Journal Home > Volume 11 , Issue 5

Diabetes mellitus (DM) is a metabolic disorder disease, and the number of diabetic patients will reach 578 million by 2030 predictably. Currently, 8 classes of small molecular drugs are used for treating diabetes. However, these drugs cannot completely meet patients' needs, due to diabetic complications need to be addressed along with diabetes, such as nephropathy, and cardiovascular diseases. Besides, more types of drugs need to be provided for more choices. Hence, scientists still seek lead compounds with hypoglycemic effects. Natural products (NPs) are a reservoir of diverse structures and bioactivities with low toxicity and less side effects. And some of them show effects on diabetic complications, which is a significant idea for drug development. This review aims to summarize natural products with hypoglycemic effects and their details, such as potential mechanisms, biological data, and particularly their advantages in treating diabetes. Considering the huge number of NPs was reported with anti-diabetic activity, and some of them need to be re-validated, this review focuses on the bioactive compounds with in vivo activities. In the end, the trend of natural products treating diabetes was discussed. We hope this review provide a comprehensive and convincing summary, thus lending support to anti-diabetic natural products research.


menu
Abstract
Full text
Outline
About this article

Hypoglycemic natural products with in vivo activities and their mechanisms: a review

Show Author's information Wenyi Maa,bLonggao Xiaoa,bHaiyang Liua( )Xiaojiang Haoa( )
State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
University of Chinese Academy of Sciences, Beijing 100049, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Abstract

Diabetes mellitus (DM) is a metabolic disorder disease, and the number of diabetic patients will reach 578 million by 2030 predictably. Currently, 8 classes of small molecular drugs are used for treating diabetes. However, these drugs cannot completely meet patients' needs, due to diabetic complications need to be addressed along with diabetes, such as nephropathy, and cardiovascular diseases. Besides, more types of drugs need to be provided for more choices. Hence, scientists still seek lead compounds with hypoglycemic effects. Natural products (NPs) are a reservoir of diverse structures and bioactivities with low toxicity and less side effects. And some of them show effects on diabetic complications, which is a significant idea for drug development. This review aims to summarize natural products with hypoglycemic effects and their details, such as potential mechanisms, biological data, and particularly their advantages in treating diabetes. Considering the huge number of NPs was reported with anti-diabetic activity, and some of them need to be re-validated, this review focuses on the bioactive compounds with in vivo activities. In the end, the trend of natural products treating diabetes was discussed. We hope this review provide a comprehensive and convincing summary, thus lending support to anti-diabetic natural products research.

Keywords: Mechanism, Diabetes, Natural products, Hypoglycemic effects

References(126)

[1]

N.G. Clark, K.M. Fox, S. Grandy, et al., Symptoms of diabetes and their association with the risk and presence of diabetes: findings from the study to help improve early evaluation and management of risk factors leading to diabetes (shield), Diabetes Care 30 (2007) 2868-2873. https://doi.org/10.2337/dc07-0816

[2]

J.L. Harding, M.E. Pavkov, D.J. Magliano, et al., Global trends in diabetes complications: a review of current evidence, Diabetologia 62 (2019) 3-16. https://doi.org/10.1007/s00125-018-4711-2

[3]

P. Saeedi, I. Petersohn, P. Salpea, et al., Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9(th) edition, Diabetes Res. Clin. Pract. 157 (2019) 107843. https://doi.org/10.1016/j.diabres.2019.107843

[4]

A. American Diabetes, 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2021, Diabetes Care 44 (2021) S15-S33. https://doi.org/10.2337/dc21-S002

[5]

L.L. Wu, A.L. Wu, W.F. Peng, Research progress of Chinese herbal medicine treating diabetes mellitus, J. Pra. Trad. Chin. Int. Med. 33 (2019) 99-103

[6]

L.X. Liu, W. Wu, L.L. Pang, et al., Research progress on chemical composition, pharmacological action and clinical application of Gegen QInlian decoction, Chin. Arch. Trad. Chin. Med. 9 (2021) 1-15

[7]

D.J. Newman, G.M. Cragg, Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019, J. Nat. Prod. 83 (2020) 770-803. https://doi.org/10.1021/acs.jnatprod.9b01285

[8]

C.J. Bailey, Metformin: historical overview, Diabetologia 60 (2017) 1566-1576. https://doi.org/10.1007/s00125-017-4318-z

[9]

B. Viollet, B. Guigas, N. Sanz Garcia, et al., Cellular and molecular mechanisms of metformin: an overview, Clin Sci (Lond). 122 (2012) 253-270. https://doi.org/10.1042/CS20110386

[10]

G. Rena, D.G. Hardie, E.R. Pearson, The mechanisms of action of metformin, Diabetologia 60 (2017) 1577-1585. https://doi.org/10.1007/s00125-017-4342-z

[11]

