Journal Home > Volume 11 , Issue 5

Studies have determined the immunomodulatory activities of cell-surface polysaccharides of lactic acid bacteria (LAB) and Bacteroides; however, the mechanisms, synthesis, regulation, structure, and functional links have not been systematically discussed. We first introduce the structure of the capsular polysaccharides (CPSs) of commonly studied probiotics and Bacteroides. Wzx-Wzy dependent and ATP-binding cassette (ABC) transporter-dependent pathways are the two main biosynthesis and secretion of CPS pathways. The genes known to be associated with these two pathways are mainly those associated with priming glycosyltransferase (pGT); a variable number of genes encoding for different glycosyl transferases (GTs); Wzx/Wzy-encoding enzymes related to flippases and polymerases; and ABC-transporter genes. In addition, the effects of CPSs on host immunity as well as their related underlying mechanisms are described. Surface polysaccharides on probiotics can serve as a mask to aid in their escape from attacks from the host's immune system. In turn, they also exhibit immunomodulatory activities, such as strengthening the functions of macrophages, promoting the maturation of antigen-presenting cells, and inducing regulatory T cells. All of these effects of cell-surface polysaccharides exhibit their significant protective properties in immunocompromised diseases, such as colitis, arthritis, and dermatitis. Finally, we focused on their structure and functional links.


menu
Abstract
Full text
Outline
About this article

Capsular polysaccarides of probiotics and their immunomodulatory roles

Show Author's information Jing Lia,bSaisai Fenga,bLeilei Yua,bJianxin Zhaoa,bFengwei Tiana,bWei Chena,b,cQixiao Zhaia,b( )
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Abstract

Studies have determined the immunomodulatory activities of cell-surface polysaccharides of lactic acid bacteria (LAB) and Bacteroides; however, the mechanisms, synthesis, regulation, structure, and functional links have not been systematically discussed. We first introduce the structure of the capsular polysaccharides (CPSs) of commonly studied probiotics and Bacteroides. Wzx-Wzy dependent and ATP-binding cassette (ABC) transporter-dependent pathways are the two main biosynthesis and secretion of CPS pathways. The genes known to be associated with these two pathways are mainly those associated with priming glycosyltransferase (pGT); a variable number of genes encoding for different glycosyl transferases (GTs); Wzx/Wzy-encoding enzymes related to flippases and polymerases; and ABC-transporter genes. In addition, the effects of CPSs on host immunity as well as their related underlying mechanisms are described. Surface polysaccharides on probiotics can serve as a mask to aid in their escape from attacks from the host's immune system. In turn, they also exhibit immunomodulatory activities, such as strengthening the functions of macrophages, promoting the maturation of antigen-presenting cells, and inducing regulatory T cells. All of these effects of cell-surface polysaccharides exhibit their significant protective properties in immunocompromised diseases, such as colitis, arthritis, and dermatitis. Finally, we focused on their structure and functional links.

Keywords: Immunomodulation, Probiotics, Capsular polysaccharides, Bacteroides

References(98)

[1]

P. Ruas-Madiedo, J. Hugenholtz, P. Zoon, An overview of the functionality of exopolysaccharides produced by lactic acid bacteria, Int. Dairy J. 12(2/3) (2002) 163-171. https://doi.org/10.1016/S0958-6946(01)00160-1

[2]

P.J. Looijesteijn, L. Trapet, E. de Vries, et al., Physiological function of exopolysaccharides produced by Lactococcus lactis, Int. J. Food Microbiol. 64(1/2) (2001) 71-80. https://doi.org/10.1016/S0168-1605(00)00437-2

[3]

R. Weiner, S. Langille, E. Quintero, Structure, function and immunochemistry of bacterial exopolysaccharides, J. Ind. Microbiol. Blot. 15(4) (1995) 339-346. https://doi.org/10.1007/BF01569989

[4]

N. Ling, S. Forsythe, Q. Wu, et al., Insights into Cronobacter sakazakii biofilm formation and control strategies in the food industry, Engineering 6(4) (2020) 393-405. https://doi.org/10.1016/j.eng.2020.02.007

