Journal Home > Volume 11 , Issue 3

Oolong tea, partially fermented from Camellia sinensis leaves, exhibits significant antioxidative, anti-inflammatory, and anti-cancer activities as indicated in several in vitro and in vivo studies. However, studies on health promoting effects of oolong tea and its characteristic compounds are limited. The potential efficacy of bioactives derived from oolong tea and their roles as promising anticancer agents, their cardio-protective benefits during hypoxic conditions, effects in treating allergic disorders, potential prebiotic activities, improvement of blood lipid status in human beings, effectivity as oral hypoglycemic agent in the treatment of type 2 diabetes, and their potentials to reduce the risk of obesity have been discussed in this review. These promising studies mainly gained from animal studies might broaden the consumption and usage of the phenolic-enriched oolong tea and its products in food and pharmaceutical industries. However, potential health beneficial effects of oolong tea in humans should be further complemented by large-sized, randomized double-blind and placebo-controlled trials to consolidate potential therapeutic applications.


menu
Abstract
Full text
Outline
About this article

Multifunctional health-promoting effects of oolong tea and its products

Show Author's information Shuzhen WangaTing ZengbShuang ZhaoaYu ZhuaChangchun FengaJianfeng ZhanaShiming Lia( )Chi-Tang HocAlexander Gosslauc,d( )
Huanggang Normal University, College of Life Science; Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization; Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains; Hubei Zhongke Research Institute of Industrial Technology, Huanggang 438000, China
College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
Department of Food Science, Rutgers University, NJ 08901, USA
Department of Science (Biology), City University of New York, NY 10007, USA

Abstract

Oolong tea, partially fermented from Camellia sinensis leaves, exhibits significant antioxidative, anti-inflammatory, and anti-cancer activities as indicated in several in vitro and in vivo studies. However, studies on health promoting effects of oolong tea and its characteristic compounds are limited. The potential efficacy of bioactives derived from oolong tea and their roles as promising anticancer agents, their cardio-protective benefits during hypoxic conditions, effects in treating allergic disorders, potential prebiotic activities, improvement of blood lipid status in human beings, effectivity as oral hypoglycemic agent in the treatment of type 2 diabetes, and their potentials to reduce the risk of obesity have been discussed in this review. These promising studies mainly gained from animal studies might broaden the consumption and usage of the phenolic-enriched oolong tea and its products in food and pharmaceutical industries. However, potential health beneficial effects of oolong tea in humans should be further complemented by large-sized, randomized double-blind and placebo-controlled trials to consolidate potential therapeutic applications.

Keywords: Synergistic effects, Oolong tea, Anticancer potential, Antioxidative activity, Microbiota modulating activities

References(102)

[1]

H. Jiang, J.B. Xiao, A review on the structure-function relationship aspect of polysaccharides from tea materials, Crit. Rev. Food Sci. 55 (2015) 930-938. https://doi.org/10.1080/10408398.2012.678423

[2]

H. Zhang, R. Qi, Y. Mine, The impact of oolong and black tea polyphenols on human health, Food Biosci. 29 (2019) 55-61. https://doi.org/10.1016/j.fbio.2019.03.009

[3]

M.H. Pan, Y.S. Chiou, Y.J. Wang, et al., Multistage carcinogenesis process as molecular targets in cancer chemoprevention by epicatechin-3-gallate, Food Funct. 2(2011) 101. https://doi.org/10.1039/C0FO00174K

[4]

J. Ju, G. Lu, J.D. Lambert, et al., Inhibition of carcinogenesis by tea constituents, Semin. Cancer Biol. 17 (2007) 395. https://doi.org/10.1016/j.semcancer.2007.06.013

[5]

T. Theppakorn, A. Luthfivyyah, K. Ploysri, Simultaneous determination of caffeine and 8 catechins in oolong teas produced in Thailand, Int. Food Res. J. 21 (2014) 2055-2061

[6]

G.H. Chen, C.Y. Yang, S.J. Lee, et al., Catechin content and the degree of its galloylation in oolong tea are inversely correlated with cultivation altitude, J. Food Drug Anal. 22 (2014) 303-309. https://doi.org/10.1016/j.jfda.2013.12.001

