Journal Home > Volume 11 , Issue 5

Coronavirus pandemic infection is the most important health issue worldwide. Coronavirus disease 2019 is a contagious disease characterized by severe acute respiratory syndrome coronavirus 2. To date, excluding the possibility of vaccination, against SARS-CoV-2 infection it is possible to act only with supportive care and non-virus-specific treatments in order to improve the patient's symptoms. Pharmaceutical industry is investigating effects of medicinal plants, phytochemical extracts and aromatic herbs to find out natural substances which may act as antiviral drugs. Several studies have revealed how these substances may interfere with the viral life cycle, viral entry, replication, assembly or discharge, as well as virus-specific host targets or stimulating the host immune system, reducing oxidative stress and inflammatory response. A natural compound can be used as a prophylaxis by people professionally exposed to the risk of contagion and/or positive patients not in intensive care. The aim of this paper is to perform a narrative review of current literature in order to summarize the most studied natural compounds and their modes of action.


menu
Abstract
Full text
Outline
About this article

Natural compounds may contribute in preventing SARS-CoV-2 infection: a narrative review

Show Author's information Maria Eleonora BizzocaaStefania LeucibMichele Davide MignognabEleonora Lo MuziocVito Carlo Alberto CaponioaLorenzo Lo Muzioa,d( )
Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico Ⅱ University of Naples, Naples 80131, Italy
Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
C.I.N.B.O. (Consorzio Interuniversitario Nazionale per la Bio-Oncologia), Chieti 66100, Italy

Peer review under responsibility of KeAi Communications Co., Ltd.

Abstract

Coronavirus pandemic infection is the most important health issue worldwide. Coronavirus disease 2019 is a contagious disease characterized by severe acute respiratory syndrome coronavirus 2. To date, excluding the possibility of vaccination, against SARS-CoV-2 infection it is possible to act only with supportive care and non-virus-specific treatments in order to improve the patient's symptoms. Pharmaceutical industry is investigating effects of medicinal plants, phytochemical extracts and aromatic herbs to find out natural substances which may act as antiviral drugs. Several studies have revealed how these substances may interfere with the viral life cycle, viral entry, replication, assembly or discharge, as well as virus-specific host targets or stimulating the host immune system, reducing oxidative stress and inflammatory response. A natural compound can be used as a prophylaxis by people professionally exposed to the risk of contagion and/or positive patients not in intensive care. The aim of this paper is to perform a narrative review of current literature in order to summarize the most studied natural compounds and their modes of action.

Keywords: Prevention, COVID-19, SARS-CoV-2, Infectious disease, Phytochemicals, Natural compounds, Medicinal plants

References(107)

[1]

L. Zou, F. Ruan, M. Huang, et al., SARS-CoV-2 viral load in upper respiratory specimens of infected patients, N. Engl. J. Med. 382 (2020) 1177-1179. https://doi.org/10.1056/NEJMc2001737.

[2]

D.S. Hui, E.I. Azhar, T.A. Madani, et al., The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—the latest 2019 novel coronavirus outbreak in Wuhan, China, Int. J. Infect. Dis. 91 (2020) 264-266. https://doi.org/10.1016/j.ijid.2020.01.009.

[3]

K. Zhurakivska, G. Troiano, G. Pannone, et al., An overview of the temporal shedding of SARS-CoV-2 RNA in clinical specimens, Front. Public Health 8 (2020) 487. https://doi.org/10.3389/fpubh.2020.00487.

[4]

Z. Xu, L. Shi, Y. Wang, et al., Pathological findings of COVID-19 associated with acute respiratory distress syndrome, Lancet Respir. Med. 8 (2020) 420-422. https://doi.org/10.1016/S2213-2600(20)30076-X.

[5]

A. Wu, Y. Peng, B. Huang, et al., Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China, Cell Host Microbe. 27 (2020) 325-328. https://doi.org/10.1016/j.chom.2020.02.001.

[6]

A.R. Fehr, S. Perlman, Coronaviruses: an overview of their replication and pathogenesis, Methods Mol. Biol. 1282 (2015) 1-23. https://doi.org/10.1007/978-1-4939-2438-7_1.