[5]

M.E. Segers, S. Lebeer, Towards a better understanding of Lactobacillus rhamnosus GG-host interactions, Microb. Cell Fact. 13(1) (2014) 1-16. https://doi.org/10.1186/1475-2859-13-S1-S7

[6]

P. Ruas-Madiedo, M. Gueimonde, A. Margolles, et al., Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus, J. Food Protect. 69(8) (2006) 2011-2015. https://doi.org/10.4315/0362-028X-69.8.2011

[7]

M.H. Wu, T.M. Pan, Y.J. Wu, et al., Exopolysaccharide activities from probiotic bifidobacterium: immunomodulatory effects (on J774A. 1 macrophages) and antimicrobial properties, Int. J. Food Microbiol. 144(1) (2010) 104-110. https://doi.org/10.1016/j.ijfoodmicro.2010.09.003

[8]

S. Li, T. Chen, F. Xu, et al., The beneficial effect of exopolysaccharides from Bifidobacterium bifidum WBIN03 on microbial diversity in mouse intestine, J. Sci. Food Agr. 94(2) (2014) 256-264. https://doi.org/10.1002/jsfa.6244

[9]

Z. Liu, Z. Zhang, L. Qiu, et al., Characterization and bioactivities of the exopolysaccharide from a probiotic strain of Lactobacillus plantarum WLPL04, J. Dairy Sci. 100(9) (2017) 6895-6905. https://doi.org/10.3168/jds.2016-11944

[10]

J.O. Kim, S. Romero-Steiner, U.B.S. Sørensen, et al., Relationship between cell surface carbohydrates and intrastrain variation on opsonophagocytosis of Streptococcus pneumoniae, Infect. Immun. 67(5) (1999) 2327-2333. https://doi.org/10.1128/IAI.67.5.2327-2333.1999

[11]

J.S. Nanra, S.M. Buitrago, S. Crawford, et al., Capsular polysaccharides are an important immune evasion mechanism for Staphylococcus aureus, Hum. vacc. Immuno. Ther. 9(3) (2013) 480-487. https://doi.org/10.4161/hv.23223

[12]
C.J. Lee, L.H. Lee, C.S. Lu, et al., Bacterial polysaccharides as vaccines—immunity and chemical characterization, in: The Molecular Immunology of Complex Carbohydrates—2, Springer, 2001, pp. 453-471
DOI
[13]

C. Cao, Y. Li, C. Wang, et al., Purification, characterization and antitumor activity of an exopolysaccharide produced by Bacillus velezensis SN-1, Int. J. Biol. Macromol. 156 (2020) 354-361. https://doi.org/10.1016/j.ijbiomac.2020.04.024

[14]

M. Nagaoka, S. Hashimoto, T. Watanabe, et al., Anti-ulcer effects of lactic acid bacteria and their cell wall polysaccharides, Bio. Pharm. Bull. 17(8) (1994) 1012-1017

[15]

H. Tsuda, K. Hara, T. Miyamoto, Binding of mutagens to exopolysaccharide produced by Lactobacillus plantarum mutant strain 301102S, J. Dairy Sci. 91(8) (2008) 2960-2966. https://doi.org/10.3168/jds.2007-0538

[16]

B. Yang, H. Chen, H. Gao, et al., Bifidobacterium breve CCFM683 could ameliorate DSS-induced colitis in mice primarily via conjugated linoleic acid production and gut microbiota modulation, J. Funct. Foods 49 (2018) 61-72. https://doi.org/10.1016/j.jff.2018.08.014

[17]

H. Maeda, X. Zhu, K. Omura, et al., Effects of an exopolysaccharide (kefiran) on lipids, blood pressure, blood glucose, and constipation, Biofactors 22(1/2/3/4) (2004) 197-200. https://doi.org/10.1002/biof.5520220141

[18]

