Journal Home > Volume 11 , Issue 5

Polysaccharide was a class of macromolecular substance with various bioactive functions. Gut symbiotic microorganisms could utilize the polysaccharides from various sources, thus have important impact on human health. Bacteroides represented one of the dominant colonizers in the human gut. The utilization of polysaccharide by Bacteroides was important for supporting the function and stability of gut microbiota. After the degradation of polysaccharides by Bacteroides, gut microbes could ferment the monosaccharides and oligosaccharides degraded from polysaccharides into some metabolites, such as short-chain fatty acids (SCFAs), amino acids, etc. Among the metabolites, the SCFAs could have beneficial effects on gut health. This review summarized the niches of Bacteroides among gut microbiota, and also described the gene clusters and membrane proteins involved in the utilization processes of polysaccharide by gut Bacteroides. SCFAs could act as energy substrates for intestinal epithelial cells, inhibit histone deacetylases and activate G protein-coupled receptors. In addition, the future perspectives in investigating new degradation pathways for polysaccharide, and using polysaccharides or their metabolites as therapeutic approaches for diseases mediated by the gut dysbiosis were also provided.


menu
Abstract
Full text
Outline
About this article

Bacteroides utilization for dietary polysaccharides and their beneficial effects on gut health

Show Author's information Jiaobo ChengaJielun HuaFang GengbShaoping Niea( )
State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Abstract

Polysaccharide was a class of macromolecular substance with various bioactive functions. Gut symbiotic microorganisms could utilize the polysaccharides from various sources, thus have important impact on human health. Bacteroides represented one of the dominant colonizers in the human gut. The utilization of polysaccharide by Bacteroides was important for supporting the function and stability of gut microbiota. After the degradation of polysaccharides by Bacteroides, gut microbes could ferment the monosaccharides and oligosaccharides degraded from polysaccharides into some metabolites, such as short-chain fatty acids (SCFAs), amino acids, etc. Among the metabolites, the SCFAs could have beneficial effects on gut health. This review summarized the niches of Bacteroides among gut microbiota, and also described the gene clusters and membrane proteins involved in the utilization processes of polysaccharide by gut Bacteroides. SCFAs could act as energy substrates for intestinal epithelial cells, inhibit histone deacetylases and activate G protein-coupled receptors. In addition, the future perspectives in investigating new degradation pathways for polysaccharide, and using polysaccharides or their metabolites as therapeutic approaches for diseases mediated by the gut dysbiosis were also provided.

Keywords: Degradation, Short-chain fatty acids, Polysaccharides, Bacteroides, Gut health

References(113)

[1]

A.B. Hall, A.C. Tolonen, R.J. Xavier, Human genetic variation and the gut microbiome in disease, Nat. Rev. Genet. 18 (2017) 690-699. https://doi.org/10.1038/nrg.2017.63

[2]

Y. Zou, W. Xue, G. Luo, et al., 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses, Nat. Biotechnol. 37 (2019) 179-185. https://doi.org/10.1038/s41587-018-0008-8

[3]

K.J. Portune, A. Benitez-Paez, E.M.Del Pulgar, et al., Gut microbiota, diet, and obesity-related disorders-the good, the bad, and the future challenges, Mol. Nutr. Food Res. 61 (2017). https://doi.org/10.1002/mnfr.201600252

[4]

R. Sender, S. Fuchs, R. Milo, Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans, Cell 164 (2016) 337-340. https://doi.org/10.1016/j.cell.2016.01.013

[5]

P.B. Eckburg, E.M. Bik, C.N. Bernstein, et al., Diversity of the human intestinal microbial flora, Science 308 (2005) 1635-1638. https://doi.org/10.1126/science.1110591

[6]

P. Lapebie, V. Lombard, E. Drula, et al., Bacteroidetes use thousands of enzyme combinations to break down glycans, Nat. Commun. 10 (2019) 2043. https://doi.org/10.1038/s41467-019-10068-5

[7]

