Journal Home > Volume 11 , Issue 5

Microalgae are unicellular photosynthetic microorganisms that are commonly found in saline or freshwater environments. Over the years, microalgae represent promising sources of sustainable bioactivities with past literatures reflecting a growing interest in algae-based dietary supplements in the form of whole biomass. Notably, the bioactive molecules that can be identified and extracted in microalgae have scientifically proven to contain therapeutic properties which can be beneficial to human health. With the increasing occurrence of global health threats such as antimicrobial resistance and cancer, this has resulted in considerable attention for microalgae study especially in the medicinal field. Although studies have proved the therapeutic potentials of high-value bioproducts in microalgae, however, there is still room to understand their potential therapeutic properties on humans' health, discovering novel microalgae-derived bioactive compounds, as well as translating the lab-based evidence to clinical trial studies. This review will focus on accessing the biochemical compositions of commercialised microalgae species from 2007 to 2020, and the activity of their biologically active molecules in eliciting selected therapeutic potentials which are anti-oxidative, anti-inflammatory, anti-microbial and anti-cancer properties. This review article will also be looking at the research gaps in addition to the above four major selected therapeutic potentials, and future prospective.


menu
Abstract
Full text
Outline
About this article

A review on current and future advancements for commercialized microalgae species

Show Author's information Jia Fei Wong1Hui Jing Hong1Su Chern FooMichelle Khai Khun YapJi Wei Tan( )
School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia

1 Equal contribution of authors.

Peer review under responsibility of KeAi Communications Co., Ltd.

Abstract

Microalgae are unicellular photosynthetic microorganisms that are commonly found in saline or freshwater environments. Over the years, microalgae represent promising sources of sustainable bioactivities with past literatures reflecting a growing interest in algae-based dietary supplements in the form of whole biomass. Notably, the bioactive molecules that can be identified and extracted in microalgae have scientifically proven to contain therapeutic properties which can be beneficial to human health. With the increasing occurrence of global health threats such as antimicrobial resistance and cancer, this has resulted in considerable attention for microalgae study especially in the medicinal field. Although studies have proved the therapeutic potentials of high-value bioproducts in microalgae, however, there is still room to understand their potential therapeutic properties on humans' health, discovering novel microalgae-derived bioactive compounds, as well as translating the lab-based evidence to clinical trial studies. This review will focus on accessing the biochemical compositions of commercialised microalgae species from 2007 to 2020, and the activity of their biologically active molecules in eliciting selected therapeutic potentials which are anti-oxidative, anti-inflammatory, anti-microbial and anti-cancer properties. This review article will also be looking at the research gaps in addition to the above four major selected therapeutic potentials, and future prospective.

Keywords: Antioxidant, Anti-inflammation, Antimicrobial, Anticancer, Commercialized microalgae

References(107)

[1]

R. Sathasivam, R. Radhakrishnan, A. Hashem, et al., Microalgae metabolites: a rich source for food and medicine, Saudi. J. Biol. Sci. 26 (2019) 709-722. https://doi.org/10.1016/j.sjbs.2017.11.003.

[2]

I. Barkia, N. Saari, S.R. Manning, Microalgae for high-value products towards human health and nutrition, Mar. Drugs 17 (2019) 304. https://doi.org/10.3390/md17050304.

[3]

J.L. García, M. de Vicente, B. Galán, Microalgae, old sustainable food and fashion nutraceuticals, Microb. Biotechnol. 10 (2017) 1017-1024. https://doi.org/10.1111/1751-7915.12800.

[4]

M. Ghaeni, L. Roomiani, Review for application and medicine effects of Spirulina, microalgae, J. Adv. Agric. Technol. 3 (2016) 114-117. https://doi.org/10.18178/joaat.3.2.114-117.

[5]

Y. Panahi, B. Darvishi, N. Jowzi, et al., Chlorella vulgaris: a multifunctional dietary supplement with diverse medicinal properties, Curr. Pharm. Des. 22 (2016) 164-173.