X. You, Z. Li, K. Ma, et al., Structural characterization and immunomodulatory activity of an exopolysaccharide produced by Lactobacillus helveticus LZ-R-5, Carbohyd. Polym. 235 (2020) 115977. https://doi.org/10.1016/j.carbpol.2020.115977

[19]

R. Verma, C. Lee, E.J. Jeun, et al., Cell surface polysaccharides of Bifidobacterium bifidum induce the generation of Foxp3+ regulatory T cells, Sci. Immunol. 3(28) (2018) eaat6975. https://doi.org/10.1126/sciimmunol.aat6975

[20]

C. Ramakrishna, M. Kujawski, H. Chu, et al., Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis, Nat. Commun. 10(1) (2019) 1-13. https://doi.org/10.1038/s41467-019-09884-6

[21]

S.K. Mazmanian, J.L. Round, D.L. Kasper, A microbial symbiosis factor prevents intestinal inflammatory disease, Nature 453(7195) (2008) 620-625. https://doi.org/10.1038/nature07008

[22]

F. Freitas, V.D. Alves, M.A. Reis, Advances in bacterial exopolysaccharides: from production to biotechnological applications, Trends Biotechnol. 29(8) (2011) 388-398. https://doi.org/10.1016/j.tibtech.2011.03.008

[23]

S. Badel, T. Bernardi, P. Michaud, New perspectives for Lactobacilli exopolysaccharides, Biotechnol. Adv. 29(1) (2011) 54-66. https://doi.org/10.1016/j.biotechadv.2010.08.011

[24]

A.A. Zeidan, V.K. Poulsen, T. Janzen, et al., Polysaccharide production by lactic acid bacteria: from genes to industrial applications, FEMS Microbiol. Rev. 41(Supp_1) (2017) S168-S200. https://doi.org/10.1093/femsre/fux017

[25]

C. Hidalgo-Cantabrana, P. López, M. Gueimonde, et al., Immune modulation capability of exopolysaccharides synthesised by lactic acid bacteria and bifidobacteria, Probiotics. Antimicro. 4(4) (2012) 227-237. https://doi.org/10.1007/s12602-012-9110-2

[26]

C. Hidalgo-Cantabrana, B. Sánchez, C. Milani, et al., Genomic overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp., Appl. Environ. Microb. 80(1) (2014) 9-18. https://doi.org/10.1128/AEM.02977-13

[27]

J. Laiño, J. Villena, P. Kanmani, et al., Immunoregulatory effects triggered by lactic acid bacteria exopolysaccharides: new insights into molecular interactions with host cells, Microorganisms 4(3) (2016) 27. https://doi.org/10.3390/microorganisms4030027

[28]

S.K. Mazmanian, D.L. Kasper, The love-hate relationship between bacterial polysaccharides and the host immune system, Nat. Rev. Immunol. 6(11) (2006) 849-858. https://doi.org/10.1038/nri1956

[29]

S.A. Hsieh, P.M. Allen, Immunomodulatory roles of polysaccharide capsules in the intestine, Front. Immunol. 11 (2020) 690. https://doi.org/10.3389/fimmu.2020.00690

[30]

M. Staaf, Z. Yang, G. Widmalm, Structural elucidation of the viscous exopolysaccharide produced by Lactobacillus helveticus Lb161, Carbohyd. Res. 326(2) (2000) 113-119. https://doi.org/10.1016/S0008-6215(00)00027-6

[31]

L.P. Harding, V.M. Marshall, Y. Hernandez, et al., Structural characterisation of a highly branched exopolysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB2074, Carbohyd. Res. 340(6) (2005) 1107-1111. https://doi.org/10.1016/j.carres.2005.01.038

[32]

W. Tang, M. Dong, W. Wang, et al., Structural characterization and antioxidant property of released exopolysaccharides from Lactobacillus delbrueckii ssp. bulgaricus SRFM-1, Carbohyd. Polym. 173 (2017) 654-664. https://doi.org/10.1016/j.carbpol.2017.06.039

[33]