[7]

S. Belouzard, J.K. Millet, B.N. Licitra, et al., Mechanisms of coronavirus cell entry mediated by the viral spike protein, Viruses 4 (2012) 1011-1033. https://doi.org/10.3390/v4061011.

[8]

H.P. Jia, D.C. Look, L. Shi, et al., ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia, J. Virol. 79 (2005) 14614-14621. https://doi.org/10.1128/JVI.79.23.14614-14621.2005.

[9]

D.A. Dias, S. Urban, U. Roessner, A historical overview of natural products in drug discovery, Metabolites 2 (2012) 303-336. https://doi.org/10.3390/metabo2020303.

[10]

M. Rasool, A. Malik, A. Manan, et al., Roles of natural compounds from medicinal plants in cancer treatment: structure and mode of action at molecular level, Med. Chem. 11 (2015) 618-628. https://doi.org/10.2174/1573406411666150430120038.

[11]

B. Noel, S.K. Singh, J.W. Lillard Jr., et al., Role of natural compounds in preventing and treating breast cancer, Front. Biosci (Schol Ed). 12 (2020) 137-160.

[12]

M.S. Butler, A.A. Robertson, M.A. Cooper, Natural product and natural product derived drugs in clinical trials, Nat. Prod. Rep. 31 (2014)1612-1661. https://doi.org/10.1039/c4np00064a.

[13]

B. Javadi, A. Sahebkar, Natural products with anti-inflammatory and immunomodulatory activities against autoimmune myocarditis, Pharmacol. Res. 124 (2017) 34-42. https://doi.org/10.1016/j.phrs.2017.07.022.

[14]

S. Dudics, D. Langan, R.R. Meka, et al., Natural products for the treatment of autoimmune arthritis: their mechanisms of action, targeted delivery, and interplay with the host microbiome, Int. J. Mol. Sci. 19 (2018) 2508. https://doi.org/10.3390/ijms19092508.

[15]

J. Xu, J. Liu, G. Yue, et al., Therapeutic effect of the natural compounds baicalein and baicalin on autoimmune diseases, Mol. Med. Rep. 18 (2018) 1149-1154. https://doi.org/10.3892/mmr.2018.9054.

[16]

H. Ginsburg, E. Deharo, A call for using natural compounds in the development of new antimalarial treatments-an introduction, Malar. J. 10 (1) (2011) 1-7. https://doi.org/10.1186/1475-2875-10-S1-S1.

[17]

P. Guglielmi, V. Pontecorvi, G. Rotondi, Natural compounds and extracts as novel antimicrobial agents, Expert Opin. Ther. Pat. 30 (2020) 949-962. https://doi.org/10.1080/13543776.2020.1853101.

[18]

D.X. Liu, T.S. Fung, K.K. Chong, et al., Accessory proteins of SARS-CoV and other coronaviruses, Antiviral Res. 109 (2014) 97-109. https://doi.org/10.1016/j.antiviral.2014.06.013.

[19]

A.A.T. Naqvi, K. Fatima, T. Mohammad, et al., Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: structural genomics approach, Biochim. Biophys. Acta. Mol. Basis. Dis. 1866 (2020) 165878. https://doi.org/10.1016/j.bbadis.2020.165878.

[20]

B. Xue, D. Blocquel, J. Habchi, et al., Structural disorder in viral proteins, Chem. Rev. 114 (2014) 6880-6911. https://doi.org/10.1021/cr4005692.

[21]

J.A. EA, I.M. Jones, Membrane binding proteins of coronaviruses, Future Virol. 14 (2019) 275-286. https://doi.org/10.2217/fvl-2018-0144.

[22]

C. Tang, Z. Deng, X. Li, et al., Helicase of type 2 porcine reproductive and respiratory syndrome virus strain HV reveals a unique structure, Viruses 12 (2020) 215. https://doi.org/10.3390/v12020215.

[23]

C. Muller, F.W. Schulte, K. Lange-Grunweller, et al., Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses, Antiviral. Res. 150 (2018) 123-129. https://doi.org/10.1016/j.antiviral.2017.12.010.