[6]
M. A. Borowitzka, Microalgae in medicine and human health: a historical perspective, in microalgae in health and disease prevention, 12 (2018) 195-210. https://doi.org/10.1016/B978-0-12-811405-6.00009-8.
DOI
[7]

M. Nicoletti, Microalgae nutraceuticals, Foods 5 (2016) 54. https://doi.org/10.3390/foods5030054.

[8]

S. Bleakley, M. Hayes, Algal proteins: extraction, application, and challenges concerning production, Foods 6 (2017) 33. https://doi.org/10.3390/foods6050033.

[9]

A. Molino, A. Iovine, P. Casella, et al., Microalgae characterization for consolidated and new application in human food, animal feed and nutraceuticals, Int. J. Environ. Res. Public Health 15 (2018) 2436. https://doi.org/10.3390/ijerph15112436.

[10]

K. Kitada, S. Machmudah, M. Sasaki, et al., Antioxidant and antibacterial activity of nutraceutical compounds from Chlorella vulgaris extracted in hydrothermal condition, Sep. Sci. Technol. 44 (2009) 1228-1239. https://doi.org/10.1080/01496390902729056.

[11]

A.P. Desbois, A. Mearns-Spragg, V.J. Smith, A fatty acid from the diatom phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA), Mar. Biotechnol. 11 (2009) 45-52. https://doi.org/10.1007/s10126-008-9118-5.

[12]

G. Guidetti, A. Di Cerbo, A. Giovazzino, et al., In vitro effects of some botanicals with anti-inflammatory and antitoxic activity, J. Immunl. Res. 2016 (2016) 1-11. https://doi.org/10.1155/2016/5457010.

[13]

A.R. Rao, H. Sindhuja, S.M. Dharmesh, et al., Effective inhibition of skin cancer, tyrosinase, and antioxidative properties by astaxanthin and astaxanthin esters from the green alga Haematococcus pluvialis, J. Agric. Food Chem. 61 (2013) 3842-3851.

[14]

A.R. Rao, R. Sarada, M.D. Shylaja, et al., Evaluation of hepatoprotective and antioxidant activity of astaxanthin and astaxanthin esters from microalga-Haematococcus pluvialis, J. Food Sci. Technol. 52 (2015) 6703-6710. https://doi.org/10.1007/s13197-015-1775-6.

[15]

S. Santoyo, I. Rodríguez-Meizoso, A. Cifuentes, et al., Green processes based on the extraction with pressurized fluids to obtain potent antimicrobials from Haematococcus pluvialis microalgae, LWT-Food Sci. Technol. 42 (2009) 1213-1218. https://doi.org/10.1016/j.lwt.2009.01.012.

[16]

M. Shah, R. Mahfuzur, Y. Liang, et al., Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products, Front. Plant Sci. 7 (2016) 531. https://doi.org/10.3389/fpls.2016.00531.

[17]

P.T. Yeh, H.W. Huang, C.M. Yang, et al., Astaxanthin inhibits expression of retinal oxidative stress and inflammatory mediators in streptozotocin induced diabetic rats, PLoS One 11 (2016) e0146438. https://doi.org/10.1371/journal.pone.0146438.

[18]

C.M. da Silva Gorgônio, D.A.G. Aranda, Morphological and chemical aspects of Chlorella pyrenoidosa, Dunaliella tertiolecta, Isochrysis galbana and Tetraselmis gracilis microalgae, Nat. Sci. 5 (2013) 783-791.

[19]

K. Miyashita, S. Nishikawa, F. Beppu, et al., The allenic carotenoid fucoxanthin, a novel marine nutraceutical from brown seaweeds, J. Sci. Food Agri. 91 (2011) 1166-1174. https://doi.org/10.1002/jsfa.4353.

[20]

C.A. Molina-Cárdenas, M. Del Pilar Sánchez-Saavedra, M.L. Lizárraga-Partida, Inhibition of pathogenic Vibrio by the microalgae Isochrysis galbana, J. Appl. Phycol. 26 (2014) 2347-2355. https://doi.org/10.1007/s10811-014-0270-1.

[21]

T. Rengarajan, P. Rajendran, N. Nandakumar, et al., Cancer preventive efficacy of marine carotenoid fucoxanthin: cell cycle arrest and apoptosis, Nutrition 5 (2013) 4978-4989. https://doi.org/10.3390/nu5124978.

