Journal Home > Volume 11 , Issue 3

Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by cognitive decline and memory impairment. Many lines of evidence indicate that excessive β-amyloid peptide (Aβ) generation and aggregation play pivotal roles in the initiation of AD, leading to various biochemical alteration including oxidative damage, mitochondrial dysfunction, neuroinflammation, signaling pathway and finally resulting in neuronal death. AD has a complex pathogenic mechanism, and a single-target approach for anti-AD strategy is thus full of challenges. To overcome these limitations, the present study focused to review on one of multiple target-compounds, (–)-epigallocatechin-3-gallate (EGCG) for the prevention and treatment of AD. EGCG is a main bioactive polyphenol in green tea and has been reported to exert potent neuroprotective properties in a wide array of both cellular and animal models in AD. This review demonstrated multiple neuroprotective efficacies of EGCG by focusing on the involvement of Aβ-evoked damage and its Aβ regulation. Furthermore, to understand its mechanism of action on the brain, the permeability of the blood-brain barrier was also discussed.


menu
Abstract
Full text
Outline
About this article

Multifaceted neuroprotective effects of (-)-epigallocatechin-3-gallate (EGCG) in Alzheimer's disease: an overview of pre-clinical studies focused on β-amyloid peptide

Show Author's information Kumju YounaChi-Tang HobMira Juna,c( )
Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea
Department of Food Science, Rutgers University, NJ 08901, USA
Department of Health Sciences, The graduate School of Dong-A University, Busan 49315, Korea

Peer review under responsibility of KeAi Communications Co., Ltd.

Abstract

Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by cognitive decline and memory impairment. Many lines of evidence indicate that excessive β-amyloid peptide (Aβ) generation and aggregation play pivotal roles in the initiation of AD, leading to various biochemical alteration including oxidative damage, mitochondrial dysfunction, neuroinflammation, signaling pathway and finally resulting in neuronal death. AD has a complex pathogenic mechanism, and a single-target approach for anti-AD strategy is thus full of challenges. To overcome these limitations, the present study focused to review on one of multiple target-compounds, (–)-epigallocatechin-3-gallate (EGCG) for the prevention and treatment of AD. EGCG is a main bioactive polyphenol in green tea and has been reported to exert potent neuroprotective properties in a wide array of both cellular and animal models in AD. This review demonstrated multiple neuroprotective efficacies of EGCG by focusing on the involvement of Aβ-evoked damage and its Aβ regulation. Furthermore, to understand its mechanism of action on the brain, the permeability of the blood-brain barrier was also discussed.

Keywords: Alzheimer's disease, Neuroinflammation, Green tea, β-Amyloid peptide, EGCG

References(112)

[1]

L. Xing, H. Zhang, R. Qi, et al., Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols, J. Agric. Food Chem. 67 (2019) 1029-1043. https://doi.org/10.1021/acs.jafc.8b06146.

[2]

N. Khan, F. Afaq, M. Saleem, et al., Targeting multiple signaling pathways by green tea polyphenol (–)-epigallocatechin-3-gallate, Cancer Res. 66 (2006) 2500-2505.

[3]

C. Cabrera, R. Gimenez, M.C. Lopez, Determination of tea components with antioxidant activity, J. Agric. Food Chem. 51 (2003) 4427-4435. https://doi.org/10.1021/jf0300801.

[4]

I. Rady, H. Mohamed, M. Rady, et al., Cancer preventive and therapeutic effects of EGCG, the major polyphenol in green tea, Egypt. J. Basic Appl. Sci. 5 (2019) 1-23. https://doi.org/10.1016/j.ejbas.2017.12.001.

[5]

M. Isemura, N. Miyoshi, M. Pervin, et al., Green tea catechins for well-being and therapy: prospects and opportunities, Botanics 5 (2015) 85-96. https://doi.org/10.2147/BTAT.S91784.