E.C. Chao, R.R. Henry, Sglt2 inhibition--a novel strategy for diabetes treatment, Nat. Rev. Drug Discov. 9 (2010) 551-559. https://doi.org/10.1038/nrd3180

[12]

J.R. Ehrenkranz, N.G. Lewis, C.R. Kahn, et al., Phlorizin: a review, Diabetes Metab. Res. Rev. 21 (2005) 31-38. https://doi.org/10.1002/dmrr.532

[13]

W. Blaschek, Natural products as lead compounds for sodium glucose cotransporter (sglt) inhibitors, Planta Med. 83 (2017) 985-993. https://doi.org/10.1055/s-0043-106050

[14]

D. Sola, L. Rossi, G.P. Schianca, et al., Sulfonylureas and their use in clinical practice, Arch. Med. Sci. 11 (2015) 840-848. https://doi.org/10.5114/aoms.2015.53304

[15]

A. Douros, S. Dell'Aniello, O.H.Y. Yu, et al., Sulfonylureas as second line drugs in type 2 diabetes and the risk of cardiovascular and hypoglycaemic events: population based cohort study, BMJ 362 (2018) k2693. https://doi.org/10.1136/bmj.k2693

[16]

A.M.K. Hansen, I.T. Christensen, J.B. Hansen, et al., Differential interactions of nateglinide and repaglinide on the human beta-cell sulphonylurea receptor 1, Diabetes 51 (2002) 2789-2795. https://doi.org/10.2337/diabetes.51.9.2789

[17]

W. Lv, X. Wang, Q. Xu, et al., Mechanisms and characteristics of sulfonylureas and glinides, Curr. Top Med. Chem. 20 (2020) 37-56. https://doi.org/10.2174/1568026620666191224141617

[18]

J.J. DiNicolantonio, J. Bhutani, J.H. O'Keefe, Acarbose: safe and effective for lowering postprandial hyperglycaemia and improving cardiovascular outcomes, Open Heart 2 (2015) e000327. https://doi.org/10.1136/openhrt-2015-000327

[19]

R.H. Unger, Lipotoxicity in the pathogenesis of obesity-dependent niddm - genetic and clinical implications, Diabetes 44 (1995) 863-870. https://doi.org/10.2337/diabetes.44.8.863

[20]

M. Stumvoll, H.U. Häring, Glitazones: clinical effects and molecular mechanisms, Ann. Med. 34 (2009) 217-224. https://doi.org/10.1080/ann.34.3.217.224

[21]

C.E. Quinn, P.K. Hamilton, C.J. Lockhart, et al., Thiazolidinediones: effects on insulin resistance and the cardiovascular system, Br. J. Pharmacol. 153 (2008) 636-645. https://doi.org/10.1038/sj.bjp.0707452

[22]

D. Hinnen, Glucagon-like peptide 1 receptor agonists for type 2 diabetes, Diabetes Spectr. 30 (2017) 202-210. https://doi.org/10.2337/ds16-0026

[23]

T.D. Filippatos, T.V. Panagiotopoulou, M.S. Elisaf, Adverse effects of Glp-1 receptor agonists, Rev. Diabet. Stud. 11 (2014) 202-230. https://doi.org/10.1900/RDS.2014.11.202

[24]

D. Dicker, Dpp-4 inhibitors: impact on glycemic control and cardiovascular risk factors, Diabetes Care 34(Suppl 2) (2011) S276-S278. https://doi.org/10.2337/dc11-s229

[25]

B. Gallwitz, Clinical use of DPP-4 inhibitors, Front. Endocrinol (Lausanne) 10 (2019) 389. https://doi.org/10.3389/fendo.2019.00389

[26]

M.A. Nauck, Update on developments with sglt2 inhibitors in the management of type 2 diabetes, Drug Des. Devel. Ther. 8 (2014) 1335-1380. https://doi.org/10.2147/DDDT.S50773

[27]

M.A. Abdul-Ghani, L. Norton, R.A. Defronzo, Role of sodium-glucose cotransporter 2 (sglt 2) inhibitors in the treatment of type 2 diabetes, Endocr. Rev. 32 (2011) 515-531. https://doi.org/10.1210/er.2010-0029

[28]

D.M. Martin, J. Gershenzon, J. Bohlmann, Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of norway spruce, Plant Physiol. 132 (2003) 1586-1599. https://doi.org/10.1104/pp.103.021196

[29]
L.P. Christensen, Ginsenosides Chemistry, Biosynthesis, Analysis, and Potential Health Effects. Chapter 1 Ginsenosides, Elsevier. 2008, pp. 1-99. https://doi.org/10.1016/S1043-4526(08)00401-4
DOI
[30]

X.D. Yang, Y.Y. Yang, D.S. Ouyang, et al., A review of biotransformation and pharmacology of ginsenoside compound K, Fitoterapia 100 (2015) 208-220. https://doi.org/10.1016/j.fitote.2014.11.019