[22]

C. De Los Reyes, M.J. Ortega, A. Rodríguez-Luna, et al., Molecular characterization and anti-inflammatory activity of galactosylglycerides and galactosylceramides from the microalga Isochrysis galbana, J. Agric. Food Chem. 64 (2016) 8783-8794. https://doi.org/10.1021/acs.jafc.6b03931.

[23]

A. Rodríguez-Luna, E. Talero, M.D.C. Terencio, et al., Topical application of glycolipids from Isochrysis galbana prevents epidermal hyperplasia in mice, Mar. Drugs 16 (2018) 2. https://doi.org/10.3390/md16010002.

[24]

I. Sadovskaya, A. Souissi, S. Souissi, et al., Chemical structure and biological activity of a highly branched (1→3, 1→6)-β-D-glucan from Isochrysis galbana, Carbohydr. Polym. 111 (2014) 139-148. https://doi.org/10.1016/j.carbpol.2014.04.077.

[25]

C. Saranya, A. Hemalatha, C. Parthiban, et al., Evaluation of antioxidant properties, total phenolic and carotenoid content of Chaetoceros calcitrans, Chlorella salina and Isochrysis galbana, Int. J. Curr. Microbiol. Appl. Sci. 3 (2014) 365-377.

[26]

Y. Sun, H. Wang, G. Guo, et al., The isolation and antioxidant activity of polysaccharides from the marine microalgae Isochrysis galbana, Carbohydr. Polym. 113 (2014) 22-31. https://doi.org/10.1016/j.carbpol.2014.06.058.

[27]

Y.Y. Sun, C.H. Wang, J. Chen, Growth inhibition of the eight species of microalgae by growth inhibitor from the culture of Isochrysis galbana and its isolation and identification, J. Appl. Phycol. 20 (2008) 315-321. https://doi.org/10.1007/s10811-007-9255-7.

[28]

A.E.M.M. Afify, G.S. El Baroty, F.K. El Baz, et al., Scenedesmus obliquus: antioxidant and antiviral activity of proteins hydrolyzed by three enzymes, J. Genet. Eng. Biotechnol. 16 (2018) 399-408. https://doi.org/10.1016/j.jgeb.2018.01.002.

[29]

A.C. Guedes, C.R. Barbosa, H.M. Amaro, et al., Microalgal and cyanobacterial cell extracts for use as natural antibacterial additives against food pathogens, Int. J. Food Sci. Technol. 46 (2011) 862-870. https://doi.org/10.1111/j.1365-2621.2011.02567.x.

[30]

D.A. Marrez, M.M. Naguib, Y.Y. Sultan, et al., Antimicrobial and anticancer activities of Scenedesmus obliquus metabolites, Heliyon 5 (2019) e01404. https://doi.org/10.1016/j.heliyon.2019.e01404.

[31]

C.D. Norzagaray-Valenzuela, A. Valdez-Ortiz, L.M. Shelton, et al., Residual biomasses and protein hydrolysates of three green microalgae species exhibit antioxidant and anti-aging activity, J. Appl. Phycol. 29 (2017) 189-198. https://doi.org/10.1007/s10811-016-0938-9.

[32]

B.H. Um, Y.S. Kim, A chance for korea to advance algal-biodiesel technology, J. Ind. Eng. Chem. 15 (2009) 1-7. https://doi.org/10.1016/j.jiec.2008.08.002.

[33]

V.D.M. Bai, S. Krishnakumar, Evaluation of antimicrobial metabolites from marine microalgae Tetraselmis suecica using gas chromatography-mass spectrometry (GC-MS) analysis, Int. J. Pharm. Pharm. Sci. 5 (2013) 17-23.

[34]

H.A. Hussein, H. Mohamad, M.M. Ghazaly, et al., Cytotoxic effects of Tetraselmis suecica chloroform extracts with silver nanoparticle co-application on MCF-7, 4 T1, and Vero cell lines, J. Appl. Phycol. 31 (2019) 1-17. https://doi.org/10.1007/s10811-019-01905-7.

[35]

S.H. Lee, D.U. Chang, B.J. Lee, et al., Antioxidant activity of solubilized Tetraselmis suecica and Chlorella ellipsoidea by enzymatic digests, J. Food Sci. Nutr. 14 (2009) 21-28.