[7]

L. Zeng, X. Zhou, X. Su, et al., Chinese oolong tea: an aromatic beverage produced under multiple stresses, Trends Food Sci. Tech. 106 (2020) 242-253. https://doi.org/10.1016/j.tifs.2020.10.001

[8]

K.W. Ng, Z.J. Cao, H.B. Chen, et al., Oolong tea: a critical review of processing methods, chemical composition, health effects and risk, Crit. Rev. Food Sci. 58 (2018) 2957-2980. https://doi.org/10.1080/10408398.2017.1347556

[9]

P.Y. Chen, S. Li, Y.C. Koh, et al., Oolong tea extract and citrus peel polymethoxyflavones reduce transformation of L-carnitine to trimethylamine-N-oxide and decrease vascular inflammation in L-carnitine feeding mice, J. Agric. Food Chem. 67 (2019) 7869-7879. https://doi.org/10.1021/acs.jafc.9b03092

[10]

T. Yi, L. Zhu, W.L. Peng, et al., Comparison of ten major constituents in seven types of processed tea using HPLC-DAD-MS followed by principal component and hierarchical cluster analysis, LWT-Food Sci. Technol. 62 (2015) 194-201. https://doi.org/10.1016/j.lwt.2015.01.003

[11]

K. Hosoda, M.F. Wang, M.L. Liao, et al., Antihyperglycemic effect of oolong tea in type 2 diabetes, Diabetes Care 26 (2003) 1714-1718. https://doi.org/10.2337/diacare.26.6.1714

[12]

Q. Fei, Y. Gao, X. Zhang, et al., Effects of oolong tea polyphenols, EGCG, and EGCG3″Me on pancreatic α-amylase activity in vitro, J. Agr. Food Chem. 62 (2014) 9507-9514. https://doi.org/10.1021/jf5032907

[13]

S.Y.V. Lee, J. Dou, J.Y.R. Chen, et al., Massive accumulation of gallic acid and unique occurrence of myricetin, quercetin, and kaempferol in preparing old oolong tea, J. Agr. Food Chem. 56 (2008) 7950-7956. https://doi.org/10.1021/jf801688b

[14]

H. Ishida, T. Wakimoto, Y. Kitao, et al., Quantitation of chafurosides A and B in tea leaves and isolation of prechafurosides A and B from oolong tea leaves, J. Agr. Food Chem. 57 (2009) 6779-6786. https://doi.org/10.1021/jf900032z

[15]

Y.H. Lo, Y.J. Chen, C.I. Chang, et al., Teaghrelins, unique acylated flavonoid tetraglycosides in chin-shin oolong tea, are putative oral agonists of the ghrelin receptor, J. Agr. Food Chem. 62 (2014) 5058-5091. https://doi.org/10.1021/jf501425m

[16]

H. Jiang, U.H. Engelhardt, C. Thräne, et al., Determination of flavonol glycosides in green tea, oolong tea and black tea by UHPLC compared to HPLC, Food Chem. 183 (2015) 30-35. https://doi.org/10.1016/j.foodchem.2015.03.024

[17]

X. Zhang, Z. Song, Y. You, et al., Phoenix dan cong tea: an oolong tea variety with promising antioxidant and in vitro anticancer activity, Food Nutr. Res. 62 (2018) 1-11. https://doi.org/10.29219/fnr.v62.1500

[18]

H. Zhang, R. Qi, Y. Mine, The impact of oolong and black tea polyphenols on human health, Food Biosci. 29 (2019) 55-61. https://doi.org/10.1016/j.fbio.2019.03.009

[19]

H. Qiu, Y. Kitamura, Y. Miyata, et al., Transepithelial transport of theasinensins through Caco-2 cell monolayers and their absorption in Sprague–Dawley rats after oral administration, J. Agr. Food Chem. 60 (2012) 8036-8043. https://doi.org/10.1021/jf302242n

[20]