[6]

T. Suzuki, M. Pervin, S. Goto, et al., Beneficial effects of tea and the green tea catechin epigallocatechin-3-gallate on obesity, Molecules 21 (2016) 1305. https://doi.org/10.3390/molecules21101305.

[7]

J.R. Carlson, B.A. Bauer, A. Vincent, et al., Reading the tea leaves: anticarcinogenic properties of (–)-epigallocatechin-3-gallate, Mayo Clin. Proc. 82 (2007) 725-732.

[8]

C.S. Yang, H. Wang, Cancer preventive activities of tea catechins, Molecules 21 (2016) 1679. https://doi.org/10.3390/molecules21121679.

[9]

S.Q. Chen, Z.S. Wang, Y.X. Ma, et al., Neuroprotective effects and mechanisms of tea bioactive components in neurodegenerative diseases, Molecules 23 (2018) 512. https://doi.org/10.3390/molecules23030512.

[10]

S. Kuriyama, A. Hozawa, K. Ohmori, et al., Green tea consumption and cognitive function: a cross-sectional study from the Tsurugaya Project, Am. J. Clin. Nutr. 83 (2006) 355-361. https://doi.org/10.1093/ajcn/83.2.355.

[11]

A.M. Haque, M. Hashimoto, M. Katakura, et al., Long-term administration of green tea catechins improves spatial cognition learning ability in rats, J. Nutr. 136 (2006) 1043-1047. https://doi.org/10.1093/jn/136.4.1043.

[12]

A.M. Haque, M. Hashimoto, M. Katakura, et al., Green tea catechins prevent cognitive deficits caused by Aβ1-40 in rats, J. Nutr. Biochem. 19 (2008) 619-626. https://doi.org/10.1016/j.jnutbio.2007.08.008.

[13]

K. Unno, F. Takabayashi, H. Yoshida, et al., Daily consumption of green tea catechin delays memory regression in aged mice, Biogerontology 8 (2007) 89-95. https://doi.org/10.1007/s10522-006-9036-8.

[14]

K. Ide, H. Yamada, N. Takuma, et al., Green tea consumption affects cognitive dysfunction in the elderly: a pilot study, Nutrients 6 (2014) 4032-4042. https://doi.org/10.3390/nu6104032.

[15]

P.H. Reddy, M.F. Beal, Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease, Trends Mol. Med. 14 (2008) 45-53. https://doi.org/10.1016/j.molmed.2007.12.002.

[16]

T.A. Bayer, O. Wirths, Intracellular accumulation of amyloid-beta - a predictor for synaptic dysfunction and neuron loss in Alzheimer's disease, Front. Aging Neurosci. 2 (2010) 8. https://doi.org/10.3389/fnagi.2010.00008.

[17]

D. Selkoe, E. Mandelkow, D. Holtzman, Deciphering Alzheimer disease, Cold Spring Harb. Perspect. Med. 2 (2012) a011460. https://doi.org/10.1101/cshperspect.a011460.

[18]

J. Hardy, D.J. Selkoe, The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics, Science 297 (2002) 353-356. https://doi.org/10.1126/science.1072994.

[19]

N.M. Hooper, A.J. Turner, The search for alpha-secretase and its potential as a therapeutic approach to Alzheimer s disease, Curr. Med. Chem. 9 (2002) 1107-1119. https://doi.org/10.2174/0929867023370121.

[20]

B. De Strooper, W. Annaert, Proteolytic processing and cell biological functions of the amyloid precursor protein, J. Cell. Sci. 113 (2000) 1857-1870. https://doi.org/10.1242/jcs.113.11.1857.

[21]

G. Evin, C. Hince, BACE1 as a therapeutic target in Alzheimer's disease: rationale and current status, Drug Aging 30 (2013) 755-764. https://doi.org/10.1007/s40266-013-0099-3.