[36]

H. Pereira, J. Silva, T. Santos, et al., Nutritional potential and toxicological evaluation of Tetraselmis sp. CTP4 microalgal biomass produced in industrial photobioreactors, Molecules 24 (2019) 3192-3210, https://doi.org/10.3390/molecules24173192.

[37]

C. Sansone, C. Galasso, I. Orefice, et al., The green microalga Tetraselmis suecica reduces oxidative stress and induces repairing mechanisms in human cells, Sci. Rep. 7 (2017) 1-12. https://doi.org/10.1038/srep41215.

[38]

M.M. Abu-Serie, N.H. Habashy, W.E. Attia, In vitro evaluation of the synergistic antioxidant and anti-inflammatory activities of the combined extracts from Malaysian Ganoderma lucidum and egyptian Chlorella vulgaris, BMC Complement. Altern. Med. 18 (2018) 1-13. https://doi.org/10.1186/s12906-018-2218-5.

[39]

H.A. Alghanmi, A.S. Omran, Antibacterial activity of ethanol extracts of two algae species against some pathogenic bacteria isolated from hospital patients, Eurasian J. Biosci. 14 (2019) 383-394.

[40]

Â. P. Matos, R. Feller, E.H.S. Moecke, et al., Chemical characterization of six microalgae with potential utility for food application, J. Am. Oil Chem. Soc. 93 (2016) 963-972. https://doi.org/10.1007/s11746-016-2849-y.

[41]

R. Ramaraj, Y. Unpaprom, N. Dussadee, Cultivation of green microalga, Chlorella vulgaris for biogas purification, Int. J. New Technol. Res. 3 (2016) 117-122.

[42]

C. Safi, B. Zebib, O. Merah, et al., Morphology, composition, production, processing and applications of Chlorella vulgaris: a review, Renew. Sust. Energ. Rev. 35 (2014) 265-278. https://doi.org/10.1016/j.rser.2014.04.007.

[43]

K. Vijayavel, C. Anbuselvam, M. Balasubramanian, Antioxidant effect of the marine algae Chlorella vulgaris against naphthalene-induced oxidative stress in the albino rats, Mol. Cellular Biochem. 303 (2007) 39-44. https://doi.org/10.1007/s11010-007-9453-2.

[44]

Y.A.M. Yusof, S.M. Saad, S. Makpol, et al., Hot water extract of Chlorella vulgaris induced DNA damage and apoptosis, Clinics (Sao Paulo) 65 (2010) 1371-1377. https://doi.org/10.1590/S1807-59322010001200023.

[45]

M. Afkhami-Ardakani, S. Hasanzadeh, R. Shahrooz, et al., Antioxidant effects of Spirulina platensis (Arthrospira platensis) on cyclophosphamide-induced testicular injury in rats, Vet. Res. Forum, 9 (2018) 35-41.

[46]

A. Asghari, M. Fazilati, A.M. Latifi, et al., A review on antioxidant properties of Spirulina, J. Appl. Biotechnol. Rep. 3 (2016) 345-351.

[47]

P. Bermejo-Bescós, E. Piñero-Estrada, Á.M.V. Del Fresno, Neuroprotection by Spirulina platensis protean extract and phycocyanin against iron-induced toxicity in SH-SY5Y neuroblastoma cells, Toxicol. In Vitro 22 (2008) 1496-1502. https://doi.org/10.1016/j.tiv.2008.05.004.

[48]

B. Das, J. Pradhan, Antibacterial properties of selected freshwater microalgae against pathogenic bacteria, Indian J. Fish. 57 (2010) 61-66. https://doi.org/10.5897/AJPP2013.0002.

[49]

G.S. Jensen, V.L. Attridge, J.L. Beaman, et al., Antioxidant and anti-inflammatory properties of an aqueous cyanophyta extract derived from Arthrospira platensis: contribution to bioactivities by the non-phycocyanin aqueous fraction, J. Med. Food 18 (2015) 535-541. https://doi.org/10.1089/jmf.2014.0083.

[50]

S.M. Hoseini, K. Khosravi-Darani, M.R. Mozafari, Nutritional and medical applications of Spirulina microalgae, Mini Rev. Med. Chem. 13 (2013) 1231-1237.