W.L. Hung, G. Yang, Y.C. Wang, et al., Protective effects of theasinensin A against carbon tetrachloride-induced liver injury in mice, Food Funct. 8 (2017) 3276-3287. https://doi.org/10.1039/c7fo00700k

[21]

N. Sajilata, P.R. Bajaj, R. Singhal, Tea polyphenols as nutraceuticals, Compr. Rev. Food Sci. 7(3) (2008) 229-254. https://doi.org/10.1111/j.1541-4337.2008.00043.x

[22]

X. Zhang, Z. Wu, P. Weng, Antioxidant and hepatoprotective effect of (–)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3″Me) from Chinese oolong tea, J. Agr. Food Chem. 62 (2014) 10046-10054. https://doi.org/10.1021/jf5016335

[23]

S.P. Nie, M.Y. Xie, A review on the isolation and structure of tea polysaccharides and their bioactivities, Food Hydrocoll. 25 (2011) 144-149. https://doi.org/10.1016/j.foodhyd.2010.04.010

[24]

B. Chen, W. Zhou, M. Ning, et al., Evaluation of antitumour activity of tea carbohydrate polymers in hepatocellular carcinoma animals, Int. J. Biol. Macromol. 50 (2012) 1103-1108. https://doi.org/10.1016/j.ijbiomac.2012.03.001

[25]

H.X. Chen, Z.S. Qu, L.L. Fu, et al., Physicochemical properties and antioxidant capacity of 3 polysaccharides from green tea, oolong tea, and black tea, J. Food Sci. 74 (2009) 469-474. https://doi.org/10.1111/j.1750-3841.2009.01231.x

[26]

Y. Wang, S. Shao, X. Ping, et al., Fermentation process enhanced production and bioactivities of oolong tea polysaccharides, Food Res. Int. 46 (2012) 158-166. https://doi.org/10.1016/j.foodres.2011.11.027

[27]

H.J. Chien, M.M. Yang, W.C. Wang, et al., Proteomic analysis of "Oriental Beauty" oolong tea leaves with different degrees of leafhopper infestation, Rapid Commun. Mass Spectrom. 34(15) (2020) e8825. https://doi.org/10.1002/rcm.8825

[28]

K.H. Ekborg-Ott, A. Taylor, D.W. Armstrong, Varietal differences in the total and enantiomeric composition of theanine in tea, J. Agr. Food Chem. 45 (1997) 353-363. https://doi.org/10.1021/jf960432m

[29]

R. Horanni, U.H. Engelhardt, Determination of amino acids in white, green, black, oolong, pu-erh teas and tea products, J. Food Compos. Anal. 31 (2013) 94-100. https://doi.org/10.1016/j.jfca.2013.03.005

[30]

D. Türközü, N. Şanlier, L-theanine, unique amino acid of tea, and its metabolism, health effects, and safety, Crit. Rev. Food Sci. 57 (2015) 1681-1687. https://doi.org/10.1080/10408398.2015.1016141

[31]

M.A. Herrador, A.G. Gonzálea, Pattern recognition procedures for differentiation of green, black, and oolong teas according to their metal content from inductively coupled plasma atomic emission spectrometry, Talant 53 (2001) 1249-1257. https://doi.org/10.1016/S0039-9140(00)00619-6

[32]

W.S. Zhong, T. Ren, L.J. Zhao, Determination of Pb (Lead), Cd (Cadmium), Cr (Chromium), Cu (Copper), and Ni (Nickel) in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry, J. Food Drug Anal. 24 (2016) 46-55. https://doi.org/10.1016/j.jfda.2015.04.010

[33]

J. Dou, V.S. Lee, J.T. Tzen, et al., Identification and comparison of phenolic compounds in the preparation of oolong tea manufactured by semifermentation and drying processes, J. Agr. Food Chem. 55 (2007) 7462-7468. https://doi.org/10.1021/jf0718603

[34]