L. Shao, Z. Wu, H. Zhang, et al., Partial characterization and immunostimulatory activity of exopolysaccharides from Lactobacillus rhamnosus KF5, Carbohyd. Polym. 107 (2014) 51-56. https://doi.org/10.1016/j.carbpol.2014.02.037

[34]

L. Ai, Q. Guo, H. Ding, et al., Structure characterization of exopolysaccharides from Lactobacillus casei LC2W from skim milk, Food Hydrocoll. 56 (2016) 134-143. https://doi.org/10.1016/j.foodhyd.2015.10.023

[35]

L. Ai, H. Zhang, B. Guo, et al., Preparation, partial characterization and bioactivity of exopolysaccharides from Lactobacillus casei LC2W, Carbohyd. Polym. 74(3) (2008) 353-357. https://doi.org/10.1016/j.carbpol.2008.03.004

[36]

Q. Ren, Y. Tang, L. Zhang, et al., Exopolysaccharide produced by Lactobacillus casei promotes the differentiation of CD4+ T cells into Th17 cells in BALB/c mouse Peyer's Patches in vivo and in vitro, J. Agr. Food Chem. 68(9) (2020) 2664-2672. https://doi.org/10.1021/acs.jafc.9b07987

[37]

S. Amiri, R.R. Mokarram, M.S. Khiabani, et al., Exopolysaccharides production by Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12: optimization of fermentation variables and characterization of structure and bioactivities, Int. J Biol. Macromol. 123 (2019) 752-765. https://doi.org/10.1016/j.ijbiomac.2018.11.084

[38]

L. Zhang, C. Liu, D. Li, et al., Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88, Int. J. Biol. Macromol. 54 (2013) 270-275. https://doi.org/10.1016/j.ijbiomac.2012.12.037

[39]

J. Wang, X. Zhao, Z. Tian, et al., Characterization of an exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibet Kefir, Carbohyd. Polym. 125 (2015) 16-25. https://doi.org/10.1016/j.carbpol.2015.03.003

[40]

Z. Zhang, Z. Liu, X. Tao, et al., Characterization and sulfated modification of an exopolysaccharide from Lactobacillus plantarum ZDY2013 and its biological activities, Carbohyd. Polym. 153 (2016) 25-33. https://doi.org/10.1016/j.carbpol.2016.07.084

[41]

K. Zhou, Y. Zeng, M. Yang, et al., Production, purification and structural study of an exopolysaccharide from Lactobacillus plantarum BC-25, Carbohyd. Polym. 144 (2016) 205-214. https://doi.org/10.1016/j.carbpol.2016.02.067

[42]

X. Zhou, W. Qi, T. Hong, et al., Exopolysaccharides from Lactobacillus plantarum NCU116 regulate intestinal barrier function via STAT3 signaling pathway, J. Agr. Food Chem. 66(37) (2018) 9719-9727. https://doi.org/10.1021/acs.jafc.8b03340

[43]

Y. Tang, W. Dong, K. Wan, et al., Exopolysaccharide produced by Lactobacillus plantarum induces maturation of dendritic cells in BALB/c mice, PLoS One 10(11) (2015) e0143743. https://doi.org/10.1371/journal.pone.0143743

[44]

W. Li, X. Xia, W. Tang, et al., Structural characterization and anticancer activity of cell-bound exopolysaccharide from Lactobacillus helveticus MB2-1, J. Agr. Food Chem. 63(13) (2015) 3454-3463. https://doi.org/10.1021/acs.jafc.5b01086

[45]

E. Säwén, X. Zhang, Z. Yang, et al., Structural analysis of the exopolysaccharide produced by Streptococcus thermophilus ST1 solely by NMR spectroscopy, J. Biomol. Nmr. 47(2) (2010) 125-134. https://doi.org/10.1007/s10858-010-9413-0

[46]