[22]

S. Rossner, M. Beck, T. Stahl, et al., Constitutive overactivation of protein kinase C in guinea pig brain increases alpha-secretory APP processing without decreasing beta-amyloid generation, Eur. J. Neurosci. 12 (2000) 3191-3200. https://doi.org/10.1046/j.1460-9568.2000.00211.x.

[23]

C.M. Dobson, Protein folding and misfolding, Nature 426 (2003) 884-890. https://doi.org/10.1038/nature02261.

[24]

G.F. Chen, T.H. Xu, Y. Yan, et al., Amyloid beta: structure, biology and structure-based therapeutic development, Acta Pharmacol. Sin. 38 (2017) 1205-1235. https://doi.org/10.1038/aps.2017.28.

[25]

P. Arosio, T.P. Knowles, S. Linse, On the lag phase in amyloid fibril formation, Phys. Chem. Chem. Phys. 17 (2015) 7606-7618. https://doi.org/10.1039/C4CP05563B.

[26]

J.T. Jarrett, P.T. Lansbury, Seeding "one-dimensional crystallization" of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73 (1993) 1055-1058. https://doi.org/10.1016/0092-8674(93)90635-4.

[27]

S.S. El-Amouri, H. Zhu, J. Yu, et al., Neprilysin: an enzyme candidate to slow the progression of Alzheimer's disease, Am. J. Pathol. 172 (2008) 1342-1354. https://doi.org/10.2353/ajpath.2008.070620.

[28]

N. Iwata, Y. Takaki, S. Fukami, et al., Region-specific reduction of Aβ-degrading endopeptidase, neprilysin, in mouse hippocampus upon aging, J. Neurosci. Res. 70 (2002) 493-500. https://doi.org/10.1002/jnr.10390.

[29]

S.E. Hickman, E.K. Allison, J. El Khoury, Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer's disease mice, J. Neurosci. 28 (2008) 8354-8360. https://doi.org/10.1523/JNEUROSCI.0616-08.2008.

[30]

L. Fisk, N.N. Nalivaeva, J.P. Boyle, et al., Effects of hypoxia and oxidative stress on expression of neprilysin in human neuroblastoma cells and rat cortical neurons and astrocytes, Neurochem. Res. 32 (2007) 1741-1748. https://doi.org/10.1007/s11064-007-9349-2.

[31]

R. Russo, R. Borghi, W. Markesbery, et al., Neprylisin decreases uniformly in Alzheimer's disease and in normal aging, FEBS Lett. 579 (2005) 6027-6030. https://doi.org/10.1016/j.febslet.2005.09.054.

[32]

R. Deane, S.D. Yan, R.K. Submamaryan, et al., RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain, Nat. Med. 9 (2003) 907-913. https://doi.org/10.1038/nm890.

[33]

M. Shibata, S. Yamada, S.R. Kumar, et al., Clearance of Alzheimer's amyloid-β1-40 peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier, J. Clin. Invest. 106 (2000) 1489-1499. https://doi.org/10.1172/JCI10498.

[34]

R. Deane, Z. Wu, B.V. Zlokovic, RAGE (yin) versus LRP (yang) balance regulates Alzheimer amyloid β-peptide clearance through transport across the blood-brain barrier, Stroke 35 (2004) 2628-2631. https://doi.org/10.1161/01.STR.0000143452.85382.d1.

[35]

S.D. Yan, X. Chen, J. Fu, et al., RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease, Nature 382 (1996) 685-691. https://doi.org/10.1038/382685a0.

[36]

J.E. Donahue, S.L. Flaherty, C.E. Johanson, et al., RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease, Acta Neuropathol. 112 (2006) 405-415. https://doi.org/10.1007/s00401-006-0115-3.

[37]

M.C. Miller, R. Tavares, C.E. Johanson, et al., Hippocampal RAGE immunoreactivity in early and advanced Alzheimer's disease, Brain Res. 1230 (2008) 273-280. https://doi.org/10.1016/j.brainres.2008.06.124.