[24]

C. Huang, K.G. Lokugamage, J.M. Rozovics, et al., SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage, PLoS Pathog. 7 (2011) e1002433. https://doi.org/10.1371/journal.ppat.1002433.

[25]

Y.M. Baez-Santos, S.E. St John, A.D. Mesecar, The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds, Antiviral. Res. 115 (2015) 21-38. https://doi.org/10.1016/j.antiviral.2014.12.015.

[26]

S. Jo, S. Kim, D.H. Shin, et al., Inhibition of SARS-CoV 3CL protease by flavonoids, J. Enzyme Inhib. Med. Chem. 35 (2020) 145-151. https://doi.org/10.1080/14756366.2019.1690480.

[27]

X. Xue, H. Yu, H. Yang, et al., Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design, J. Virol. 82 (2008) 2515-2527. https://doi.org/10.1128/JVI.02114-07.

[28]

B.T.P. Thuy, T.T.A. My, N.T.T. Hai, et al., Correction to Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil, ACS Omega 5 (2020) 16315. https://doi.org/10.1021/acsomega.0c02641.

[29]

K.J. Jang, S. Jeong, D.Y. Kang, et al., A high ATP concentration enhances the cooperative translocation of the SARS coronavirus helicase nsP13 in the unwinding of duplex RNA, Sci. Rep. 10 (2020) 4481. https://doi.org/10.1038/s41598-020-61432-1.

[30]

K.A. Ivanov, V. Thiel, J.C. Dobbe, et al., Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase, J. Virol. 78 (2004) 5619-5632. https://doi.org/10.1128/JVI.78.11.5619-5632.2004.

[31]

J. Lan, J. Ge, J. Yu, et al., Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature 581 (2020) 215-220. https://doi.org/10.1038/s41586-020-2180-5.

[32]

M. Hoffmann, H. Kleine-Weber, S. Schroeder, et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell 181 (2020) 271-280. https://doi.org/10.1016/j.cell.2020.02.052.

[33]

D. Wrapp, N. Wang, K.S. Corbett, et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science 367(6483) (2020) 1260-1263. https://doi.org/10.1126/science.abb2507.

[34]

J. Xu, S. Zhao, T. Teng, et al., Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV, Viruses 12 (2020) 244. https://doi.org/10.3390/v12020244.

[35]

R.Y. Utomo, M. Ikawati, and E. Meiyanto, Revealing the potency of citrus and galangal constituents to halt SARS-CoV-2 infection, Preprints (2020). https://doi.org/10.20944/preprints202003.0214.v1.

[36]

X. Xu, P. Chen, J. Wang, et al., Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission, Sci. China Life Sci. 63 (2020) 457-460. https://doi.org/10.1007/s11427-020-1637-5.

[37]

H. Zhang, J.M. Penninger, Y. Li, et al., Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target, Intensive Care Med. 46 (2020) 586-590. https://doi.org/10.1007/s00134-020-05985-9.

[38]

R. Yan, Y. Zhang, Y. Li, et al., Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2, Science 367 (2020) 1444-1448. https://doi.org/10.1126/science.abb2762.

[39]

T. Tang, M. Bidon, J.A. Jaimes, et al., Coronavirus membrane fusion mechanism offers a potential target for antiviral development, Antiviral Res. 178 (2020) 104792. https://doi.org/10.1016/j.antiviral.2020.104792.

[40]

F.K. Yoshimoto, The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19, Protein J. 39 (2020) 198-216. https://doi.org/10.1007/s10930-020-09901-4.

[41]

A. Bartoli, F. Gabrielli, T. Alicandro, et al., COVID-19 treatment options: a difficult journey between failed attempts and experimental drugs, Intern. Emerg. Med. 16 (2021) 281-308. https://doi.org/10.1007/s11739-020-02569-9.

[42]

M.N. Boukhatem, W.N. Setzer, Aromatic herbs, medicinal plant-derived essential oils, and phytochemical extracts as potential therapies for coronaviruses: future perspectives, Plants (Basel) 9 (2020) 800. https://doi.org/10.3390/plants9060800.