D.W. Cockburn, N.M. Koropatkin, Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease, J. Mol. Biol. 428 (2016) 3230-3252. https://doi.org/10.1016/j.jmb.2016.06.021

[8]

S. Rakoff-Nahoum, K.R. Foster, L.E. Comstock, The evolution of cooperation within the gut microbiota, Nature 533 (2016) 255-259. https://doi.org/10.1038/nature17626

[9]

M. Mendis, E.C. Martens, S. Simsek, How fine structural differences of xylooligosaccharides and arabinoxylooligosaccharides regulate differential growth of bacteroides species, J. Agric. Food Chem. 66 (2018) 8398-8405. https://doi.org/10.1021/acs.jafc.8b01263

[10]

N. Terrapon, V. Lombard, H.J. Gilbert, et al., Automatic prediction of polysaccharide utilization loci in Bacteroidetes species, Bioinformatics 31 (2015) 647-655. https://doi.org/10.1093/bioinformatics/btu716

[11]

Q. Fang, J. Hu, Q. Nie, et al., Effects of polysaccharides on glycometabolism based on gut microbiota alteration, Trends Food Sci. Technol. 92 (2019) 65-70. https://doi.org/10.1016/j.tifs.2019.08.015

[12]

D.A. Muniz Pedrogo, M.D. Jensen, C.T.Van Dyke, et al., Gut microbial carbohydrate metabolism hinders weight loss in overweight adults undergoing lifestyle intervention with a volumetric diet, Mayo Clin. Proc. 93 (2018) 1104-1110. https://doi.org/10.1016/j.mayocp.2018.02.019

[13]

N.L. Zitomersky, M.J. Coyne, L.E. Comstock, Longitudinal analysis of the prevalence, maintenance, and IgA response to species of the order Bacteroidales in the human gut, Infect. Immun. 79 (2011) 2012-2020. https://doi.org/10.1128/iai.01348-10

[14]

R. Munoz, R. Rossello-Mora, R. Amann, Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov, Syst. Appl. Microbiol. 39 (2016) 281-296. https://doi.org/10.1016/j.syapm.2016.04.004

[15]

I.B. Jeffery, D.B. Lynch, P.W. O'Toole, Composition and temporal stability of the gut microbiota in older persons, ISME J. 10 (2016) 170-182. https://doi.org/10.1038/ismej.2015.88

[16]

J. Qin, R. Li, J. Raes, et al., A human gut microbial gene catalogue established by metagenomic sequencing, Nature 464 (2010) 59-65. https://doi.org/10.1038/nature08821

[17]

S. Rakoff-Nahoum, M.J. Coyne, L.E. Comstock, An ecological network of polysaccharide utilization among human intestinal symbionts, Curr. Biol. 24 (2014) 40-49. https://doi.org/10.1016/j.cub.2013.10.077

[18]

K.G. Roelofs, M.J. Coyne, R.R. Gentyala, et al., Bacteroidales secreted antimicrobial proteins target surface molecules necessary for gut colonization and mediate competition in vivo, mBio 7 (2016) e01055-16. https://doi.org/10.1128/mbio.01055-16

[19]

M. Chatzidaki-Livanis, M.J. Coyne, K.G. Roelofs, et al., Gut symbiont bacteroides fragilis secretes a eukaryotic-like ubiquitin protein that mediates intraspecies antagonism, mBio 8 (2017) e01902-17. https://doi.org/10.1128/mbio.01902-17

[20]

M. Yin, Z. Yan, X. Li, Architecture of type Ⅵ secretion system membrane core complex, Cell Res. 29 (2019) 251-253. https://doi.org/10.1038/s41422-018-0130-7

[21]

E.A. Groisman, Feedback control of two-component regulatory systems, Annu. Rev. Microbiol. 70 (2016) 103-124. https://doi.org/10.1146/annurev-micro-102215-095331

[22]

M.A. Lonetto, K.L. Brown, K.E. Rudd, et al., Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase sigma factors involved in the regulation of extracytoplasmic functions, Proc. Natl. Acad. Sci. USA 91 (1994) 7573-7577. https://doi.org/10.1073/pnas.91.16.7573