[51]

T. Chitranjali, C.P. Anoop, K.G. Muraleedhara, Omega-3 fatty acid concentrate from Dunaliella salina possesses anti-inflammatory properties including blockade of NF-κB nuclear translocation, Immunopharmacol. Immunotoxicol. 37 (2015) 81. https://doi.org/10.3109/08923973.2014.981639.

[52]

H.F. Chiu, J.Y. Liao, Y.Y. Lu, et al., Anti‐proliferative, anti-inflammatory and pro-apoptotic effects of Dunaliella salina on human KB oral carcinoma cells, J. Food Biochem. 41 (2017) e12349. https://doi.org/10.1111/jfbc.12349.

[53]

F.K. El-Baz, A.A. Salama, R.A. Hussein, Dunaliella salina microalgae oppose thioacetamide-induced hepatic fibrosis in rats, Toxicol. Rep. 7 (2020) 36-45.

[54]

S. Feng, X. Li, Z. Xu, et al., Dunaliella salina as a novel host for the production of recombinant proteins, Appl. Microbiol. Biotechnol. 98 (2014) 4293-4300. https://doi.org/10.1016/j.toxrep.2019.10.017.

[55]

M. Herrero, E. Ibanez, A. Cifuentes, et al., Dunaliella salina microalga pressurized liquid extracts as potential antimicrobials, J. Food Prot. 69 (2006) 2471-2477. https://doi.org/10.4315/0362-028X-69.10.2471.

[56]

C.C. Hu, J.T. Lin, F.J. Lu, et al., Determination of carotenoids in Dunaliella salina cultivated in Taiwan and antioxidant capacity of the algal carotenoid extract, Food Chem. 109 (2008) 439-446. https://doi.org/10.1016/j.foodchem.2007.12.043.

[57]

K.W. Samarakoon, J.Y. Ko, J.H. Lee, et al., Apoptotic anticancer activity of a novel fatty alcohol ester isolated from cultured marine diatom, Phaeodactylum tricornutum, J. Funct. Foods 6 (2014) 231-240. https://doi.org/10.1016/j.jff.2013.10.011.

[58]

U. Neumann, F. Derwenskus, V. Flaiz Flister, et al., Fucoxanthin, a carotenoid derived from Phaeodactylum tricornutum exerts antiproliferative and antioxidant activities in vitro, Antioxid. 8 (2019) 183. https://doi.org/10.3390/antiox8060183.

[59]

S. Yang, H. Wan, R. Wang, et al., Sulfated polysaccharides from Phaeodactylum tricornutum: isolation, structural characteristics, and inhibiting HepG2 growth activity in vitro, PeerJ 7 (2019) e6409.

[60]

A.K. Koyande, K.W. Chew, K. Rambabu, et al., Microalgae: a potential alternative to health supplementation for humans, Food Sci. Hum. Wellness 8 (2019) 16-24. https://doi.org/10.1016/j.fshw.2019.03.001.

[61]

M.L. Mourelle, C.P. Gómez, J.L. Legido, The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy, Cosmet 4 (2017) 46. https://doi.org/10.3390/cosmetics4040046.

[62]

M. Yu, M. Chen, J. Gui, et al., Preparation of Chlorella vulgaris polysaccharides and their antioxidant activity in vitro and in vivo, Int. J. Biol. Macromol. 137 (2019) 139-150. https://doi.org/10.1016/j.ijbiomac.2019.06.222.

[63]

A.B. Sikiru, A. Arangasamy, I.C. Alemede, et al., Chlorella vulgaris supplementation effects on performances, oxidative stress and antioxidant genes expression in liver and ovaries of New Zealand white rabbits, Heliyon 5 (2019) e02470. https://doi.org/10.1016/j.heliyon.2019.e02470.

[64]

M. Katagiri, A. Satoh, S. Tsuji, et al., Effects of astaxanthin-rich Haematococcus pluvialis extract on cognitive function: a randomised, double-blind, placebo-controlled study, J. Clin. Biochem. Nutr. 51 (2011) 102-107. https://doi.org/10.3164/jcbn.D-11-00017.