[43]

G.F. Parisi, G. Carota, C. Castruccio Castracani, et al., Nutraceuticals in the prevention of viral infections, including COVID-19, among the pediatric population: a review of the literature, Int. J. Mol. Sci. 22 (2021) 2465. https://doi.org/10.3390/ijms22052465.

[44]

A. Hensel, R. Bauer, M. Heinrich, et al., Challenges at the time of COVID-19: opportunities and innovations in antivirals from nature, Planta Med. 86(10) (2020) 659-664. https://doi.org/10.1055/a-1177-4396.

[45]

H. Luo, Q.L. Tang, Y.X. Shang, et al., Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID-19)? a review of historical classics, research evidence and current prevention programs, Chin. J. Integr. Med. 26 (2020) 243-250. https://doi.org/10.1007/s11655-020-3192-6.

[46]

P.C. Leung, The efficacy of Chinese medicine for SARS: a review of Chinese publications after the crisis, Am. J. Chin. Med. 35 (2007) 575-581. https://doi.org/10.1142/S0192415X07005077.

[47]

J. Kai, X. Yang, Z. Wang, et al., Oroxylin a promotes PGC-1α/Mfn2 signaling to attenuate hepatocyte pyroptosis via blocking mitochondrial ROS in alcoholic liver disease, Free Radic. Biol. Med. 153 (2020) 89-102. https://doi.org/10.1016/j.freeradbiomed.2020.03.031.

[48]

Y. Luo, C.Z. Wang, J. Hesse-Fong, et al., Application of Chinese medicine in acute and critical medical conditions, Am. J. Chin. Med. 47 (2019) 1223-1235. https://doi.org/10.1142/S0192415X19500629.

[49]

K. Wisskirchen, J. Lucifora, T. Michler, et al., New pharmacological strategies to fight enveloped viruses, Trends Pharmacol Sci. 35 (2014) 470-478. https://doi.org/10.1016/j.tips.2014.06.004.

[50]

M.S. Maginnis, Virus-receptor interactions: the key to cellular invasion, J. Mol. Biol. 430 (2018) 2590-2611. https://doi.org/10.1016/j.jmb.2018.06.024.

[51]

A.C. Hsu, Influenza virus: a master tactician in innate immune evasion and novel therapeutic interventions, Front. Immunol. 9 (2018) 743. https://doi.org/10.3389/fimmu.2018.00743.

[52]

K. Ezzat, M. Pernemalm, S. Palsson, et al., The viral protein corona directs viral pathogenesis and amyloid aggregation, Nat. Commun. 10 (2019) 2331. https://doi.org/10.1038/s41467-019-10192-2.

[53]

A. Hasan, B.A. Paray, A. Hussain, et al., A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin, J. Biomol. Struct. Dyn. 39(8) (2021) 3025-3033. https://doi.org/10.1080/07391102.2020.1754293.

[54]

H. Hofmann, K. Pyrc, L. van der Hoek, et al., Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 7988-7993. https://doi.org/10.1073/pnas.0409465102.

[55]

X. Huang, W. Dong, A. Milewska, et al., Human coronavirus HKU1 spike protein uses O-acetylated sialic acid as an attachment receptor determinant and employs hemagglutinin-esterase protein as a receptor-destroying enzyme, J. Virol. 89 (2015) 7202-7213. https://doi.org/10.1128/JVI.00854-15.

[56]

I.M. Ibrahim, D.H. Abdelmalek, M.E. Elshahat, et al., COVID-19 spike-host cell receptor GRP78 binding site prediction, J. Infect. 80 (2020) 554-562. https://doi.org/10.1016/j.jinf.2020.02.026.

[57]

V.S. Raj, H. Mou, S.L. Smits, et al., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC, Nature 495 (2013) 251-254. https://doi.org/10.1038/nature12005.

[58]

P. Zhou, X.L. Yang, X.G. Wang, et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature 579 (2020) 270-273. https://doi.org/10.1038/s41586-020-2012-7.

[59]

H. Xu, L. Zhong, J. Deng, et al., High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa, Int. J. Oral Sci. 12 (2020) 8. https://doi.org/10.1038/s41368-020-0074-x.