J. Zhang, Y. Cao, J. Wang, et al., Physicochemical characteristics and bioactivities of the exopolysaccharide and its sulphated polymer from Streptococcus thermophilus GST-6, Carbohyd. Polym. 146 (2016) 368-375. https://doi.org/10.1016/j.carbpol.2016.03.063

[47]

F. Altmann, P. Kosma, A. O'Callaghan, et al., Genome analysis and characterisation of the exopolysaccharide produced by Bifidobacterium longum subsp. longum 35624TM, PLoS One 11(9) (2016) e0162983. https://doi.org/10.1371/journal.pone.0162983

[48]

H. Baumann, A. Tzianabos, J. Brisson, et al., Structural elucidation of two capsular polysaccharides from one strain of Bacteroides fragilis using high-resolution NMR spectroscopy, Biochemistry 31(16) (1992) 4081-4089. https://doi.org/10.1021/bi00131a026

[49]

A.O. Tzianabos, A.B. Onderdonk, D.F. Zaleznik, et al., Structural characteristics of polysaccharides that induce protection against intra-abdominal abscess formation, Infect. Immun. 62(11) (1994) 4881-4886. https://doi.org/10.1128/IAI.62.11.4881-4886.1994

[50]

A. Tahoun, H. Masutani, H. El-Sharkawy, et al., Capsular polysaccharide inhibits adhesion of Bifidobacterium longum 105-A to enterocyte-like Caco-2 cells and phagocytosis by macrophages, Gut Pathog. 9(1) (2017) 27. https://doi.org/10.1186/s13099-017-0177-x

[51]

S. Fanning, L.J. Hall, M. Cronin, et al., Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection, P. Natl. Acad. Sci. U.S.A. 109(6) (2012) 2108-2113. https://doi.org/10.1073/pnas.1115621109

[52]

E. Yasuda, M. Serata, T. Sako, Suppressive effect on activation of macrophages by Lactobacillus casei strain Shirota genes determining the synthesis of cell wall-associated polysaccharides, Appl. Environ. Microb. 74(15) (2008) 4746-4755. https://doi.org/10.1128/AEM.02783-08

[53]

J. Schmid, V. Sieber, B. Rehm, Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies, Front. Microbiol. 6 (2015) 496. https://doi.org/10.3389/fmicb.2015.00496

[54]

X. Song, Z. Xiong, L. Kong, et al., Relationship between putative eps genes and production of exopolysaccharide in Lactobacillus casei LC2W, Front. Microbiol. 9 (2018) 1882. https://doi.org/10.3389/fmicb.2018.01882

[55]

C.M. Krinos, M.J. Coyne, K.G. Weinacht, et al., Extensive surface diversity of a commensal microorganism by multiple DNA inversions, Nature 414(6863) (2001) 555-558. https://doi.org/10.1038/35107092

[56]

M. Chatzidaki-Livanis, K.G. Weinacht, L.E. Comstock, Trans locus inhibitors limit concomitant polysaccharide synthesis in the human gut symbiont Bacteroides fragilis, P. Natl. Acad. Sci. U.S.A. 107(26) (2010) 11976-11980. https://doi.org/10.1073/pnas.1005039107

[57]

M.J. Coyne, L.E. Comstock, Niche-specific features of the intestinal Bacteroidales, J. Bacteriol. 190(2) (2008) 736-742. https://doi.org/10.1128/JB.01559-07

[58]

J. Xu, M.K. Bjursell, J. Himrod, et al., A genomic view of the human-Bacteroides thetaiotaomicron symbiosis, Science 299(5615) (2003) 2074-2076. https://doi.org/10.1126/science.1080029

[59]

N.T. Porter, P. Canales, D.A. Peterson, et al., A subset of polysaccharide capsules in the human symbiont Bacteroides thetaiotaomicron promote increased competitive fitness in the mouse gut, Cell. Host. Microbe. 22(4) (2017) 494-506. https://doi.org/10.1016/j.chom.2017.08.020

[60]