W. Guo, R. Hosoi, K. Sakata, et al., (S)-linalyl, 2-phenylethyl, and benzyl disaccharide glycosides isolated as aroma precursors from oolong tea leaves, Biosci, Biotech, Biech. 58 (1994) 1532-1534. https://doi.org/10.1271/bbb.58.1532

[35]

J.H. Moon, N. Watanabe, K. Sakata, et al., Trans- and cis-linalool 3,6-oxide 6-O-β-D-xylopyranosyl-β-D-glucopyranosides isolated as aroma precursors from leaves for oolong tea, Biosci. Biotech. Bioch. 58 (1994) 1742-1744. https://doi.org/10.1271/bbb.58.1532

[36]

K. Ogawa, Y. Ijima, W. Guo, et al., Purification of a β-primeverosidase concerned with alcoholic aroma formation in tea leaves (Cv. Shuixian) to be processed to oolong tea, J. Agr. Food Chem. 45 (1997) 877-882. https://doi.org/10.1021/jf960543l

[37]

S.D. Lv, Y.S. Wu, Y.F. Jiang, et al., Comparative analysis of aroma characteristics of oolong tea from different geographical eegions, Food Sci. 2 (2014) 28. https://doi.org/10.7506/spkx1002-6630-201402027

[38]

G. Isvoranu, M. Surcel, A.N. Munteanu, et al., Therapeutic potential of interleukin-15 in cancer (review), Exp. Ther. Med. 22 (2021) 1-6. https://doi.org/10.3892/etm.2021.10107

[39]

A.C. Palmer, P.K. Sorger, Combination cancer therapy can confer benefit via patient-to-patient variability without drug additivity or synergy, Cell 171 (2017) 1678-1691. https://doi.org/10.1016/j.cell.2017.11.009

[40]

A.H. Lee, D. Su, M. Pasalich, et al., Tea consumption reduces ovarian cancer risk, Cancer Epidemiol. 37 (2013) 54-59. https://doi.org/10.1016/j.canep.2012.10.003

[41]

H. Hibasami, Z.X. Jin, M. Hasegawa, et al., Oolong tea polyphenol extract induces apoptosis in human stomach cancer cells, Anticancer Res. 20 (2000) 4403-4406. https://doi.org/10.1097/00001813-200011000-00012

[42]

Y. Wang, D. Kong, Y. Gao, et al., Chemical characterization and bioactivity of phenolics from Tieguanyin oolong tea, J. Food Biochem. 43 (2019) e12894. https://doi.org/10.1111/jfbc.12894

[43]

H. Shi, J. Liu, Y. Tu, et al., Oolong tea extract induces dna damage and cleavage and inhibits breast cancer cell growth and tumorigenesis, Anticancer Res. 38 (2018) 6217-6223. https://doi.org/10.21873f/anticanres.12976

[44]

M.H. Pan, Y.C. Liang, S.Y. Lin-Shiau, et al., Induction of apoptosis by the oolong tea polyphenol theasinensin A through cytochrome C release and activation of caspase-9 and caspase-3 in human U937 cells, J. Agr. Food Chem. 48 (2000) 6337-6346. https://doi.org/10.1021/jf000777b

[45]

Z. Xue, J. Wang, Z. Chen, et al., Antioxidant, antihypertensive, and anticancer activities of the flavonoid fractions from green, oolong, and black tea infusion, J. Food Biochem. 42 (2018) e12690. https://doi.org/10.1111/jfbc.12690

[46]

J. Wang, W. Liu, Z. Chen, et al., Physicochemical characterization of the oolong tea polysaccharides with high molecular weight and their synergistic effects in combination with polyphenols on hepatocellular carcinoma, Biomed. Pharmacother. 90 (2017) 160-170. https://doi.org/10.1016/j.biopha.2017.03.059

[47]

Y. Yang, L. Qiao, X. Zhang, et al., Effect of methylated tea catechins from Chinese oolong tea on the proliferation and differentiation of 3T3-L1 preadipocyte, Fitoterapia 104 (2015) 45-49. https://doi.org/10.1016/j.fitote.2015.05.007

[48]