[60]

A. Pfutzner, M. Lazzara, J. Jantz, Why do people with diabetes have a high risk for severe COVID-19 disease?-a dental hypothesis and possible prevention strategy, J. Diabetes Sci. Technol. 14(4) (2020) 769-771. https://doi.org/10.1177/1932296820930287.

[61]

N. Vankadari, J.A. Wilce, Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26, Emerg Microbes Infect. 9 (2020) 601-604. https://doi.org/10.1080/22221751.2020.1739565.

[62]

C. Sargiacomo, F. Sotgia, M.P. Lisanti, COVID-19 and chronological aging: senolytics and other anti-aging drugs for the treatment or prevention of corona virus infection? Aging (Albany NY) 12 (2020) 6511-6517. https://doi.org/10.18632/aging.103001.

[63]

B.T.P. Thuy, T.T.A. My, N.T.T. Hai, et al., Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil, ACS Omega. 5 (2020) 8312-8320. https://doi.org/10.1021/acsomega.0c00772.

[64]

I. Abdelli, F. Hassani, S. Bekkel Brikci, et al., In silico study the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 by Ammoides verticillata components harvested from Western Algeria, J. Biomol. Struct. Dyn. 39(9) (2021) 3263-3276. https://doi.org/10.1080/07391102.2020.1763199.

[65]

H. Chen, Q. Du, Potential natural compounds for preventing SARS-CoV-2 (2019-nCoV) infection, Preprint (2020). https://doi.org/10.20944/preprints202001.0358.v3.

[66]

J.R. Horne, M.C. Vohl, Biological plausibility for interactions between dietary fat, resveratrol, ACE2, and SARS-CoV illness severity, Am. J. Physiol. Endocrinol. Metab. 318 (2020) E830-E833. https://doi.org/10.1152/ajpendo.00150.2020.

[67]

S. Ahmad, H.W. Abbasi, S. Shahid, et al., Molecular docking, simulation and MM-PBSA studies of nigella sativa compounds: a computational quest to identify potential natural antiviral for COVID-19 treatment, J. Biomol. Struct. Dyn. 39(12) (2021) 4225-4233. https://doi.org/10.1080/07391102.2020.1775129.

[68]

A.A. Elfiky, Natural products may interfere with SARS-CoV-2 attachment to the host cell, J. Biomol. Struct. Dyn. 39(9) (2020) 3194-3203. https://doi.org/10.1080/07391102.2020.1761881.

[69]

H. Gu, X. Qi, Y. Jia, et al., Publisher correction: inheritance patterns of the transcriptome in hybrid chickens and their parents revealed by expression analysis, Sci. Rep. 10 (2020) 6855. https://doi.org/10.1038/s41598-020-63873-0.

[70]

I. Aanouz, A. Belhassan, K. El-Khatabi, et al., Moroccan medicinal plants as inhibitors against SARS-CoV-2 main protease: computational investigations, J. Biomol. Struct. Dyn. 39(8) (2021) 2971-2979. https://doi.org/10.1080/07391102.2020.1758790.

[71]

K. Anand, G.J. Palm, J.R. Mesters, et al., Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain, EMBO J. 21 (2002) 3213-3224. https://doi.org/10.1093/emboj/cdf327.

[72]

H. Yang, M. Yang, Y. Ding, et al., The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor, Proc. Natl. Acad. Sci. U.S.A. 100 (2003) 13190-13195. https://doi.org/10.1073/pnas.1835675100.

[73]

T. Pillaiyar, M. Manickam, V. Namasivayam, et al., An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy, J. Med. Chem. 59 (2016) 6595-6628. https://doi.org/10.1021/acs.jmedchem.5b01461.

[74]

M.T. Ul Qamar, S.M. Alqahtani, M.A. Alamri, et al., Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants, J. Pharm. Anal. 10(4) (2020) 313-319. https://doi.org/10.1016/j.jpha.2020.03.009.

[75]

C.W. Lin, F.J. Tsai, C.H. Tsai, et al., Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds, Antiviral. Res. 68 (2005) 36-42. https://doi.org/10.1016/j.antiviral.2005.07.002.