[23]

E.C. Martens, R. Roth, J.E. Heuser, et al., Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent human gut symbiont, J. Biol. Chem. 284 (2009) 18445-18457. https://doi.org/10.1074/jbc.M109.008094

[24]

J. Xu, M.K. Bjursell, J. Himrod, et al., A genomic view of the human-Bacteroides thetaiotaomicron symbiosis, Science 299 (2003) 2074-2076. https://doi.org/10.1126/science.1080029

[25]

Y.C. Chang, Y.H. Ching, C.C. Chiu, et al., TLR2 and interleukin-10 are involved in Bacteroides fragilis-mediated prevention of DSS-induced colitis in gnotobiotic mice, PLoS One 12 (2017) e0180025. https://doi.org/10.1371/journal.pone.0180025

[26]

J.L. Chan, S. Wu, A.L. Geis, et al., Non-toxigenic Bacteroides fragilis (NTBF) administration reduces bacteria-driven chronic colitis and tumor development independent of polysaccharide A, Mucosal Immunol. 12 (2019) 164-177. https://doi.org/10.1038/s41385-018-0085-5

[27]

Y.K. Lee, P. Mehrabian, S. Boyajian, et al., The protective role of Bacteroides fragilis in a murine model of colitis-associated colorectal cancer, mSphere 3 (2018) e00587-18. https://doi.org/10.1128/mSphere.00587-18

[28]

Z. Li, H. Deng, Y. Zhou, et al., Bioluminescence imaging to track Bacteroides fragilis inhibition of Vibrio parahaemolyticus infection in mice, Front. Cell. Infect. Microbiol. 7 (2017) 170. https://doi.org/10.3389/fcimb.2017.00170

[29]

T.S. Stappenbeck, L.V. Hooper, J.I. Gordon, Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells, Proc. Natl. Acad. Sci. USA 99 (2002) 15451-15455. https://doi.org/10.1073/pnas.202604299

[30]

A.G. Wexler, W.B. Schofield, P.H. Degnan, et al., Human gut Bacteroides capture vitamin B12 via cell surface-exposed lipoproteins, eLife 7 (2018) e37138. https://doi.org/10.7554/eLife.37138

[31]

M.M. Wegorzewska, R.W.P. Glowacki, S.A. Hsieh, et al., Diet modulates colonic T cell responses by regulating the expression of a Bacteroides thetaiotaomicron antigen, Sci. Immunol. 4 (2019) eaau9079. https://doi.org/10.1126/sciimmunol.aau9079

[32]

P. Ulsemer, K. Toutounian, G. Kressel, et al., Impact of oral consumption of heat-treated Bacteroides xylanisolvens DSM 23964 on the level of natural TFα-specific antibodies in human adults, Benef. Microbes 7 (2016) 485-500. https://doi.org/10.3920/BM2015.0143

[33]

N. Yoshida, T. Emoto, T. Yamashita, et al., Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis, Circulation 138 (2018) 2486-2498. https://doi.org/10.1161/CIRCULATIONAHA.118.033714

[34]

L. Garcia-Bayona, L.E. Comstock, Streamlined genetic manipulation of diverse Bacteroides and Parabacteroides isolates from the human gut microbiota, mBio 10 (2019) e01762-19. https://doi.org/10.1128/mBio.01762-19

[35]

Z.Z. Hamady, N. Scott, M.D. Farrar, et al., Treatment of colitis with a commensal gut bacterium engineered to secrete human TGF-beta1 under the control of dietary xylan, Inflamm. Bowel Dis. 17 (2011) 1925-1935. https://doi.org/10.1002/ibd.21565

[36]

J.Y. Yang, Y.S. Lee, Y. Kim, et al., Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice, Mucosal Immunol. 10 (2017) 104-116. https://doi.org/10.1038/mi.2016.42

[37]

R.E. Ley, P.J. Turnbaugh, S. Klein, et al., Microbial ecology: human gut microbes associated with obesity, Nature 444 (2006) 1022-1023. https://doi.org/10.1038/4441022a