M.J. Coyne, K.G. Weinacht, C.M. Krinos, et al., Mpi recombinase globally modulates the surface architecture of a human commensal bacterium, P. Natl. Acad. Sci. U.S.A. 100(18) (2003) 10446-10451. https://doi.org/10.1016/j.chom.2017.08.020

[61]

M. Chatzidaki-Livanis, M.J. Coyne, L.E. Comstock, A family of transcriptional antitermination factors necessary for synthesis of the capsular polysaccharides of Bacteroides fragilis, J. Bacteriol. 191(23) (2009) 7288-7295. https://doi.org/10.1128/JB.00500-09

[62]

C.P. Neff, M.E. Rhodes, K.L. Arnolds, et al., Diverse intestinal bacteria contain putative zwitterionic capsular polysaccharides with anti-inflammatory properties, Cell. Host. Microbe. 20(4) (2016) 535-547. https://doi.org/10.1016/j.chom.2016.09.002

[63]

L. Cuthbertson, I.L. Mainprize, J.H. Naismith, et al., Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria, Microbiol. Mol. Biol. R. 73(1) (2009) 155-177. https://doi.org/10.1128/MMBR.00024-08

[64]

P. Ruas-Madiedo, M. Gueimonde, F. Arigoni, et al., Bile affects the synthesis of exopolysaccharides by Bifidobacterium animalis, Appl. Environ. Microb. 75(4) (2009) 1204-1207. https://doi.org/10.1128/AEM.00908-08

[65]

C. Hidalgo-Cantabrana, B. Sï, D. Moine, et al., Insights into the ropy phenotype of the exopolysaccharide-producing strain Bifidobacterium animalis subsp. lactis A1dOxR, Appl. Environ. Microb. 79(12) (2013) 3870-3874. https://doi.org/10.1128/AEM.00633-13

[66]

S. Lebeer, T.L. Verhoeven, G. Francius, et al., Identification of a gene cluster for the biosynthesis of a long, galactose-rich exopolysaccharide in Lactobacillus rhamnosus GG and functional analysis of the priming glycosyltransferase, Appl. Environ. Microb. 75(11) (2009) 3554-3563. https://doi.org/10.1128/AEM.02919-08

[67]

D.M. Remus, R. van Kranenburg, I.I. van Swam, et al., Impact of 4 Lactobacillus plantarum capsular polysaccharide clusters on surface glycan composition and host cell signaling, Microb. Cell. Fact. 11(1) (2012) 1-10. https://doi.org/10.1186/1475-2859-11-149

[68]

L.M. Willis, C. Whitfield, Structure, biosynthesis, and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways, Carbohyd. Res. 378 (2013) 35-44. https://doi.org/10.1016/j.carres.2013.05.007

[69]

G.A. Belogurov, R.A. Mooney, V. Svetlov, et al., Functional specialization of transcription elongation factors, EMBO J. 28(2) (2009) 112-122. https://doi.org/10.1038/emboj.2008.268

[70]

W. Ren, Y. Xia, G. Wang, et al., Bioactive exopolysaccharides from a S. thermophilus strain: screening, purification and characterization, Int. J. Biol. Macromol. 86 (2016) 402-407. https://doi.org/10.1016/j.ijbiomac.2016.01.085

[71]

Y. Tang, W. Dong, K. Wan, et al., Exopolysaccharide produced by Lactobacillus plantarum induces maturation of dendritic cells in BALB/c mice, PLoS One 10(11) (2015) e0143743. https://doi.org/10.1371/journal.pone.0143743

[72]

M. Nikolic, P. López, I. Strahinic, et al., Characterisation of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11 and its non-EPS producing derivative strains as potential probiotics, Int. J. Food Microbiol. 158(2) (2012) 155-162. https://doi.org/10.1016/j.ijfoodmicro.2012.07.015

[73]

E. Schiavi, M. Gleinser, E. Molloy, et al., The surface-associated exopolysaccharide of Bifidobacterium longum 35624 plays an essential role in dampening host proinflammatory responses and repressing local Th17 responses, Appl. Environ. Microb. 82(24) (2016) 7185-7196. https://doi.org/10.1128/AEM.02238-16