[76]

S. Khaerunnisa, H. Kurniawan, R. Awaluddin, et al., Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study, Preprints 2020 (2020) 2020030226. https://doi.org/10.20944/preprints202003.0226.v1.

[77]

P. Kar, N.R. Sharma, B. Singh, et al., Natural compounds from Clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: an in silico investigation, J. Biomol. Struct. Dyn. 39(13) (2021) 4774-4785. https://doi.org/10.1080/07391102.2020.1780947.

[78]

J. Lung, Y.S. Lin, Y.H. Yang, et al., The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase, J. Med. Virol. 92 (2020) 693-697. https://doi.org/10.1002/jmv.25761.

[79]

A. Derksen, J. Kuhn, W. Hafezi, et al., Antiviral activity of hydroalcoholic extract from Eupatorium perfoliatum L. against the attachment of influenza A virus, J. Ethnopharmacol. 188 (2016) 144-152. https://doi.org/10.1016/j.jep.2016.05.016.

[80]

S.J. Kim, J.W. Lee, Y.G. Eun, et al., Pretreatment with a grape seed proanthocyanidin extract downregulates proinflammatory cytokine expression in airway epithelial cells infected with respiratory syncytial virus, Mol. Med. Rep. 19 (2019) 3330-3336. https://doi.org/10.3892/mmr.2019.9967.

[81]

M.R. Loizzo, A.M. Saab, R. Tundis, et al., Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species, Chem. Biodivers. 5 (2008) 461-470. https://doi.org/10.1002/cbdv.200890045.

[82]

J. Reichling, P. Schnitzler, U. Suschke, et al., Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties--an overview, Forsch Komplementmed. 16 (2009) 79-90. https://doi.org/10.1159/000207196.

[83]

S. Soares, E. Brandao, I. Garcia-Estevez, et al., Interaction between ellagitannins and salivary proline-rich proteins, J. Agric. Food Chem. 67 (2019) 9579-9590. https://doi.org/10.1021/acs.jafc.9b02574.

[84]

F. Zahedipour, S.A. Hosseini, T. Sathyapalan, et al., Potential effects of curcumin in the treatment of COVID-19 infection, Phytother. Res. 34(11) (2020) 2911-2920. https://doi.org/10.1002/ptr.6738.

[85]

K.S. Ahn, G. Sethi, A.K. Jain, et al., Genetic deletion of NAD(P)H: quinone oxidoreductase 1 abrogates activation of nuclear factor-kappaB, IkappaBalpha kinase, c-Jun N-terminal kinase, Akt, p38, and p44/42 mitogen-activated protein kinases and potentiates apoptosis, J. Biol. Chem. 281 (2006) 19798-19808. https://doi.org/10.1074/jbc.M601162200.

[86]

D. Mathew, W.L. Hsu, Antiviral potential of curcumin, J. Funt. Foods 40 (2018) 692-699.

[87]

D. Praditya, L. Kirchhoff, J. Bruning, et al., Anti-infective properties of the golden spice curcumin, Front. Microbiol. 10 (2019) 912. https://doi.org/10.3389/fmicb.2019.00912.

[88]

Y.R. Puar, M.K. Shanmugam, L. Fan, et al., Evidence for the involvement of the master transcription factor NF-kappaB in cancer initiation and progression, Biomedicines 6 (2018) 82. https://doi.org/10.3390/biomedicines6030082.

[89]

C.C. Wen, Y.H. Kuo, J.T. Jan, et al., Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus, J. Med. Chem. 50 (2007) 4087-4095. https://doi.org/10.1021/jm070295s.

[90]

D.S. Hui, N. Lee, P.K. Chan, et al., The role of adjuvant immunomodulatory agents for treatment of severe influenza, Antiviral Res. 150 (2018) 202-216. https://doi.org/10.1016/j.antiviral.2018.01.002.

[91]

J.M. Nicholls, L.L. Poon, K.C. Lee, et al., Lung pathology of fatal severe acute respiratory syndrome, Lancet 361 (2003) 1773-1778. https://doi.org/10.1016/s0140-6736(03)13413-7.