[31]

G.C. Han, S.K. Ko, J.H. Sung, et al., Compound K enhances insulin secretion with beneficial metabolic effects in db/db mice, J. Arg. Food Chem. 55 (2007) 10641-10648. https://doi.org/10.1021/jf0722598

[32]

F.Y. Guan, J. Gu, W. Li, et al., Compound K protects pancreatic islet cells against apoptosis through inhibition of the AMPK/JNK pathway in type 2 diabetic mice and in min6 beta-cells, Life Sci. 107 (2014) 42-49. https://doi.org/10.1016/j.lfs.2014.04.034

[33]

S. Wei, W. Li, Y. Yu, et al., Ginsenoside compound k suppresses the hepatic gluconeogenesis via activating adenosine-5'monophosphate kinase: a study in vitro and in vivo, Life Sci. 139 (2015) 8-15. https://doi.org/10.1016/j.lfs.2015.07.032

[34]

S. Jiang, D. Ren, J. Li, et al., Effects of compound K on hyperglycemia and insulin resistance in rats with type 2 diabetes mellitus, Fitoterapia 95 (2014) 58-64. https://doi.org/10.1016/j.fitote.2014.02.017

[35]

A. Lim, Diabetic nephropathy - complications and treatment, Int. J. Nephrol. Renovasc. Dis. 7 (2014) 361-381. https://doi.org/10.2147/IJNRD.S40172

[36]

C. Mora-Fernandez, V. Dominguez-Pimentel, M.M. de Fuentes, et al., Diabetic kidney disease: from physiology to therapeutics, J. Physiol. 592 (2014) 3997-4012. https://doi.org/10.1113/jphysiol.2014.272328

[37]

W. Song, L. Wei, Y. Du, et al., Protective effect of ginsenoside metabolite compound K against diabetic nephropathy by inhibiting NLRP3 inflammasome activation and NF-kappaB/p38 signaling pathway in high-fat diet/streptozotocin-induced diabetic mice, Int. Immunopharmacol. 63 (2018) 227-238. https://doi.org/10.1016/j.intimp.2018.07.027

[38]

W. Li, M. Zhang, J. Gu, et al., Hypoglycemic effect of protopanaxadiol-type ginsenosides and compound k on type 2 diabetes mice induced by high-fat diet combining with streptozotocin via suppression of hepatic gluconeogenesis, Fitoterapia. 83 (2012) 192-198. https://doi.org/10.1016/j.fitote.2011.10.011

[39]

Y. Wang, H. Wang, Y. Liu, et al., Antihyperglycemic effect of ginsenoside Rh2 by inducing islet beta-cell regeneration in mice, Horm. Metab. Res. 44 (2012) 33-40. https://doi.org/10.1055/s-0031-1295416

[40]

W.K. Lee, S.T. Kao, I.M. Liu, et al., Ginsenoside Rh2 is one of the active principles of panax ginseng root to improve insulin sensitivity in fructose-rich chow-fed rats, Horm. Metab. Res. 39 (2007) 347-354. https://doi.org/10.1055/s-2007-976537

[41]

D.M. Lai, Y.K. Tu, I.M. Liu, et al., Mediation of beta-endorphin by ginsenoside Rh2 to lower plasma glucose in streptozotocin-induced diabetic rats, Planta Med. 72 (2006) 9-13. https://doi.org/10.1055/s-2005-916177

[42]

N. Xiao, M.D. Lou, Y.T. Lu, et al., Ginsenoside Rg5 attenuates hepatic glucagon response via suppression of succinate-associated HIF-1alpha induction in HFD-fed mice, Diabetologia 60 (2017) 1084-1093. https://doi.org/10.1007/s00125-017-4238-y

[43]

Y. Wei, H. Yang, C. Zhu, et al., Hypoglycemic effect of ginsenoside Rg5 mediated partly by modulating gut microbiota dysbiosis in diabetic db/db mice, J. Agr. Food Chem. 68 (2020) 5107-5117. https://doi.org/10.1021/acs.jafc.0c00605

[44]

Y. Wei, H. Yang, C. Zhu, et al., Ginsenoside Rg5 relieves type 2 diabetes by improving hepatic insulin resistance in db/db mice, J. Funct. Foods 71 (2020) https://doi.org/10.1016/j.jff.2020.104014

[45]

Y. Xiong, L. Shen, K.J. Liu, et al., Antiobesity and antihyperglycemic effects of ginsenoside Rb1 in rats, Diabetes 59 (2010) 2505-2512. https://doi.org/10.2337/db10-0315

[46]

B. Song, L. Ding, H. Zhang, et al., Ginsenoside Rb1 increases insulin sensitivity through suppressing 11 beta-hydroxysteroid dehydrogenase type I, Am. J. Transl. Res. 9 (2017) 1049-1057

[47]