L. Zhang X. Zhang, M. Cheng, et al., Oolong tea polyphenols–phospholipids complex reduces obesity in high fat diet-induced mice model, Eur. J. Lipid Sci. Tech. 119 (2017) 1700062. https://doi.org/10.1002/ejlt.201600394

[49]

T. Hsu, A. Kusumoto, K. Abe, et al., Polyphenol-enriched oolong tea increases fecal lipid excretion, Eur. J. Clin. Nutr. 60 (2006) 1330. https://doi.org/10.1038/sj.ejcn.1602464

[50]

T. Komatsu, M. Nakamori, K. Komatsu, et al., Oolong tea increases energy metabolism in Japanese females, J. Med. Trial. 50 (2003) 170-175

[51]

K. Venkatakrishnan, H.F. Chiu, J.C. Cheng, et al., Comparative studies on the hypolipidemic, antioxidant and hepatoprotective activities of catechins enriched green and oolong tea in a double-blind clinical trial, Food Funct. 9 (2018) 1205-1213. https://doi.org/10.1039/c7fo01449j

[52]

D. Heber, Y. Zhang, J. Yang, et al., Green tea, black tea, and oolong tea polyphenols reduce visceral fat and inflammation in mice fed high-fat, high-sucrose obesogenic diets, J. Nutr. 144 (2014) 1385-1393. https://doi.org/10.3945/jn.114.191007

[53]

Y. Miyata, S. Tamaru, T. Tanaka, et al., Theflavins and theasinensin A derived from fermented tea have antihyperglycemic and hypotriacylglycerolemic effects in KKAy mice and Sprague–Dawley rats, J. Agr. Food Chem. 61 (2013) 9366-9372. https://doi.org/10.1021/jf400123y

[54]

M. Sano, M. Suzuki, T. Miyase, et al., Novel antiallergic catechin derivatives isolated from oolong tea, J. Agric. Food Chem. 47 (1999) 1906-1910. https://doi.org/10.1021/jf981114l

[55]

F.L. Pearce, A.D. Befus, J. Bienenstock, Mucosal mast cells. Ⅲ. Effect of quercetin and other flavonoids on antigen-induced histamine secretion from rat intestinal mast cells, J. Allergy Clin. Immunol. 73 (1984) 819-823. https://doi.org/10.1016/0091-6749(84)90453-6

[56]

T. Shiozaki, K. Sugiyama, K. Nakazato, et al., Effect of tea extracts, catechin and caffeine against type-Ⅰ allergic reaction, Yakugaku Zasshi 117 (1997) 448-454. https://doi.org/10.1016/S0165-6147(97)90635-0

[57]

N. Matsuo, K. Yamada, K. Shoji, et al., Effect of tea polyphenols on histamine release from rat basophilic leukemia (RBL-2H3) cells: the structure-inhibitory activity relationship, Allergy 52 (1997) 58-64. https://doi.org/10.1111/j.1398-9995.1997.tb02546.x

[58]

A. Hisanaga, H. Ishida, K. Sakao, et al., Anti-inflammatory activity and molecular mechanism of oolong tea theasinensin, Food Funct. 5 (2014) 1891-1897. https://doi.org/10.1039/c4fo00152d

[59]

A. Novilla, D.S. Djamhuri, B. Nurhayati, et al., Anti-inflammatory properties of oolong tea (Camellia sinensis) ethanol extract and epigallocatechin gallate in LPS-induced RAW 264.7 cells, Asian Pac. J. Trop. Bio. 7 (2017) 1005-1009. https://doi.org/10.1016/j.apjtb.2017.10.002

[60]

J. Liu, C.G. Meng, Y.H. Yan, et al., Structure, physical property and antioxidant activity of catechin grafted Tremella fuciformis polysaccharide, Int. J. Biol. Macromol. 82 (2016) 719-724. https://doi.org/10.1016/j.ijbiomac.2015.11.027

[61]

T. Guo, C. Ho, X. Zhang, et al., Oolong tea polyphenols ameliorate circadian rhythm of intestinal microbiome and liver clock genes in mouse model, J. Agr. Food Chem. 67 (2019) 11969-11976. https://doi.org/10.1021/acs.jafc.9b04869