[74]

S.K. Mazmanian, C.H. Liu, A.O. Tzianabos, et al., An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system, Cell 122(1) (2005) 107-118. https://doi.org/10.1016/j.cell.2005.05.007

[75]

R. Yu, F. Zuo, H. Ma, et al., Exopolysaccharide-producing Bifidobacterium adolescentis strains with similar adhesion property induce differential regulation of inflammatory immune response in Treg/Th17 axis of DSS-colitis mice, Nutrients 11(4) (2019) 782. https://doi.org/10.3390/nu11040782

[76]

J.L. Round, S.K. Mazmanian, Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota, P. Natl. Acad. Sci. U.S.A. 107(27) (2010) 12204-12209. https://doi.org/10.1073/pnas.0909122107

[77]

S. Hsieh, N.T. Porter, D.L. Donermeyer, et al., Polysaccharide capsules equip the human symbiont Bacteroides thetaiotaomicron to modulate immune responses to a dominant antigen in the intestine, J. Immunol. 204(4) (2020) 1035-1046. https://doi.org/10.4049/jimmunol.1901206

[78]

A. Mantovani, P. Allavena, A. Sica, et al., Cancer-related inflammation, Nature 454(7203) (2008) 436-444. https://doi.org/10.1038/nature07205

[79]

W.E. Zahran, S.M. Elsonbaty, F.S. Moawed, Lactobacillus rhamnosus ATCC 7469 exopolysaccharides synergizes with low level ionizing radiation to modulate signaling molecular targets in colorectal carcinogenesis in rats, Biomed. Pharmacother. 92 (2017) 384-393. https://doi.org/10.1016/j.biopha.2017.05.089

[80]

N.M. El-Deeb, A.M. Yassin, L.A. Al-Madboly, et al., A novel purified Lactobacillus acidophilus 20079 exopolysaccharide, LA-EPS-20079, molecularly regulates both apoptotic and NF-κB inflammatory pathways in human colon cancer, Microb. Cell. Fact. 17(1) (2018) 1-15. https://doi.org/10.1186/s12934-018-0877-z

[81]

Q. Wang, R.M. McLoughlin, B.A. Cobb, et al., A bacterial carbohydrate links innate and adaptive responses through toll-like receptor 2, J. Exp. Med. 203(13) (2006) 2853-2863. https://doi.org/10.1084/jem.20062008

[82]

D. Erturk-Hasdemir, S.F. Oh, N.A. Okan, et al., Symbionts exploit complex signaling to educate the immune system, P. Natl. Acad. Sci. U.S.A. 116(52) (2019) 26157-26166. https://doi.org/10.1073/pnas.1915978116

[83]

L. Arbibe, J.P. Mira, N. Teusch, et al., Toll-like receptor 2–mediated NF-κB activation requires a Rac1-dependent pathway, Nat. Immunol. 1(6) (2000) 533-540. https://doi.org/10.1038/82797

[84]

S. Santos-Sierra, S.D. Deshmukh, J. Kalnitski, et al., Mal connects TLR2 to PI3Kinase activation and phagocyte polarization, Embo. J. 28(14) (2009) 2018-2027. https://doi.org/10.1038/emboj.2009.158

[85]

C.A. Grimes, R.S. Jope, CREB DNA binding activity is inhibited by glycogen synthase kinase-3β and facilitated by lithium, J. Neurochem. 78(6) (2001) 1219-1232. https://doi.org/10.1046/j.1471-4159.2001.00495.x

[86]

H.E. Jones, P.R. Taylor, E. McGreal, et al., The contribution of naturally occurring IgM antibodies, IgM cross-reactivity and complement dependency in murine humoral responses to pneumococcal capsular polysaccharides, Vaccine 27(42) (2009) 5806-5815. https://doi.org/10.1016/j.vaccine.2009.07.063

[87]