[38]

R.C. Kaplan, Z. Wang, M. Usyk, et al., Gut microbiome composition in the Hispanic Community Health Study/Study of Latinos is shaped by geographic relocation, environmental factors, and obesity, Genome Biol. 20 (2019) 219. https://doi.org/10.1186/s13059-019-1831-z

[39]

Y. Ren, Y. Bai, Z. Zhang, et al., The preparation and structure analysis methods of natural polysaccharides of plants and fungi: a review of recent development, Molecules 24 (2019) 3122. https://doi.org/10.3390/molecules24173122

[40]

E.C. Martens, H.C. Chiang, J.I. Gordon, Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont, Cell Host Microbe 4 (2008) 447-457. https://doi.org/10.1016/j.chom.2008.09.007

[41]

K. Tamura, G.R. Hemsworth, G. Dejean, et al., Molecular mechanism by which prominent human gut Bacteroidetes utilize mixed-linkage beta-glucans, major health-promoting cereal polysaccharides, Cell Rep. 21 (2017) 417-430. https://doi.org/10.1016/j.celrep.2017.09.049

[42]

N.P. McNulty, M. Wu, A.R. Erickson, et al., Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome, PLoS Biol. 11 (2013) e1001637. https://doi.org/10.1371/journal.pbio.1001637

[43]

E.C. Martens, E.C. Lowe, H. Chiang, et al., Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts, PLoS Biol. 9 (2011) e1001221. https://doi.org/10.1371/journal.pbio.1001221

[44]

Y. Cao, E.R. Rocha, C.J. Smith, Efficient utilization of complex N-linked glycans is a selective advantage for Bacteroides fragilis in extraintestinal infections, Proc. Natl. Acad. Sci. USA 111 (2014) 12901-12906. https://doi.org/10.1073/pnas.1407344111

[45]

J. Despres, E. Forano, P. Lepercq, et al., Xylan degradation by the human gut Bacteroides xylanisolvens XB1A(T) involves two distinct gene clusters that are linked at the transcriptional level, BMC Genomics 17 (2016) 326. https://doi.org/10.1186/s12864-016-2680-8

[46]

A.S. Tauzin, E. Laville, Y. Xiao, et al., Functional characterization of a gene locus from an uncultured gut Bacteroides conferring xylo-oligosaccharides utilization to Escherichia coli, Mol. Microbiol. 102 (2016) 579-592. https://doi.org/10.1111/mmi.13480

[47]

N.D. Schwalm III, E.A. Groisman, Navigating the gut buffet: control of polysaccharide utilization in Bacteroides spp, Trends Microbiol. 25 (2017) 1005-1015. https://doi.org/10.1016/j.tim.2017.06.009

[48]

Z. Zhang, Q. Liu, W.A. Hendrickson, Crystal structures of apparent saccharide sensors from histidine kinase receptors prevalent in a human gut symbiont, FEBS J. 281 (2014) 4263-4279. https://doi.org/10.1111/febs.12904

[49]

J.N. D'Elia, A.A. Salyers, Effect of regulatory protein levels on utilization of starch by Bacteroides thetaiotaomicron, J. Bacteriol. 178 (1996) 7180-7186. https://doi.org/10.1128/jb.178.24.7180-7186.1996

[50]

R.A. Luu, R.A. Schomer, C.N. Brunton, et al., Hybrid two-component sensors for identification of bacterial chemoreceptor function, Appl. Environ. Microbiol. 85 (2019) e01626-19. https://doi.org/10.1128/AEM.01626-19

[51]
V. Raghavan, E.C. Lowe, G.E. Townsend, 2nd, et al., Tuning transcription of nutrient utilization genes to catabolic rate promotes growth in a gut bacterium, Mol. Microbiol. 93 (2014) 1010-1025. https://doi.org/10.1111/mmi.12714
DOI
[52]

N.D. Schwalm, G.E. Townsend, E.A. Groisman, Prioritization of polysaccharide utilization and control of regulator activation in Bacteroides thetaiotaomicron, Mol. Microbiol. 104 (2017) 32-45. https://doi.org/10.1111/mmi.13609