[62]

T. Ooshima, T. Minami, M. Matsumoto, et al., Comparison of the cariostatic effects between regimens to administer oolong tea polyphenols in SPF rats, Caries Res. 32 (1998) 75-80. https://doi.org/10.1159/000016433

[63]

H. Sun, Y. Chen, M. Cheng, et al., The modulatory effect of polyphenols from green tea, oolong tea and black tea on human intestinal microbiota in vitro, J. Food Sci. Technol. 55 (2018) 399-407. https://doi.org/10.1007/s13197-017-2951-7

[64]

H. Sasaki, M. Matsumoto, T. Tanaka, et al., Antibacterial activity of polyphenol components in oolong tea extract against Streptococcus mutans, Caries Res. 38 (2004) 2-8. https://doi.org/10.1159/000073913

[65]

T. Hatano, M. Kusuda, M. Hori, et al., Theasinensin A, a tea polyphenol formed from (–)-epigallocatechin gallate, suppresses antibiotic resistance of methicillin-resistant Staphylococcus aureus, Planta Med. 69 (2003) 984-989. https://doi.org/10.1055/s-2003-45142

[66]

M. Chen, L. Zhai, M.C. Arendrup, In vitro activity of 23 tea extractions and epigallocatechin gallate against Candida species, Med. Mycol. 53 (2015) 194-198. https://doi.org/10.1093/mmy/myu073

[67]

Q. Wu, X. Ni, ROS-mediated DNA methylation pattern alterations in carcinogenesis, Curr. Drug Targets 16 (2015) 13-19. https://doi.org/10.2174/1389450116666150113121054

[68]

E. Panieri, M.M. Santoro, ROS homeostasis and metabolism: a dangerous liason in cancer cells, Cell Death Dis. 7 (2016) e2253. https://doi.org/10.1038/cddis.2016.105

[69]

D. Villaño, D. Lettieri-Barbato, F. Guadagni, et al., Effect of acute consumption of oolong tea on antioxidant parameters in healthy individuals, Food Chem. 132 (2012) 2102-2106. https://doi.org/10.1016/j.foodchem.2011.12.064

[70]

P.H. Tsai, N.B. Kan, S.C. Ho, et al., Effects of oolong tea supplementation on the exercise-induced lipid peroxidation and SOD activity of Rugby athletes, J. Food Sci. 70 (2005) S581-S585. https://doi.org/120.106.195.12/handle/310904600Q/3069

[71]

X. Su, J. Duan, Y. Jiang, et al., Effects of soaking conditions on the antioxidant potentials of oolong tea, J. Food Compos. Anal. 19 (2006) 348-353. https://doi.org/10.1016/j.jfca.2005.02.005

[72]

E. Sukhbold, S. Sekimoto, E. Watanabe, et al., Effects of oolonghomobisflavan A on oxidation of low-density lipoprotein, Biosci. Biotech. Bioch. 81 (2017) 1-7. https://doi.org/10.1080/09168451.2017.1314758

[73]

M.A. Shibu, C.H. Kuo, B.C. Chen, et al., Oolong tea prevents cardiomyocyte loss against hypoxia by attenuating p-JNK mediated hypertrophy and enhancing p-IGF1R, p-akt, and p-Badser136 activity and by fortifying NRF2 antioxidation system, Environ. Toxicol. 33 (2018) 220-233. https://doi.org/10.1002/tox.22510

[74]

P. Duan, J. Zhang, J. Chen, et al., Oolong tea drinking boosts calcaneus bone mineral density in postmenopausal women: a population-based study in southern China, Arch. Osteoporos. 15 (2020) 49. https://doi.org/10.1007/s11657-020-00723-6

[75]

X. Xie, Z.C. Tu, L. Zhang, et al., Antioxidant activity, α-glucosidase inhibition, and phytochemical fingerprints of Anoectochilus roxburghii formula tea residues with HPLC-QTOF-MS/MS, J. Food Biochem. 41 (2017) e12402. https://doi.org/10.1111/jfbc.12402

