life, Immunity 48 (2018) 202-213. https://doi.org/10.1016/j.immuni.2018.01.007.

[116]

Y. Wei, B. Liu, J. Sun, et al., Regulation of Th17/Treg function contributes to the attenuation of chronic airway inflammation by icariin in ovalbumin-induced murine asthma model, Immunobiol. 220 (2015) 789-797. https://doi.org/10.1016/j.imbio.2014.12.015.

[117]

J. Bayer, A. Gomer, Y. Demir, et al., Effects of green tea polyphenols on murine transplant-reactive T cell immunity, Clin. Immunol. 110 (2004) 100-108. https://doi.org/10.1016/j.clim.2003.10.006.

[118]

H.C. Li, S. Yashiki, J. Sonoda, et al., Green tea polyphenols induce apoptosis in vitro in peripheral blood T lymphocytes of adult T-cell leukemia patients, Jpn. J. Cancer Res. 91 (2000) 34-40. https://doi.org/10.1111/j.1349-7006.2000.tb00857.x.

[119]

K.H. Hyun, K.C. Gil, S.G. Kim, et al., Delphinidin chloride and its hydrolytic metabolite gallic acid promote differentiation of regulatory T cells and have an anti-inflammatory effect on the allograft model, J. Food Sci. 84 (2019) 920-930. https://doi.org/10.1111/1750-3841.14490.

[120]

J.M. Yun, I. Jialal, S. Devaraj, Effects of epigallocatechin gallate on regulatory T cell number and function in obese v. lean volunteers, British J. Nutr. 103 (2010) 1771-1777. https://doi.org/10.1017/S000711451000005X.

[121]

K. Kawai, N.H. Tsuno, J. Kitayama, et al., Epigallocatechin gallate attenuates adhesion and migration of CD8+ T cells by binding to CD11b, J. Allergy Clin. Immunol. 113 (2004) 1211-1217. https://doi.org/10.1016/j.jaci.2004.02.044.

[122]

S.C. Huang, Y.H. Kao, S.F. Shih, et al., Epigallocatechin-3-gallate exhibits immunomodulatory effects in human primary T cells, Biochem. Bioph. Res. Commun. 550 (2021) 70-76. https://doi.org/10.1016/j.bbrc.2021.02.132.

[123]

J.K. Byun, B.Y. Yoon, J.Y. Jhun, et al., Epigallocatechin-3-gallate ameliorates both obesity and autoinflammatory arthritis aggravated by obesity by altering the balance among CD4+ T-cell subsets, Immunol. Lett. 157 (2014) 51-59. https://doi.org/10.1016/j.imlet.2013.11.006.

[124]

L. Shan, X. Kang, F. Liu, et al., Epigallocatechin gallate improves airway inflammation through TGF-β1 signaling pathway in asthmatic mice, Mol. Med. Rep. 18 (2018) 2088-2096. https://doi.org/10.3892/mmr.2018.9183.

[125]

M. Pae, Z. Ren, M. Meydani, et al., Epigallocatechin-3-gallate directly suppresses T cell proliferation through impaired IL-2 utilization and cell cycle progression, J. Nutr. 140 (2010) 1509-1515. https://doi.org/10.3945/jn.110.124743.

[126]

D. Wu, Z. Guo, Z. Ren, et al., Green tea EGCG suppresses T cell proliferation through impairment of IL-2/IL-2 receptor signaling, Free Radic. Biol. Med. 47 (2009) 636-643. https://doi.org/10.1016/j.freeradbiomed.2009.06.001.

[127]

Y. Han, Q. Wang, X. Fan, et al., Epigallocatechin gallate attenuates overload-induced cardiac ECM remodeling via restoring T cell homeostasis, Mol. Med. Rep. 16 (2017) 3542-3550. https://doi.org/10.3892/mmr.2017.7018.

[128]

H.S. Lee, G.S. Jeong, Therapeutic effect of kaempferol on atopic dermatitis by attenuation of T cell activity via interaction with multidrug resistance-associated protein 1, British J. Pharmacol. 178 (2021) 1772-1788. https://doi.org/10.1111/bph.15396.

[129]

I. Okamoto, K. Iwaki, S. Koya-Miyata, et al., The flavonoid kaempferol suppresses the graft-versus-host reaction by inhibiting type 1 cytokine production and CD8+ T cell engraftment, Clin. Immunol. 103 (2002) 132-144. https://doi.org/10.1006/clim.2001.5187.

[130]

A.K. Maurya, M. Vinayak, Quercetin attenuates cell survival, inflammation, and angiogenesis via modulation of AKT signaling in murine T-cell lymphoma, Nutr. Cancer 69 (2017) 470-480. https://doi.org/10.1080/01635581.2017.1267775.

[131]

G. Muthian, J.J. Bright, Quercetin, a flavonoid phytoestrogen, ameliorates experimental allergic encephalomyelitis by blocking IL-12 signaling through JAK-STAT pathway in T lymphocyte, J. Clin. Immunol. 24 (2004) 542-552. https://doi.org/10.1023/B:JOCI.0000040925.55682.a5.

[132]

C. Mascaraque, C. Aranda, B. Ocón, et al., Rutin has intestinal antiinflammatory effects in the CD4+ CD62L+ T cell transfer model of colitis, Pharmacol. Res. 90 (2014) 48-57. https://doi.org/10.1016/j.phrs.2014.09.005.