[92]

M.Z. Tay, C.M. Poh, L. Renia, et al., The trinity of COVID-19: immunity, inflammation and intervention, Nat. Rev. Immunol. 20 (2020) 363-374. https://doi.org/10.1038/s41577-020-0311-8.

[93]

P. Conti, G. Ronconi, A. Caraffa, et al., Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies, J. Biol. Regul. Homeost Agents. 34 (2020) 327-331. https://doi.org/10.23812/CONTI-E.

[94]

R. Furst, I. Zundorf, Plant-derived anti-inflammatory compounds: hopes and disappointments regarding the translation of preclinical knowledge into clinical progress, Mediators Inflamm. 2014 (2014) 146832. https://doi.org/10.1155/2014/146832.

[95]

S. Fabris, F. Momo, G. Ravagnan, et al., Antioxidant properties of resveratrol and piceid on lipid peroxidation in micelles and monolamellar liposomes, Biophys. Chem. 135 (2008) 76-83. https://doi.org/10.1016/j.bpc.2008.03.005.

[96]

C. Sansone, C. Brunet, D.M. Noonan, et al., Marine algal antioxidants as potential vectors for controlling viral diseases, Antioxidants (Basel) 9 (2020) 392. https://doi.org/10.3390/antiox9050392.

[97]

H. Malve, Exploring the ocean for new drug developments: marine pharmacology, J. Pharm. Bioallied Sci. 8 (2016) 83-91. https://doi.org/10.4103/0975-7406.171700.

[98]

V.H. Ferreira, A. Nazli, S.E. Dizzell, et al., The anti-inflammatory activity of curcumin protects the genital mucosal epithelial barrier from disruption and blocks replication of HIV-1 and HSV-2, PLoS One 10 (2015) e0124903. https://doi.org/10.1371/journal.pone.0124903.

[99]

A. Barzegar, A.A. Moosavi-Movahedi, Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin, PLoS One 6 (2011) e26012. https://doi.org/10.1371/journal.pone.0026012.

[100]

S. Rong, Y. Zhao, W. Bao, et al., Curcumin prevents chronic alcohol-induced liver disease involving decreasing ROS generation and enhancing antioxidative capacity, Phytomedicine 19 (2012) 545-550. https://doi.org/10.1016/j.phymed.2011.12.006.

[101]

D. Wichmann, J.P. Sperhake, M. Lutgehetmann, et al., Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study, Ann. Intern. Med. 173(4) (2020) 268-227. https://doi.org/10.7326/M20-2003.

[102]

Y. Yang, S. Islam, J. Wang, et al., Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): a review and perspective, Int. J. Biol. Sci. 16 (2020) 1708-1717. https://doi.org/10.7150/ijbs.45538.

[103]
National Health Commission of the People's Republic of China. Transcript of press conference in 17, February, 2020. http://www.nhc.gov.cn/xcs/s3574/202002/f12a62d10c2a48c6895cedf2faea6e1f.shtml.
[104]

F. Infusino, M. Marazzato, M. Mancone, et al., Diet supplementation, probiotics, and nutraceuticals in SARS-CoV-2 infection: a scoping review, Nutrients 12 (2020) 1718. https://doi.org/10.3390/nu12061718.

[105]

L. Subedi, S. Tchen, B.P. Gaire, et al., Adjunctive nutraceutical therapies for COVID-19, Int. J. Mol. Sci. 22 (2021) 1963. https://doi.org/10.3390/ijms22041963.

[106]

N. Pastor, M.C. Collado, P. Manzoni, Phytonutrient and nutraceutical action against COVID-19: current review of characteristics and benefits, Nutrients 13 (2021) 464. https://doi.org/10.3390/nu13020464.

[107]

T.Y. Chen, D.Y. Chen, H.W. Wen, et al., Inhibition of enveloped viruses infectivity by curcumin, PLoS One 8 (2013) e62482. https://doi.org/10.1371/journal.pone.0062482.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 02 April 2021
Revised: 16 April 2021
Accepted: 29 May 2021
Published: 02 June 2022
Issue date: September 2022

Copyright

© 2022 Beijing Academy of Food Sciences.

Acknowledgements

Acknowledgement

This research received no external funding.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return