[76]

L. Chen, X. Yang, H. Jiao, Tea catechins protect against lead-induced cytotoxicity, lipid peroxidation, and membrane fluidity in HepG2 cells, Toxicol. Sci. 69 (2002) 149-156. https://doi.org/10.1093/toxsci/69.1.149

[77]

J.H. Lee, J.S. Shim, J.S. Lee, et al., Inhibition of pathogenic bacterial adhesion by acidic polysaccharide from green tea (Camellia sinensis), J. Agric. Food Chem. 54 (2006) 8717-8723. https://doi.org/10.1021/jf061603i

[78]

H.J. Kim, J.H. Ryu, C.H. Kim, Epicatechin gallate suppresses oxidative stress-induced MUC5AC overexpression by interaction with epidermal growth factor receptor, Am. J. Resp. Cell Mol. 43 (2010) 349-357. https://doi.org/10.1165/rcmb.2009-0205OC

[79]

D. Michaličková, T. Hrnčíř, N. Kutinová-Canová, et al., Targeting Keap1/Nrf2/ARE are signaling pathway in multiple sclerosis, Eur. J. Pharmacol. 873 (2020) 172973. https://doi.org/10.1016/j.ejphar.2020.172973

[80]

I. Collins, M.D. Garrett, Targeting the cell division cycle in cancer: CDK and cell cycle checkpoint kinase inhibitors, Curr. Opin. Pharmacol. 5 (2005) 366-373. https://doi.org/10.1016/j.coph.2005.04.009

[81]

E. Shaulian, AP-1 — the Jun proteins: oncogenes or tumor suppressors in disguise? Cell Signalling 22 (2010) 894-899. https://doi.org/10.1016/j.cellsig.2009.12.008

[82]

G. Liang, A. Tang, X. Lin, et al., Green tea catechins augment the antitumor activity of doxorubicin in an in vivo mouse model for chemoresistant liver cancer, Int. J. Oncol. 37 (2010) 111-123. https://doi.org/10.3892/ijo_00000659

[83]

X. Zhang, J. Li, Y. Li, et al., Anti-melanogenic effects of epigallocatechin-3-gallate (EGCG), epicatechin-3-gallate (ECG) and gallocatechin-3-gallate (GCG) via down-regulation of cAMP/CREB/MITF signaling pathway in B16F10 melanoma cells, Fitoterapia 145 (2020) 104634. https://doi.org/10.1016/j.fitote.2020.104634

[84]

L. Piwowarczyk, M. Stawny, D.T. Mlynarczyk, et al., Role of curcumin and (–)-epigallocatechin-3-O-gallate in bladder cancer treatment: a review, Cancers 12 (2020) 1801. https://doi.org/10.3390/cancers12071801

[85]

A. Sourabh, S.S. Kanwar, R.G. Sud, et al., Influence of phenolic compounds of Kangra tea [Camellia sinensis (L) O Kuntze] on bacterial pathogens and indigenous bacterial probiotics of Western Himalayas, Braz. J. Microbiol. 44 (2013) 709-715. https://doi.org/10.1590/S1517-83822013000300007

[86]

M. Friedman, C.E. Levin, S.U. Lee, et al., Stability of green tea catechins in commercial tea leaves during storage for 6 months, J. Food Sci. 74 (2009) H47. https://doi.org/10.1111/j.1750-3841.2008.01033.x

[87]

S. Kitagawa, T. Nabekura, S. Kamiyama, Inhibition of P-glycoprotein function by tea catechins in KB-C2 cells, J. Pharm. Pharmacol. 56 (2004) 1001-1005. https://doi.org/10.1211/0022357044003

[88]

M. Maeda-Yamamoto, H. Kawahara, N. Tahara, et al., Effects of tea polyphenols on the invasion and matrix metalloproteinases activities of human fibrosarcoma HT1080 cells, J. Agric. Food Chem. 47 (1999) 2350-2354. https://doi.org/10.1021/jf9811525

[89]