M.D. Lou, J. Li, Y. Cheng, et al., Glucagon up-regulates hepatic mitochondrial pyruvate carrier 1 through camp-responsive element-binding protein; inhibition of hepatic gluconeogenesis by ginsenoside Rb1, Br. J. Pharmacol. 176 (2019) 2962-2976. https://doi.org/10.1111/bph.14758

[48]

S. Dai, Y. Hong, J. Xu, et al., Ginsenoside Rb2 promotes glucose metabolism and attenuates fat accumulation via Akt-dependent mechanisms, Biomed. Pharmacother. 100 (2018) 93-100. https://doi.org/10.1016/j.biopha.2018.01.111

[49]

Q. Huang, T. Wang, L. Yang, et al., Ginsenoside Rb2 alleviates hepatic lipid accumulation by restoring autophagy via induction of Sirt1 and activation of AMPK, Int. J. Mol. Sci. 18 (2017) 1063. https://doi.org/10.3390/ijms18051063

[50]

T. Yokozawa, T. Kobayashi, H. Oura, et al., Studies on the mechanism of the hypoglycemic activity of ginsenoside-Rb2 in streptozotocin-diabetic rats, Chem. Pharm. Bull. 33 (1985) 869-872

[51]

Q.T. Bu, W.Y. Zhang, Q.C. Chen, et al., Anti-diabetic effect of ginsenoside Rb-3 in alloxan-induced diabetic mice, Med. Chem. 8 (2012) 934-941

[52]

H. Liu, J. Wang, M. Liu, et al., Antiobesity effects of ginsenoside Rg1 on 3t3-l1 preadipocytes and high fat diet-induced obese mice mediated by AMPK, Nutrients 10 (2018) 830. https://doi.org/10.3390/nu10070830

[53]

Q. Liu, F.G. Zhang, W.S. Zhang, et al., Ginsenoside Rg1 inhibits glucagon-induced hepatic gluconeogenesis through Akt-FoxO1 interaction, Theranostics 7 (2017) 4001-4012. https://doi.org/10.7150/thno.18788

[54]

Y. Liu, J. Deng, D. Fan, Ginsenoside Rk3 ameliorates high-fat-diet/streptozocin induced type 2 diabetes mellitus in mice via the AMPK/Akt signaling pathway, Food Funct. 10 (2019) 2538-2551. https://doi.org/10.1039/c9fo00095j

[55]

J.M. Kim, C.H. Park, S.K. Park, et al., Ginsenoside re ameliorates brain insulin resistance and cognitive dysfunction in high fat diet-induced C57BL/6 mice, J. Agr. Food Chem. 65 (2017) 2719-2729. https://doi.org/10.1021/acs.jafc.7b00297

[56]

Z. Zhang, X. Li, W. Lv, et al., Ginsenoside Re reduces insulin resistance through inhibition of c-Jun NH2-terminal kinase and nuclear factor-kappaB, Mol. Endocrinol. 22 (2008) 186-195. https://doi.org/10.1210/me.2007-0119

[57]

D. Gao, Q. Li, Y. Li, et al., Antidiabetic and antioxidant effects of oleanolic acid from ligustrum lucidum ait in alloxan-induced diabetic rats, Phytother. Res. 23 (2009) 1257-1262. https://doi.org/10.1002/ptr.2603

[58]

D. Gao, Q. Li, Y. Li, et al., Antidiabetic potential of oleanolic acid from Ligustrum lucidum Ait, Can. J. Physiol. Pharmacol. 85 (2007) 1076-1083. https://doi.org/10.1139/Y07-098

[59]

S. van Dieren, J.W. Beulens, Y.T. van der Schouw, et al., The global burden of diabetes and its complications: an emerging pandemic, Eur. J. Cardiovasc. Prev. Rehabil. 17(Suppl 1) (2010) 3-8. https://doi.org/10.1097/01.hjr.0000368191.86614.5a

[60]

M. Gamede, L. Mabuza, P. Ngubane, et al., Plant-derived Oleanolic acid (OA) ameliorates risk factors of cardiovascular diseases in a diet-induced pre-diabetic rat model: effects on selected cardiovascular risk factors, Molecules 24 (2019) https://doi.org/10.3390/molecules24020340

[61]

E.S. Lee, H.M. Kim, J.S. Kang, et al., Oleanolic acid and n-acetylcysteine ameliorate diabetic nephropathy through reduction of oxidative stress and endoplasmic reticulum stress in a type 2 diabetic rat model, Nephrol. Dial. Transplant 31 (2016) 391-400. https://doi.org/10.1093/ndt/gfv377

[62]

S.R. Naik, J.M. Barbosa-Filho, J.N. Dhuley, et al., Probable mechanism of hypoglycemic activity of bassic acid, a natural product isolated from bumelia-sartorum, J. Ethnopharmacol. 33 (1991) 37-44. https://doi.org/10.1016/0378-8741(91)90158-a