[53]

N.T. Porter, A.S. Luis, E.C. Martens, Bacteroides thetaiotaomicron, Trends Microbiol. 26 (2018) 966-967. https://doi.org/10.1016/j.tim.2018.08.005

[54]

M.H. Foley, D.W. Cockburn, N.M. Koropatkin, The Sus operon: a model system for starch uptake by the human gut Bacteroidetes, Cell. Mol. Life Sci. 73 (2016) 2603-2617. https://doi.org/10.1007/s00018-016-2242-x

[55]

M.P. Bos, J. Tommassen, Biogenesis of the gram-negative bacterial outer membrane, Curr. Opin. Microbiol. 7 (2004) 610-616. https://doi.org/10.1016/j.mib.2004.10.011

[56]

H.H. Tuson, M.H. Foley, N.M. Koropatkin, et al., The starch utilization system assembles around stationary starch-binding proteins, Biophys. J. 115 (2018) 242-250. https://doi.org/10.1016/j.bpj.2017.12.015

[57]

M.H. Foley, E.C. Martens, N.M. Koropatkin, SusE facilitates starch uptake independent of starch binding in B. thetaiotaomicron, Mol. Microbiol. 108 (2018) 551-566. https://doi.org/10.1111/mmi.13949

[58]

R. Grinter, T. Lithgow, The crystal structure of the TonB-dependent transporter YncD reveals a positively charged substrate-binding site, Acta. Crystallogr. D Struct. Biol. 76 (2020) 484-495. https://doi.org/10.1107/S2059798320004398

[59]

D.N. Bolam, B. van den Berg, TonB-dependent transport by the gut microbiota: novel aspects of an old problem, Curr. Opin. Struct. Biol. 51 (2018) 35-43. https://doi.org/10.1016/j.sbi.2018.03.001

[60]

D.A. Ravcheev, A. Godzik, A.L. Osterman, et al., Polysaccharides utilization in human gut bacterium Bacteroides thetaiotaomicron: comparative genomics reconstruction of metabolic and regulatory networks, BMC Genomics 14 (2013) 873. https://doi.org/10.1186/1471-2164-14-873

[61]

M. Kitamura, M. Okuyama, F. Tanzawa, et al., Structural and functional analysis of a glycoside hydrolase family 97 enzyme from Bacteroides thetaiotaomicron, J. Biol. Chem. 283 (2008) 36328-36337. https://doi.org/10.1074/jbc.M806115200

[62]

R.E. Ley, M. Hamady, C. Lozupone, et al., Evolution of mammals and their gut microbes, Science 320 (2008) 1647-1651. https://doi.org/10.1126/science.1155725

[63]

M.H. Foley, G. Dejean, G.R. Hemsworth, et al., A cell-surface GH9 endo-glucanase coordinates with surface glycan-binding proteins to mediate xyloglucan uptake in the gut symbiont Bacteroides ovatus, J. Mol. Biol. 431 (2019) 981-995. https://doi.org/10.1016/j.jmb.2019.01.008

[64]

P. Joglekar, E.D. Sonnenburg, S.K. Higginbottom, et al., Genetic variation of the susc/susd homologs from a polysaccharide utilization locus underlies divergent fructan specificities and functional adaptation in Bacteroides thetaiotaomicron strains, mSphere 3 (2018) e00185-18. https://doi.org/10.1128/mSphereDirect.00185-18

[65]

D. Ndeh, A. Rogowski, A. Cartmell, et al., Complex pectin metabolism by gut bacteria reveals novel catalytic functions, Nature 544 (2017) 65-70. https://doi.org/10.1038/nature21725

[66]

D. Ndeh, A. Basle, H. Strahl, et al., Metabolism of multiple glycosaminoglycans by Bacteroides thetaiotaomicron is orchestrated by a versatile core genetic locus, Nat. Commun. 11 (2020) 646. https://doi.org/10.1038/s41467-020-14509-4