C. Chen, R. Yu, E.D. Owuor, et al., Activation of antioxidant response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death, Arch. Pharm. Res. 23 (2000) 605-612. https://doi.org/10.1007/BF02975249

[90]

C. Chu, Y. Wang, Y. Wang, et al., Evaluation of epigallocatechin-3-gallate (EGCG) modified collagen in guided bone regeneration (GBR) surgery and modulation of macrophage phenotype, Mater. Sci. Eng. C Mater. Biol. 99 (2019) 73-82. https://doi.org/10.1016/j.msec.2019.01.083

[91]

X. Wang, P. Jiang, P. Wang, et al., EGCG enhances cisplatin sensitivity by regulating expression of the copper and cisplatin influx transporter CTR1 in ovary cancer, PLoS One 10 (2015) 1-16. https://doi.org/10.1371/journal.pone.0125402

[92]

S. Wolfram, Y. Wang, F. Thielecke, Anti-obesity effects of green tea: from bedside to bench, Mol. Nutr. Food Res. 50 (2006) 176-187. https://doi.org/10.1002/mnfr.200500102

[93]

J. Qiu, K. Maekawa, Y. Kitamura, et al., Stimulation of glucose uptake by theasinensins through the AMP-activated protein kinase pathway in rat skeletal muscle cells, Biochem Pharmacol. 87 (2014) 344-351. https://doi.org/10.1016/j.bcp.2013.10.029

[94]

M.E. Stryjewski, G.R. Corey, Methicillin-resistant Staphylococcus aureus: an evolving pathogen. Clin. Infect. Dis. 58 (2014) S10-S19. https://doi.org/10.1093/cid/cit613

[95]

M. Friedman, Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas, Mol. Nutr. Food Res. 51(1) (2007) 116-134. https://doi.org/10.1002/mnfr.200600173

[96]

B.H. Lee, T.G. Nam, N.Y. Park, et al., Estimated daily intake of phenolics and antioxidants from green tea consumption in the Korean diet, Int. J. Food Sci. Nutr. 67 (2016) 344-352. https://doi.org/10.3109/09637486.2016.1153612

[97]

X.G. Su, J. Duan, Y.M. Jiang, et al., Polyphenolic profile and antioxidant activities of oolong tea infusion under various steeping conditions, Int. J. Mol. Sci. 8 (2007) 1196-1205. https://doi.org/10.3390/i8121196

[98]

J. Oliva, F. Bardag-Gorce, B. Tillman, et al., Protective effect of quercetin, EGCG, catechin and betaine against oxidative stress induced by ethanol in vitro, Exp. Mol. Pathol. 90 (2011) 295-299. https://doi.org/10.1016/j.yexmp.2011.02.006

[99]

Y. Xu, M. Zhang, T. Wu, et al., The anti-obesity effect of green tea polysaccharides, polyphenols and caffeine in rats fed with a high-fat diet, Food Funct. 6 (2015) 297-304. https://doi.org/10.1039/c4fo00970c

[100]

M. Monobe, K. Ema, F. Kato, et al., Immunostimulating activity of a crude polysaccharide derived from green tea (Camellia sinensis) extract, J. Agric. Food Chem. 56 (2008) 1423-1427. https://doi.org/10.1021/jf073127h

[101]

H. Chen, M. Zhang, B. Xie, Quantification of uronic acids in tea polysaccharide conjugates and their antioxidant properties, J. Agric. Food Chem. 52 (2004) 3333-3336. https://doi.org/10.1021/jf0349679

[102]

A. Oliveira, M. Pintado. In vitro evaluation of the effects of protein-polyphenol-polysaccharide interactions on (+)-catechin and cyanidin-3-glucoside bioaccessibility, Food Funct. 6 (2015) 3444-3453. https://doi.org/10.1039/c5fo00799b

Publication history
Copyright
Rights and permissions

Publication history

Received: 13 July 2021
Revised: 13 August 2021
Accepted: 15 August 2021
Published: 04 February 2022
Issue date: May 2022

Copyright

© 2022 Beijing Academy of Food Sciences.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return