[65]

K.C. Murthy, A. Vanitha, J. Rajesha, et al., In vivo antioxidant activity of carotenoids from Dunaliella salina—a green microalga, Life Sci. 76 (2005) 1381-1390. https://doi.org/10.1016/j.lfs.2004.10.015.

[66]

E.W. Becker, Micro-algae as a source of protein, Biotechnol. Adv. 25 (2007) 207-210. https://doi.org/10.1016/j.biotechadv.2006.11.002.

[67]

C. Carballo, E.G. Chronopoulou, S. Letsiou, et al., Antioxidant capacity and immunomodulatory effects of a chrysolaminarin-enriched extract in Senegalese sole, Fish Shellfish Immunol. 82 (2018) 1-8. https://doi.org/10.1016/j.fsi.2018.07.052.

[68]

T.S. Vo, D.H. Ngo, S.K. Kim, Potential targets for anti-inflammatory and anti-allergic activities of marine algae: an overview, Inflamm. Allergy-Drug Targets (Formerly Curr. Drug Targets-Inflamm. Allergy) 11 (2012) 90-101.

[69]

S. Kazemi, H. Shirzad, M. Rafieian-Kopaei, Recent findings in molecular basis of inflammation and anti-inflammatory plants, Curr. Pharm. Des. 24 (2018) 1551-1562.

[70]

M.Y. Li, L. Sun, X.T. Niu, et al., Astaxanthin protects lipopolysaccharide-induced inflammatory response in Channa argus through inhibiting NF-κB and MAPKs signaling pathways, Fish. Shellfish. Immunol. 86 (2019) 280-286. https://doi.org/10.1016/j.fsi.2018.11.011.

[71]

I.P. Joventino, H.G. Alves, L.C. Neves, et al., The microalga Spirulina platensis presents anti-inflammatory action as well as hypoglycemic and hypolipidemic properties in diabetic rats, J. Complement. Integr. Med. 9 (2012) 7. https://doi.org/10.1515/1553-3840.1534.

[72]

D.J. Yang, J.T. Lin, Y.C. Chen, et al., Suppressive effect of carotenoid extract of Dunaliella salina alga on production of LPS-stimulated pro-inflammatory mediators in RAW264. 7 cells via NF-κB and JNK inactivation, J. Funct. Foods 5 (2013) 607-615. https://doi.org/10.1016/j.jff.2013.01.001.

[73]

U. Neumann, S. Louis, A. Gille, et al., Anti-inflammatory effects of Phaeodactylum tricornutum extracts on human blood mononuclear cells and murine macrophages, J. Appl. Phycol. 30 (2018) 2837-2846. https://doi.org/10.1007/s10811-017-1352-7.

[74]

K.W. Samarakoon, J.Y. Ko, S.M. Rahman, et al., In vitro studies of anti-inflammatory and anticancer activities of organic solvent extracts from cultured marine microalgae, Algae 28 (2013) 111-119. https://doi.org/10.4490/algae.2013.28.1.111.

[75]

A. Martins, H. Vieira, H. Gaspar, et al., Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success, Mar. Drugs 12 (2014) 1066-1101. https://doi.org/10.3390/md12021066.

[76]

B. De Las Heras, M.J. Abad, A.M. Silvan, et al., Effects of six diterpenes on macrophage eicosanoid biosynthesis, Life Sci. 70 (2001) 269-278. https://doi.org/10.1016/S0024-3205(01)01402-3.

[77]

W.S. Jo, Y.J. Choi, H.J. Kim, et al., Anti-inflammatory effect of microalgal extracts from Tetraselmis suecica, Food Sci. Biotechnol. 19 (2010) 1519-1528. https://doi.org/10.1007/s10068-010-0216-6.

[78]

S.K. Kim, Y.J. Jeon, W.S. Kim, et al., Biochemical composition of marine microalgae and their potential antimicrobial activity, Fish. Aquat. Sci. 4 (2001) 75-83.

[79]

M. Pérez-Rama, J.A. Alonso, C.H. López, et al., Cadmium removal by living cells of the marine microalga Tetraselmis suecica, Bioresour. Technol. 84 (2002) 265-270. https://doi.org/10.1016/S0960-8524(02)00045-7.