W. Paik, F. Alonzo, K.L. Knight, Suppression of Staphylococcus aureus superantigen-independent interferon gamma response by a probiotic polysaccharide, Infect. Immun. 88(4) (2020). https://doi.org/10.1128/IAI.00661-19

[88]

R. Medzhitov, Recognition of microorganisms and activation of the immune response, Nature 449(7164) (2007) 819-826. https://doi.org/10.1038/nature06246

[89]

S. Makino, S. Ikegami, H. Kano, et al., Immunomodulatory effects of polysaccharides produced by Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1, J Dairy Sci. 89(8) (2006) 2873-2881. https://doi.org/10.3168/jds.S0022-0302(06)72560-7

[90]

J. Wang, X. Fang, T. Wu, et al., In vitro immunomodulatory effects of acidic exopolysaccharide produced by Lactobacillus planetarium JLAU103 on RAW264. 7 macrophages, Int. J. Biol. Macromol. 156 (2020) 1308-1315. https://doi.org/10.1016/j.ijbiomac.2019.11.169

[91]

J.S. Shin, J.Y. Jung, S.G. Lee, et al., Exopolysaccharide fraction from Pediococcus pentosaceus KFT 18 induces immunostimulatory activity in macrophages and immunosuppressed mice, J. Appl. Microbiol. 120(5) (2016) 1390-1402, https://doi.org/10.1111/jam.13099

[92]

C. Bleau, A. Monges, K. Rashidan, et al., Intermediate chains of exopolysaccharides from Lactobacillus rhamnosus RW-9595M increase IL-10 production by macrophages, J. Appl. Microbiol. 108(2) (2010) 666-675. https://doi.org/10.1111/j.1365-2672.2009.04450.x

[93]

M.R. Van Calsteren, C. Pau-Roblot, A. Bégin, et al., Structure determination of the exopolysaccharide produced by Lactobacillus rhamnosus strains RW-9595M and R, Biochem. J. 363(1) (2002) 7-17. https://doi.org/10.1042/0264-6021:3630007

[94]

S. Leivers, C. Hidalgo-Cantabrana, G. Robinson, et al., Structure of the high molecular weight exopolysaccharide produced by Bifidobacterium animalis subsp. lactis IPLA-R1 and sequence analysis of its putative eps cluster, Carbohyd. Res. 346(17) (2011) 2710-2717. https://doi.org/10.1016/j.carres.2011.09.010

[95]

P. Ruas-Madiedo, M. Medrano, N. Salazar, et al., Exopolysaccharides produced by Lactobacillus and Bifidobacterium strains abrogate in vitro the cytotoxic effect of bacterial toxins on eukaryotic cells, J. Appl. Microbiol. 109(6) (2010) 2079-2086. https://doi.org/10.1111/j.1365-2672.2010.04839.x

[96]

L.E. Comstock, D.L. Kasper, Bacterial glycans: key mediators of diverse host immune responses, Cell 126(5) (2006) 847-850. https://doi.org/10.1016/j.cell.2006.08.021

[97]

Y.C. Chen, Y.J. Wu, C.Y. Hu, Monosaccharide composition influence and immunomodulatory effects of probiotic exopolysaccharides, Int. J. Bio. Macromol. 133 (2019) 575-582. https://doi.org/10.1016/j.ijbiomac.2019.04.109

[98]

A.O. Tzianabos, A.B. Onderdonk, B. Rosner, et al., Structural features of polysaccharides that induce intra-abdominal abscesses, Science 262(5132) (1993) 416-419. https://doi.org/10.1126/science.8211161

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 18 January 2021
Revised: 19 February 2021
Accepted: 10 March 2021
Published: 02 June 2022
Issue date: September 2022

Copyright

© 2022 Beijing Academy of Food Sciences.

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China Program [31871773 and 31820103010]; the Key Scientific and Technological Research Projects in the Key Areas of the Xinjiang Production and Construction Corps [2018AB010]; National First-Class Discipline Program of Food Science and Technology [JUFSTR20180102]; the BBSRC Newton Fund Joint Centre Award; and Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return