[63]

K.N. Zhu, C.H. Jiang, Y.S. Tian, et al., Two triterpeniods from Cyclocarya paliurus (Batal) Iljinsk (Juglandaceae) promote glucose uptake in 3T3-L1 adipocytes: the relationship to AMPK activation, Phytomedicine 22 (2015) 837-846. https://doi.org/10.1016/j.phymed.2015.05.058

[64]

H. Xiong, S. Zhang, Z. Zhao, et al., Antidiabetic activities of entagenic acid in type 2 diabetic db/db mice and l6 myotubes via AMPK/GLUT4 pathway, J. Ethnopharmacol. 211 (2018) 366-374. https://doi.org/10.1016/j.jep.2017.10.004

[65]

J. Chen, W.L. Li, J.L. Wu, et al., Euscaphic acid, a new hypoglycemic natural product from folium eriobotryae, Pharmazie 63 (2008) 765-767. https://doi.org/10.1691/ph.2008.8583

[66]

B. Jayaprakasam, L.K. Olson, R.E. Schutzki, et al., Amelioration of obesity and glucose intolerance in high-fat-fed c57bl/6 mice by anthocyanins and ursolic acid in cornelian cherry (Cornus mas), J. Arg. Food Chem. 54 (2006) 243-248. https://doi.org/10.1021/jf0520342

[67]

C.L. de Melo, M.G. Queiroz, A.C.Arruda Filho, et al., Betulinic acid, a natural pentacyclic triterpenoid, prevents abdominal fat accumulation in mice fed a high-fat diet, J. Agr. Food Chem. 57 (2009) 8776-8781. https://doi.org/10.1021/jf900768w

[68]

C.H. Lin, L.W. Hsiao, Y.H. Kuo, et al., Antidiabetic and antihyperlipidemic effects of sulphurenic acid, a triterpenoid compound from Antrodia camphorata, in streptozotocin-induced diabetic mice, Int. J. Mol. Sci. 20 (2019) 4897. https://doi.org/10.3390/ijms20194897

[69]

S.E. Mabhida, R.A. Mosa, D. Penduka, et al., A lanosteryl triterpene from protorhus longifolia improves glucose tolerance and pancreatic beta cell Ultrastructure in type 2 diabetic rats, Molecules 22 (2017) 1252. https://doi.org/10.3390/molecules22081252

[70]

N.K. Hoa, A. Norberg, R. Sillard, et al., The possible mechanisms by which phanoside stimulates insulin secretion from rat islets, J. Endocrinol. 192 (2007) 389-394. https://doi.org/10.1677/joe.1.06948

[71]

C. Zhang, L. Gui, Y. Xu, et al., Preventive effects of andrographolide on the development of diabetes in autoimmune diabetic nod mice by inducing immune tolerance, Int. Immunopharmacol 16 (2013) 451-456. https://doi.org/10.1016/j.intimp.2013.05.002

[72]

M.G. Campos, M. Oropeza, C. Torres-Sosa, et al., Sesquiterpenoids from antidiabetic Psacalium decompositum block ATP sensitive potassium channels, J. Ethnopharmacol. 123 (2009) 489-493. https://doi.org/10.1016/j.jep.2009.03.003

[73]

C. Serra-Barcellona, N.C. Habib, S.M. Honore, et al., Enhydrin regulates postprandial hyperglycemia in diabetic rats by inhibition of α-glucosidase activity, Plant Foods Hum. Nutr. 72 (2017) 156-160. https://doi.org/10.1007/s11130-017-0600-y

[74]

L. Guan, H. Feng, D. Gong, et al., Genipin ameliorates age-related insulin resistance through inhibiting hepatic oxidative stress and mitochondrial dysfunction, Exp. Gerontol. 48 (2013) 1387-1394. https://doi.org/10.1016/j.exger.2013.09.001

[75]

K. Kojima, T. Shimada, Y. Nagareda, et al., Preventive effect of geniposide on metabolic disease status in spontaneously obese type 2 diabetic mice and free fatty acid-treated HEPG2 cells, Biol. Pharm. Bull. 34 (2011) 1613-1618. https://doi.org/10.1248/bpb.34.1613

[76]

R. Manikandan, R. Thiagarajan, S. Beulaja, et al., 1, 2-Di-substituted idopyranose from Vitex negundo L. Protects against streptozotocin-induced diabetes by inhibiting nuclear factor-kappa B and inducible nitric oxide synthase expression, Microsc. Res. Tech. 74 (2011) 301-307. https://doi.org/10.1002/jemt.20904

[77]

L.C. Lin, L.C. Lee, C. Huang, et al., Effects of boschnaloside from boschniakia rossica on dysglycemia and islet dysfunction in severely diabetic mice through modulating the action of glucagon-like peptide-1, Phytomedicine 62 (2019) 152946. https://doi.org/10.1016/j.phymed.2019.152946