[67]

L. Kjellen, U. Lindahl, Specificity of glycosaminoglycan-protein interactions, Curr. Opin. Struct. Biol. 50 (2018) 101-108. https://doi.org/10.1016/j.sbi.2017.12.011

[68]

J.E. Ulmer, E.M. Vilen, R.B. Namburi, et al., Characterization of glycosaminoglycan (GAG) sulfatases from the human gut symbiont Bacteroides thetaiotaomicron reveals the first GAG-specific bacterial endosulfatase, J. Biol. Chem. 289 (2014) 24289-24303. https://doi.org/10.1074/jbc.M114.573303

[69]

A. Cartmell, E.C. Lowe, A. Basle, et al., How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans, Proc. Natl. Acad. Sci. USA 114 (2017) 7037-7042. https://doi.org/10.1073/pnas.1704367114

[70]

E.C. Lowe, A. Basle, M. Czjzek, et al., A scissor blade-like closing mechanism implicated in transmembrane signaling in a Bacteroides hybrid two-component system, Proc. Natl. Acad. Sci. USA 109 (2012) 7298-7303. https://doi.org/10.1073/pnas.1200479109

[71]

A. Rogowski, J.A. Briggs, J.C. Mortimer, et al., Glycan complexity dictates microbial resource allocation in the large intestine, Nat. Commun. 6 (2015) 7481. https://doi.org/10.1038/ncomms8481

[72]

V. Raghavan, E.A. Groisman, Species-specific dynamic responses of gut bacteria to a mammalian glycan, J. Bacteriol. 197 (2015) 1538-1548. https://doi.org/10.1128/JB.00010-15

[73]

J. Larsbrink, T.E. Rogers, G.R. Hemsworth, et al., A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes, Nature 506 (2014) 498-502. https://doi.org/10.1038/nature12907

[74]

F. Cuskin, E.C. Lowe, M.J. Temple, et al., Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism, Nature 517 (2015) 165-169. https://doi.org/10.1038/nature13995

[75]

E.A. Bayer, R. Lamed, B.A. White, et al., From cellulosomes to cellulosomics, Chem. Rec. 8 (2008) 364-377. https://doi.org/10.1002/tcr.20160

[76]

L. Artzi, E.A. Bayer, S. Morais, Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides, Nat. Rev. Microbiol. 15 (2017) 83-95. https://doi.org/10.1038/nrmicro.2016.164

[77]

N. Zeybek, R.A. Rastall, A.O. Buyukkileci, Utilization of xylan-type polysaccharides in co-culture fermentations of Bifidobacterium and Bacteroides species, Carbohydrate Polymers 236 (2020) 116076. https://doi.org/10.1016/j.carbpol.2020.116076

[78]

M.A. Mahowald, F.E. Rey, H. Seedorf, et al., Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla, Proc. Natl. Acad. Sci. USA 106 (2009) 5859-5864. https://doi.org/10.1073/pnas.0901529106

[79]

W. Elhenawy, M.O. Debelyy, M.F. Feldman, Preferential packing of acidic glycosidases and proteases into Bacteroides outer membrane vesicles, mBio 5 (2014) e00909-00914. https://doi.org/10.1128/mBio.00909-14

[80]

E.J. Jones, C. Booth, S. Fonseca, et al., The uptake, trafficking, and biodistribution of Bacteroides thetaiotaomicron generated outer membrane vesicles, Front. Microbiol. 11 (2020) 57. https://doi.org/10.3389/fmicb.2020.00057

[81]

S. Zhao, C. Jang, J. Liu, et al., Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate, Nature 579 (2020) 586-591. https://doi.org/10.1038/s41586-020-2101-7

[82]

A. Esposito, S. Tamburini, L. Triboli, et al., Insights into the genome structure of four acetogenic bacteria with specific reference to the Wood-Ljungdahl pathway, Microbiologyopen 8 (2019) e938. https://doi.org/10.1002/mbo3.938

[83]