[80]

C.M. Heard, An ex vivo skin model to probe modulation of local cutaneous arachidonic acid inflammation pathway, J. Biol. Methods 7 (2020) 138. https://doi.org/10.14440/jbm.2020.319.

[81]

H.M. Wang, J.L. Pan, C.Y. Chen, et al., Identification of anti-lung cancer extract from Chlorella vulgaris CC by antioxidant property using supercritical carbon dioxide extraction, Process Biochem. 45 (2010) 1865-1872. https://doi.org/10.1016/j.procbio.2010.05.023.

[82]

K.A. Martínez Andrade, C. Lauritano, G. Romano, et al., Marine microalgae with anti-cancer properties, Mar. Drugs 16 (2018) 165. https://doi.org/10.3390/md16050165.

[83]

T.H.P. Brotosudarmo, L. Limantara, E. Setiyono, Structures of astaxanthin and their consequences for therapeutic application, Int. J. Food Sci. (2020) https://doi.org/10.1155/2020/2156582.

[84]

P. Palozza, C. Torelli, A. Boninsegna, et al., Growth-inhibitory effects of the astaxanthin-rich alga Haematococcus pluvialis in human colon cancer cells, Cancer Lett. 283 (2009) 108-117. https://doi.org/10.1016/j.canlet.2009.03.031.

[85]

J. Matos, C. Cardoso, A. Gomes, et al., Bioprospection of Isochrysis galbana and its potential as a nutraceutical, Food Funct. 10 (2019) 7333-7342. https://doi.org/10.1039/C9FO01364D.

[86]

S. Ermakova, R. Men'shova, O. Vishchuk, et al., Water-soluble polysaccharides from the brown alga Eisenia bicyclis: structural characteristics and antitumor activity, Algal Res. 2 (2013) 51-58. https://doi.org/10.1016/j.algal.2012.10.002.

[87]

A.A. Abu Zaid, D.M. Hammad, E.M. Sharaf, Antioxidant and anticancer activity of Spirulina platensis water extracts, Int. J. Pharmacol. 11 (2015) 846-851.

[88]

A. Czerwonk, K. Kaławaj, A. Sławińska-Brych, et al., Anticancer effect of the water extract of a commercial Spirulina (Arthrospira platensis) product on the human lung cancer A549 cell line, Biomed. Pharmacother. 106 (2018) 292-302. https://doi.org/10.1016/j.biopha.2018.06.116.

[89]

F.Y.F. Hernandez, S. Khandual, I.G.R. López, Cytotoxic effect of Spirulina platensis extracts on human acute leukemia Kasumi-1 and chronic myelogenous leukemia K-562 cell lines, Asian Pac. J. Trop. Biomed. 7 (2017) 14-19. https://doi.org/10.1016/j.apjtb.2016.10.011.

[90]

H. Abd El Baky, G. El-Baroty, E. Ibrahem, Antiproliferation and antioxidant properties of lipid extracts of the microalgae Scenedesmus obliquus grown under stress conditions, Der. Pharma. Chem. 6 (2014) 24-34.

[91]

R. Sivasubramanian, P. Brindha, In-vitro cytotoxic, antioxidant and GC-MS studies on Centratherum punctatum cass, Int. J. Pharm. Pharm. Sci. 5 (2013) 364-367.

[92]

M.K. Swamy, U.R. Sinniah, A comprehensive review on the phytochemical constituents and pharmacological activities of Pogostemon cablin Benth.: an aromatic medicinal plant of industrial importance, Molecules 20 (2015) 8521-8547. https://doi.org/10.3390/molecules20058521.

[93]

K. Jayappriyan, R. Rajkumar, V. Venkatakrishnan, et al., In vitro anticancer activity of natural β-carotene from Dunaliella salina EU5891199 in PC-3 cells, Biomed. Prev. Nutr. 3 (2013) 99-105. https://doi.org/10.1016/j.bionut.2012.08.003.

[94]

W.C. Chuang, Y.C. Ho, J.W. Liao, et al., Dunaliella salina exhibits an antileukemic immunity in a mouse model of WEHI-3 leukemia cells, J. Agric. Food Chem. 62 (2014) 11479-11487. https://doi.org/10.1021/jf503564b.