[78]

J.P. Shieh, K.C. Cheng, H.H. Chung, et al., Plasma glucose lowering mechanisms of catalpol, an active principle from roots of Rehmannia glutinosa, in streptozotocin-induced diabetic rats, J. Agr. Food Chem. 59 (2011) 3747-3753. https://doi.org/10.1021/jf200069t

[79]

J. Yan, C. Wang, Y. Jin, et al., Catalpol ameliorates hepatic insulin resistance in type 2 diabetes through acting on AMPK/NOX4/PI3K/Akt pathway, Pharmacol. Res. 130 (2018) 466-480. https://doi.org/10.1016/j.phrs.2017.12.026

[80]

J. Peng, T.T. Zheng, X. Li, et al., Plant-derived alkaloids: The promising disease-modifying agents for inflammatory bowel disease, Front. Pharmacol. 10 (2019) 351. https://doi.org/10.3389/fphar.2019.00351

[81]

J. Yin, J. Ye, W. Jia, Effects and mechanisms of berberine in diabetes treatment, Acta. Pharm. Sin. B 2 (2012) 327-334. https://doi.org/10.1016/j.apsb.2012.06.003

[82]

W.J. Kong, H. Zhang, D.Q. Song, et al., Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin, Receptor Expression Metabolism 58 (2009) 109-119. https://doi.org/10.1016/j.metabol.2008.08.013

[83]

W.S. Kim, Y.S. Lee, S.H. Cha, et al., Berberine improves lipid dysregulation in obesity by controlling central and peripheral ampk activity, Am. J. Physiol. Endocrinol. Metab. 296 (2009) E812-E819. https://doi.org/10.1152/ajpendo.90710.2008

[84]

H. Xie, Q. Wang, X. Zhang, et al., Possible therapeutic potential of berberine in the treatment of STZ plus HFD-induced diabetic osteoporosis, Biomed. Pharmacother. 108 (2018) 280-287. https://doi.org/10.1016/j.biopha.2018.08.131

[85]

W. Chang, L. Chen, G.M. Hatch, Berberine as a therapy for type 2 diabetes and its complications: From mechanism of action to clinical studies, Biochem. Cell Biol. 93 (2015) 479-486. https://doi.org/10.1139/bcb-2014-0107

[86]

W. Zheng, L. Qiu, R. Wang, et al., Selective targeting of ppar gamma by the natural product chelerythrine with a unique binding mode and improved antidiabetic potency, Sci. Rep. UK. 5 (2015). https://doi.org/10.1038/srep12222

[87]

G. Selvaraj, S. Kaliamurthi, R. Thirugnasambandan, Effect of glycosin alkaloid from rhizophora apiculata in non-insulin dependent diabetic rats and its mechanism of action: in vivo and in silico studies, Phytomedicine 23 (2016) 632-640. https://doi.org/10.1016/j.phymed.2016.03.004

[88]

T. Wang, T. Kusudo, T. Takeuchi, et al., Evodiamine inhibits insulin-stimulated mTOR-S6K activation and IRS1 serine phosphorylation in adipocytes and improves glucose tolerance in obese/diabetic mice, PLoS One 8 (2013) e83264. https://doi.org/10.1371/journal.pone.0083264

[89]

O. Yoshinari, K. Igarashi, Anti-diabetic effect of trigonelline and nicotinic acid, on KK-A(y) mice, Curr. Med. Chem. 17 (2010) 2196-2202. https://doi.org/10.2174/092986710791299902

[90]

Z.Q. Liu, T. Liu, C. Chen, et al., Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HEPG2 cells and shows anti-diabetic effect in diabetic KKAy mice, Toxicol. Aool. Pharm. 285 (2015) 61-70. https://doi.org/10.1016/j.taap.2015.03.011

[91]

A. Maeda, T. Shirao, D. Shirasaya, et al., Piperine promotes glucose uptake through ros-dependent activation of the CaMKK/AMPK signaling pathway in skeletal muscle, Mol. Nutr. Food Res. 62 (2018) e1800086. https://doi.org/10.1002/mnfr.201800086

[92]

A.N. Panche, A.D. Diwan, S.R. Chandra, Flavonoids: an overview, J. Nutr. Sci. 5 (2016) e47. https://doi.org/10.1017/jns.2016.41

[93]

B. Singh, P. Kaur, Gopichand, et al., Biology and chemistry of Ginkgo biloba, Fitoterapia 79 (2008) 401-418. https://doi.org/10.1016/j.fitote.2008.05.007

[94]

H. Alkhalidy, W. Moore, A. Wang, et al., Kaempferol ameliorates hyperglycemia through suppressing hepatic gluconeogenesis and enhancing hepatic insulin sensitivity in diet-induced obese mice, J. Nutr. Biochem. 58 (2018) 90-101. https://doi.org/10.1016/j.jnutbio.2018.04.014