P. Louis, H.J. Flint, Formation of propionate and butyrate by the human colonic microbiota, Environ. Microbiol. 19 (2017) 29-41. https://doi.org/10.1111/1462-2920.13589

[84]

T.K. Bjarnadottir, D.E. Gloriam, S.H. Hellstrand, et al., Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse, Genomics 88 (2006) 263-273. https://doi.org/10.1016/j.ygeno.2006.04.001

[85]

A. Koh, F. de Vadder, P. Kovatcheva-Datchary, et al., From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites, Cell 165 (2016) 1332-1345. https://doi.org/10.1016/j.cell.2016.05.041

[86]

A.J. Brown, S.M. Goldsworthy, A.A. Barnes, et al., The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids, J. Biol. Chem. 278 (2003) 11312-11319. https://doi.org/10.1074/jbc.M211609200

[87]

L. Macia, J. Tan, A.T. Vieira, et al., Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome, Nat. Commun. 6 (2015) 6734. https://doi.org/10.1038/ncomms7734

[88]

Y. Tian, Q. Xu, L. Sun, et al., Short-chain fatty acids administration is protective in colitis-associated colorectal cancer development, J. Nutr. Biochem. 57 (2018) 103-109. https://doi.org/10.1016/j.jnutbio.2018.03.007

[89]

N. Singh, A. Gurav, S. Sivaprakasam, et al., Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis, Immunity 40 (2014) 128-139. https://doi.org/10.1016/j.immuni.2013.12.007

[90]

W. Yang, T. Yu, X. Huang, et al., Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity, Nat. Commun. 11 (2020) 4457. https://doi.org/10.1038/s41467-020-18262-6

[91]

M. Thangaraju, G. Cresci, S. Itagaki, et al., Sodium-coupled transport of the short chain fatty acid butyrate by SLC5A8 and its relevance to colon cancer, J. Gastrointest. Surg. 12 (2008) 1773-1781. https://doi.org/10.1007/s11605-008-0573-0

[92]

P.V. Chang, L. Hao, S. Offermanns, et al., The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition, Proc. Natl. Acad. Sci. USA 111 (2014) 2247-2252. https://doi.org/10.1073/pnas.1322269111

[93]

J. Park, M. Kim, S.G. Kang, et al., Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway, Mucosal Immunol. 8 (2015) 80-93. https://doi.org/10.1038/mi.2014.44

[94]

F. Chen, W. Yang, X. Huang, et al., Neutrophils promote amphiregulin production in intestinal epithelial cells through TGF-beta and contribute to intestinal homeostasis, J. Immunol. 201 (2018) 2492-2501. https://doi.org/10.4049/jimmunol.1800003

[95]

G. Desalegn, O. Pabst, Inflammation triggers immediate rather than progressive changes in monocyte differentiation in the small intestine, Nat. Commun. 10 (2019) 3229. https://doi.org/10.1038/s41467-019-11148-2

[96]

P.M. Smith, M.R. Howitt, N. Panikov, et al., The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis, Science 341 (2013) 569-573. https://doi.org/10.1126/science.1241165

[97]

M.A. Vinolo, G.J. Ferguson, S. Kulkarni, et al., SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor, PLoS One 6 (2011) e21205. https://doi.org/10.1371/journal.pone.0021205

[98]

Y. Furusawa, Y. Obata, S. Fukuda, et al., Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells, Nature 504 (2013) 446-450. https://doi.org/10.1038/nature12721

[99]

M.R. Fernando, A. Saxena, J.L. Reyes, et al., Butyrate enhances antibacterial effects while suppressing other features of alternative activation in IL-4-induced macrophages, Am. J. Physiol. Gastrointest. Liver Physiol. 310 (2016) G822-831. https://doi.org/10.1152/ajpgi.00440.2015

[100]

K. Atarashi, T. Tanoue, K. Oshima, et al., Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota, Nature 500 (2013) 232-236. https://doi.org/10.1038/nature12331

[101]

W. Wu, M. Sun, F. Chen, et al., Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43, Mucosal Immunol. 10 (2017) 946-956. https://doi.org/10.1038/mi.2016.114