[95]

R. Uma, V. Sivasubramanian, S. Niranjali Devaraj, Preliminary phycochemical analysis and in vitro antibacterial screening of green micro algae, Desmococcus olivaceous, Chlorococcum humicola and Chlorella vulgaris, J. Algal Biomass Utln. 2 (2011) 74-81.

[96]

G.Z. Justo, M.R. Silva, M.L. Queiroz, Effects of the green algae Chlorella vulgaris on the response of the host hematopoietic system to intraperitoneal Ehrlich Ascites tumor transplantation in mice, Immunopharmacol. Immunotoxicol. 23 (2001) 119-132. https://doi.org/10.1081/IPH-100102573.

[97]

S. Santoyo, L. Jaime, M. Plaza, et al., Antiviral compounds obtained from microalgae commonly used as carotenoid sources, J. Appl. Phycol. 24 (2012) 731-741. https://doi.org/10.1007/s10811-011-9692-1.

[98]

K.Y. Anchang, D. Lewis, C. Nji, Toxicological, phytochemical and antibacterial assessment of Chlorella vulgaris and Spirulina platensis poder in albino rats. a preliminary study, Revista Peruana de Medicina Integrativa 1 (2016) 5-11. http://dx.doi.org/10.26722/rpmi.2016.13.21.

[99]

F. Kokou, P. Makridis, M. Kentouri, et al., Antibacterial activity in microalgae cultures, Aquac. Res. 43 (2012) 1520-1527. https://doi.org/10.1111/j.1365-2109.2011.02955.x.

[100]

Y.H. Lin, F.L. Chang, C.Y. Tsao, et al., Influence of growth phase and nutrient source on fatty acid composition of Isochrysis galbana CCMP 1324 in a batch photoreactor, Biochem. Eng. J. 37 (2007) 166-176. https://doi.org/10.1016/j.bej.2007.04.014.

[101]

J.A. Mendiola, S. Santoyo, A. Cifuentes, et al., Antimicrobial activity of sub-and supercritical CO2 extracts of the green alga Dunaliella salina, J. Food Prot. 71 (2008) 2138-2143. https://doi.org/10.4315/0362-028X-71.10.2138.

[102]

V.J. Smith, A.P. Desbois, E.A. Dyrynda, Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae, Mar. Drugs 8 (2010) 1213-1262. https://doi.org/10.3390/md8041213.

[103]

A.P. Desbois, M.J. Walton, V.J. Smith, Differential antibacterial activities of fusiform and oval morphotypes of Phaeodactylum tricornutum (Bacillariophyceae), J. Mar. Biol. Assoc. U.K. 90 (2010) 769-774. https://doi.org/10.1017/S0025315409991366.

[104]

B.E. de Pauw, What are fungal infections? Mediterr. J. Hematol. Infect. Dis. 3 (2011) e2011001. https://doi.org/10.4084/mjhid.2011.001.

[105]

G.D. Hoog, F. Queiroz-Telles, G. Haase, et al., Black fungi: clinical and pathogenic approaches, Med. Mycol. 38 (2000) 243-250. https://pubmed.ncbi.nlm.nih.gov/11204152/.

[106]

A.P. Knutsen, R.K. Bush, J.G. Demain, et al., Fungi and allergic lower respiratory tract diseases, J. Allergy Clin. Immunol. 129 (2012) 280-291. https://doi.org/10.1016/j.jaci.2011.12.970.

[107]

S.C. Foo, F.M. Yusoff, M.U. Imam, et al., Increased fucoxanthin in Chaetoceros calcitrans extract exacerbates apoptosis in liver cancer cells via multiple targeted cellular pathways, Biotechnol. Rep. 21 (2018) e00296. https://doi.org/10.1016/j.btre.2018.e00296.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 17 December 2020
Revised: 20 January 2021
Accepted: 18 February 2021
Published: 02 June 2022
Issue date: September 2022

Copyright

© 2022 Beijing Academy of Food Sciences.

Acknowledgements

Acknowledgement

This study was supported by Fundamental Research Grant Scheme (FRGS) 2019 from Ministry of Higher Education of Malaysia (FRGS/1/2019/STG05/MUSM/03/2) and Honours Study Consumable Fund 2020 from School of Science, Monash University Malaysia.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return