[95]

A.K. Keshari, G. Kumar, P.S. Kushwaha, et al., Isolated flavonoids from ficus racemosa stem bark possess antidiabetic, hypolipidemic and protective effects in albino wistar rats, J. Ethnopharmacol. 181 (2016) 252-262. https://doi.org/10.1016/j.jep.2016.02.004

[96]

M.M. Alam, D. Meerza, I. Naseem, Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice, Life Sci. 109 (2014) 8-14. https://doi.org/10.1016/j.lfs.2014.06.005

[97]

D.K. Yang, H.S. Kang, Anti-diabetic effect of cotreatment with quercetin and resveratrol in streptozotocin-induced diabetic rats, Biomol. Ther. (Seoul). 26 (2018) 130-138. https://doi.org/10.4062/biomolther.2017.254

[98]

A.K. Shetty, R. Rashmi, M.G.R. Rajan, et al., Antidiabetic influence of quercetin in streptozotocin-induced diabetic rats, Nrtr. Res. 24 (2004) 373-381. https://doi.org/10.1016/j.nutres.2003.11.010

[99]

I.M. Liu, T.F. Tzeng, S.S. Liou, et al., Improvement of insulin sensitivity in obese zucker rats by myricetin extracted from Abelmoschus moschatus, Planta Med. 73 (2007) 1054-1060. https://doi.org/10.1055/s-2007-981577

[100]

S. George, S.A. Nair, A.J. Johnson, et al., O-prenylated flavonoid, an antidiabetes constituent in melicope lunu-ankenda, J. Ethnopharmacol. 168 (2015) 158-163. https://doi.org/10.1016/j.jep.2015.03.060

[101]

Z. Fu, W. Zhang, W. Zhen, et al., Genistein induces pancreatic β-cell proliferation through activation of multiple signaling pathways and prevents insulin-deficient diabetes in mice, Endocrinology 151 (2010) 3026-3037. https://doi.org/10.1210/en.2009-1294

[102]

L.H. Cazarolli, P. Folador, H.H. Moresco, et al., Mechanism of action of the stimulatory effect of apigenin-6-c-(2"-O-α-L-rhamnopyranosyl)-β-L-fucopyranoside on C-14-glucose uptake, Chem. Bio. Interact. 179 (2009) 407-412. https://doi.org/10.1016/j.cbi.2008.11.012

[103]

L. Rossetti, D. Smith, G.I. Shulman, et al., Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats, J. Chin. Invest. 79 (1987) 1510-1515. https://doi.org/10.1172/jci112981

[104]

M.J. Son, M. Minakawa, Y. Miura, et al., Aspalathin improves hyperglycemia and glucose intolerance in obese diabetic ob/ob mice, Eur. J. Nutr. 52 (2013) 1607-1619. https://doi.org/10.1007/s00394-012-0466-6

[105]

C.P. Colturato, R.P. Constantin, A.S. Maeda et al., Metabolic effects of silibinin in the rat liver, Chem. Biol. Interact. 195 (2012) 119-132. https://doi.org/10.1016/j.cbi.2011.11.006

[106]

Y. Liu, Y.Q. Du, J.H. Wang, et al., Structural analysis and antioxidant activities of polysaccharide isolated from Jinqian mushroom, Int. J. Biol. Macromol. 64 (2014) 63-68. https://doi.org/10.1016/j.ijbiomac.2013.11.029

[107]

X.F. Bao, Z. Wang, J.N. Fang, et al., Structural features of an immunostimulating and antioxidant acidic polysaccharide from the seeds of cuscuta chinensis, Planta Medica. 68 (2002) 237-243. https://doi.org/10.1055/s-2002-23133

[108]

J. Lu, R. He, P. Sun, et al., Molecular mechanisms of bioactive polysaccharides from Ganoderma lucidum (lingzhi), a review, Int. J. Biol. Macromol. 150 (2020) 765-774. https://doi.org/10.1016/j.ijbiomac.2020.02.035

[109]

D. Cor, Z. Knez, M. Knez Hrncic, Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma lucidum terpenoids and polysaccharides: a review, Molecules 23 (2018). https://doi.org/10.3390/molecules23030649

[110]

Y. Liu, Y.Q. Du, J.H. Wang, et al., Structural analysis and antioxidant activities of polysaccharide isolated from jinqian mushroom, Int. J. Biol. Macromol. 64 (2014) 63-68. https://doi.org/10.1016/j.ijbiomac.2013.11.029

[111]

J. Zheng, B. Yang, Y. Yu, et al., Ganoderma lucidum polysaccharides exert anti-hyperglycemic effect on streptozotocin-induced diabetic rats through affecting beta-cells, Comb. Chem. High. T. Scr. 15 (2012) 542-550. https://doi.org/10.2174/138620712801619168