[133]

M. Seifert, R. Küppers, Human memory B cells, Leukemia 30 (2016) 2283-2292. https://doi.org/10.1038/leu.2016.226.

[134]

D. Liu, P. Li, S. Song, et al., Pro-apoptotic effect of epigallo-catechin-3-gallate on B lymphocytes through regulating BAFF/PI3K/Akt/mTOR signaling in rats with collagen-induced arthritis, Eur. J. Pharmacol. 690 (2012) 214-225. https://doi.org/10.1016/j.ejphar.2012.06.026.

[135]

K. Kawai, N.H. Tsuno, J. Kitayama, et al., Catechin inhibits adhesion and migration of peripheral blood B cells by blocking CD11b, Immunopharmacol. Immunotoxicol. 33 (2011) 391-397. https://doi.org/10.3109/08923973.2010.522195.

[136]

D. Kantamala, M. Vongsakul, J. Satayavlvad, The in vivo and in vitro effects of caffeine on rat immune cells activities: B, T and NK cells, Asian Pac. J. Allergy Immunol. 8 (1990) 77.

[137]

A.M. Mowat, W.W. Agace, Regional specialization within the intestinal immune system, Nat. Rev. Immunol. 14 (2014) 667-685. https://doi.org/10.1038/nri3738.

[138]

S. Wang, Z. Li, Y. Ma, et al., Immunomodulatory effects of green tea polyphenols, Molecules 26 (2021) 3755. https://doi.org/10.3390/molecules26123755.

[139]

H. Li, Q. Fang, Q. Nie, et al., Hypoglycemic and hypolipidemic mechanism of tea polysaccharides on type 2 diabetic rats via gut microbiota and metabolism alteration, J. Agr. Food Chem. 68 (2020) 10015-10028. https://doi.org/10.1021/acs.jafc.0c01968.

[140]

Z.T. Zhao, X.M. Ye, K.H. Ouyang, et al., Effects of polysaccharides from Yingshan Yunwu tea on meat quality, immune status and intestinal microflora in chickens, Int. J. Biol. Macromol. 155 (2020) 61-70. https://doi.org/10.1016/j.ijbiomac.2020.03.198.

[141]

Y. Zhang, L. Cheng, Y. Liu, et al., The intestinal microbiota links tea polyphenols with the regulation of mood and sleep to improve immunity, Food Rev. Int. (2021) 1-14. https://doi.org/10.1080/87559129.2021.1934007.

[142]

R. Zhang, L.L. Liu, X.W. Wang, et al., Dietary tea polyphenols induce changes in immune response and intestinal microbiota in Koi carp, cryprinus carpio, Aquaculture 516 (2020) 734636. https://doi.org/10.1016/j.aquaculture.2019.734636.

[143]

L. Cai, Y.P. Li, Z.X. Wei, et al., Effects of dietary gallic acid on growth performance, diarrhea incidence, intestinal morphology, plasma antioxidant indices, and immune response in weaned piglets, Anim. Feed Sci. Technol. 261 (2020) 114391. https://doi.org/10.1016/j.anifeedsci.2020.114391.

[144]

J. Huang, W. Li, W. Liao, et al., Green tea polyphenol epigallocatechin-3-gallate alleviates nonalcoholic fatty liver disease and ameliorates intestinal immunity in mice fed a high-fat diet, Food Funct. 11 (2020) 9924-9935. https://doi.org/10.1039/D0FO02152K.

[145]

Z. Liu, W.J. de Bruijn, M.E. Bruins, et al., Reciprocal interactions between epigallocatechin-3-gallate (EGCG) and human gut microbiota in vitro, J. Agr. Food Chem. 68 (2020) 9804-9815. https://doi.org/10.1021/acs.jafc.0c03587.

[146]

Z. Jia, A. Chen, C. Wang, et al., Amelioration effects of kaempferol on immune response following chronic intermittent cold-stress, Res. Vet. Sci. 125 (2019) 390-396. https://doi.org/10.1016/j.rvsc.2019.08.012.

[147]

Y. Bian, J. Lei, J. Zhong, et al., Kaempferol reduces obesity, prevents intestinal inflammation, and modulates gut microbiota in high-fat diet mice, J. Nutr. Biochem. 99 (2022) 108840. https://doi.org/10.1016/j.jnutbio.2021.108840.

[148]

Y.I. Zou, H.K. Wei, Q.H. Xiang, et al., Protective effect of quercetin on pig intestinal integrity after transport stress is associated with regulation oxidative status and inflammation, J. Vet. Med. Sci. 78 (2016) 1487. https://doi.org/10.1292/jvms.16-0090.

[149]

M. Saeed, X. Yatao, Z. Tiantian, et al., 16S ribosomal RNA sequencing reveals a modulation of intestinal microbiome and immune response by dietary L-theanine supplementation in broiler chickens, Poul. Sci. 98 (2019) 842-854. https://doi.org/10.3382/ps/pey394.

[150]

W. Xu, L. Lin, A. Liu, et al., L-Theanine affects intestinal mucosal immunity by regulating short-chain fatty acid metabolism under dietary fiber feeding, Food Funct. 11 (2020) 8369-8379. https://doi.org/10.1039/D0FO01069C.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 26 June 2021
Revised: 07 September 2021
Accepted: 10 December 2021
Published: 02 June 2022
Issue date: September 2022

Copyright

© 2022 Beijing Academy of Food Sciences.

Acknowledgements

This study was supported by College Student Innovation and Entrepreneurship Training (202110069122), Tianjin Key R & D Plan-Key Projects Supported by Science and Technology (19YFZCSN00010), and Tianjin Agricultural Science and Technology Achievements Transformation and Promotion Project (202101120).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return