[102]

H. Fan, Z. Chen, R. Lin, et al., Bacteroides fragilis strain ZY-312 defense against Cronobacter sakazakii-induced necrotizing enterocolitis in vitro and in a neonatal rat model, mSystems 4 (2019) e00305-19. https://doi.org/10.1128/mSystems.00305-19

[103]

W. Zhang, B. Zhu, J. Xu, et al., Bacteroides fragilis protects against antibiotic-associated diarrhea in rats by modulating intestinal defenses, Front. Immunol. 9 (2018) 1040. https://doi.org/10.3389/fimmu.2018.01040

[104]

M. Delday, I. Mulder, E.T. Logan, et al., Bacteroides thetaiotaomicron ameliorates colon inflammation in preclinical models of crohn's disease, Inflamm. Bowel Dis. 25 (2019) 85-96. https://doi.org/10.1093/ibd/izy281

[105]

H. Tan, J. Zhao, H. Zhang, et al., Novel strains of Bacteroides fragilis and Bacteroides ovatus alleviate the LPS-induced inflammation in mice, Appl. Microbiol. Biotechnol. 103 (2019) 2353-2365. https://doi.org/10.1007/s00253-019-09617-1

[106]

V. Bagenholm, S.K. Reddy, H. Bouraoui, et al., Galactomannan catabolism conferred by a polysaccharide utilization locus of Bacteroides ovatus: enzyme synergy and crystal structure of a beta-mannanase, J. Biol. Chem. 292 (2017) 229-243. https://doi.org/10.1074/jbc.M116.746438

[107]

M. Centanni, S.M. Carnachan, T.J. Bell, et al., Utilization of complex pectic polysaccharides from New Zealand plants (Tetragonia tetragonioides and Corynocarpus laevigatus) by gut bacteroides species, J. Agric. Food Chem. 67 (2019) 7755-7764. https://doi.org/10.1021/acs.jafc.9b02429

[108]

A.S. Luis, J. Briggs, X. Zhang, et al., Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides, Nat. Microbiol. 3 (2018) 210-219. https://doi.org/10.1038/s41564-017-0079-1

[109]

G.P. Rodriguez-Castano, M.R. Dorris, X. Liu, et al., Bacteroides thetaiotaomicron starch utilization promotes quercetin degradation and butyrate production by Eubacterium ramulus, Front. Microbiol. 10 (2019) 1145. https://doi.org/10.3389/fmicb.2019.01145

[110]

K. Mardo, T. Visnapuu, H. Vija, et al., A highly active endo-levanase bt1760 of a dominant mammalian gut commensal Bacteroides thetaiotaomicron cleaves not only various bacterial levans, but also levan of timothy grass, PLoS One 12 (2017) e0169989. https://doi.org/10.1371/journal.pone.0169989

[111]

J. Chen, C.S. Robb, F. Unfried, et al., Alpha- and beta-mannan utilization by marine Bacteroidetes, Environ. Microbiol. 20 (2018) 4127-4140. https://doi.org/10.1111/1462-2920.14414

[112]

A. Cartmell, J. Munoz-Munoz, J.A. Briggs, et al., A surface endogalactanase in Bacteroides thetaiotaomicron confers keystone status for arabinogalactan degradation, Nat. Microbiol. 3 (2018) 1314-1326. https://doi.org/10.1038/s41564-018-0258-8

[113]

A. Benitez-Paez, E.M. Gomez Del Pulgar, Y. Sanz, The glycolytic versatility of Bacteroides uniformis CECT 7771 and its genome response to oligo and polysaccharides, Front. Cell. Infect. Microbiol. 7 (2017) 383. https://doi.org/10.3389/fcimb.2017.00383

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 08 December 2020
Revised: 30 December 2020
Accepted: 24 January 2021
Published: 02 June 2022
Issue date: September 2022

Copyright

© 2022 Beijing Academy of Food Sciences.

Acknowledgements

The financial supports are coming from the National Science Fund for Distinguished Young Scholars of China (31825020).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return