[112]

C. Xiao, Q.P. Wu, W. Cai, et al., Hypoglycemic effects of Ganoderma lucidum polysaccharides in type 2 diabetic mice, Arch. Pharm. Res. 35 (2012) 1793-1801. https://doi.org/10.1007/s12272-012-1012-z

[113]

C. Xiao, Q. Wu, J. Zhang, et al., Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice, J. Ethnopharmacol. 196 (2017) 47-57. https://doi.org/10.1016/j.jep.2016.11.044

[114]

Y. Chen, Y. Liu, M.M.R. Sarker, et al., Structural characterization and antidiabetic potential of a novel heteropolysaccharide from Grifola frondosa via IRS1/PI3K-JNK signaling pathways, Carbohydr. Polym. 198 (2018) 452-461. https://doi.org/10.1016/j.carbpol.2018.06.077

[115]

N. Yang, M. Zhao, B. Zhu, et al., Anti-diabetic effects of polysaccharides from Opuntia monacantha cladode in normal and streptozotocin-induced diabetic rats, Innov. Food Sci. Emerg. 9 (2008) 570-574. https://doi.org/10.1016/j.ifset.2007.12.003

[116]

J. Zhu, W. Liu, J. Yu, et al., Characterization and hypoglycemic effect of a polysaccharide extracted from the fruit of Lycium barbarum L, Carbohydr. Polym. 98 (2013) 8-16. https://doi.org/10.1016/j.carbpol.2013.04.057

[117]

J. Wang, W. Jin, W. Zhang, et al., Hypoglycemic property of acidic polysaccharide extracted from Saccharina japonica and its potential mechanism, Carbohydr. Polym. 95 (2013) 143-147. https://doi.org/10.1016/j.carbpol.2013.02.076

[118]

S.F. Nabavi, R. Thiagarajan, L. Rastrelli, et al., Curcumin: a natural product for diabetes and its complications, Curr. Top. Med. Chem. 15 (2015) 2445-2455. https://doi.org/10.2174/1568026615666150619142519

[119]

J. Xue, W. Ding, Y. Liu, Anti-diabetic effects of emodin involved in the activation of ppargamma on high-fat diet-fed and low dose of streptozotocin-induced diabetic mice, Fitoterapia 81 (2010) 173-177. https://doi.org/10.1016/j.fitote.2009.08.020

[120]
Y. Song, X. Fan, Z. Guo, et al., Therapeutic effects of emodin in type 2 diabetes mellitus in KKAy mouse model, Int. J. Clin. Exp. Med. https://doi.org/10 (2017) 14408-14413
[121]

S. Abu Eid, M. Adams, T. Scherer, et al., Emodin, a compound with putative antidiabetic potential, deteriorates glucose tolerance in rodents, Eur. J. Pharmacol. 798 (2017) 77-84. https://doi.org/10.1016/j.ejphar.2017.01.022

[122]

S. Zhang, Y. Ma, J. Li, et al., Molecular matchmaking between the popular weight-loss herb Hoodia gordonii and GPR119, a potential drug target for metabolic disorder, Proc. Natl. Acad. Sci. U.S.A. 111 (2014) 14571-14576. https://doi.org/10.1073/pnas.1324130111

[123]

H.S. Hansen, M.M. Rosenkilde, J.J. Holst, et al., GPR119 as a fat sensor, Trends Pharmacol. Sci. 33 (2012) 374-381. https://doi.org/10.1016/j.tips.2012.03.014

[124]

C.I. Chang, C.M. Hsu, T.S. Li, et al., Constituents of the stem of Cucurbita moschata exhibit antidiabetic activities through multiple mechanisms, J. Funct. Foods 10 (2014) 260-273. https://doi.org/10.1016/j.jff.2014.06.017

[125]

L. Chen, S. Zheng, M. Huang, et al., Β-ecdysterone from cyanotis arachnoidea exerts hypoglycemic effects through activating IRS-1/AKT/GLUT4 and IRS-1/AKT/GLUT2 signal pathways in KK-Ay mice, J. Funct. Foods 39 (2017) 123-132. https://doi.org/10.1016/j.jff.2017.09.061

[126]

M. Xiong, Y. Huang, Y. Liu, et al., Antidiabetic activity of ergosterol from Pleurotus ostreatus in KK-A(y) mice with spontaneous type 2 diabetes mellitus, Mol. Nutr. Food. Res. 62 (2018) https://doi.org/10.1002/mnfr.201700444

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 10 August 2021
Revised: 24 August 2021
Accepted: 10 November 2021
Published: 02 June 2022
Issue date: September 2022

Copyright

© 2022 Beijing Academy of Food Sciences.

Acknowledgements

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (U1802287, 32000280, and 31770391) and Ten Thousand Talents Plan of Yunnan Province for Industrial Technology Leading Talents.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return