[38]

M. Ries, M. Sastre, Mechanisms of Aβ clearance and degradation by glial cells, Front. Aging Neurosci. 8 (2016) 160. https://doi.org/10.3389/fnagi.2016.00160.

[39]

E. Tönnies, E. Trushina, Oxidative stress, synaptic dysfunction, and Alzheimer's disease, J. Alzheimers Dis. 57 (2017) 1105-1121. https://doi.org/10.3233/JAD-161088.

[40]

R. von Bernhardi, L. Eugenín-von Bernhardi, J. Eugenín, Microglial cell dysregulation in brain aging and neurodegeneration, Front. Aging Neurosci. 7 (2015) 124. https://doi.org/10.3389/fnagi.2015.00124.

[41]

D. Praticò, Oxidative stress hypothesis in Alzheimer's disease: a reappraisal, Trends Pharmacol. Sci. 29 (2008) 609-615. https://doi.org/10.1016/j.tips.2008.09.001.

[42]

T. Liu, L. Zhang, D. Joo, et al., NF-κB signaling in inflammation, Signal. Transduct. Target. Ther. 2 (2017) 17023. https://doi.org/10.1038/sigtrans.2017.23.

[43]

S. Giridharan, M. Srinivasan, Mechanisms of NF-κB p65 and strategies for therapeutic manipulation, J. Inflamm. Res. 11 (2018) 407-419. https://doi.org/10.2147/JIR.S140188.

[44]

R.H. Shin, C.Y. Wang, C.M. Yang, NF-κB signaling pathways in neurological inflammation: a mini review, Front. Mol. Neurosci. 8 (2015) 77. https://doi.org/10.3389/fnmol.2015.00077.

[45]

S. Abbas, M. Wink, Epigallocatechin gallate inhibits beta amyloid oligomerization in Caenorhabditis elegans and affects the daf-2/insulin-like signaling pathway, Phytomedicine 17 (2010) 902-909. https://doi.org/10.1016/j.phymed.2010.03.008.

[46]

Q. Li, M. Gordon, J. Tan, Oral administration of green tea epigallocatechin-3-gallate (EGCG) reduces amyloid beta deposition in transgenic mouse model of Alzheimer's disease, Exp. Neurol. 198 (2006) 576. https://doi.org/10.1016/j.expneurol.2006.02.062.

[47]

C.L. Lin, T.F. Chen, M.J. Chiu, et al., Epigallocatechin gallate (EGCG) suppresses beta-amyloid-induced neurotoxicity through inhibiting c-Abl/FE65 nuclear translocation and GSK3 beta activation, Neurobiol. Aging 30 (2009) 81-92. https://doi.org/10.1016/j.neurobiolaging.2007.05.012.

[48]

Y. Levites, T. Amit, S. Mandel, et al., Neuroprotection and neurorescue against Abeta toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (–)-epigallocatechin-3-gallate, FASEB J. 17 (2003) 952-954. https://doi.org/10.1096/fj.02-0881fje.

[49]

K. Rezai-Zadeh, D. Shytle, N. Sun, et al., Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice, J. Neurosci. 25 (2005) 8807-8814. https://doi.org/10.1523/JNEUROSCI.1521-05.2005.

[50]

K. Rezai-Zadeh, G.W. Arendash, H. Hou, et al., Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice, Brain Res. 1214 (2008) 177-187. https://doi.org/10.1016/j.brainres.2008.02.107.

[51]

B. Giunta, H. Hou, Y. Zhu, et al., Fish oil enhances anti-amyloidogenic properties of green tea EGCG in Tg2576 mice, Neurosci. Lett. 471 (2010) 134-138. https://doi.org/10.1016/j.neulet.2010.01.026.

[52]

T.M. Allinson, E.T. Parkin, A.J. Turner, et al., ADAMs family members as amyloid precursor protein alpha-secretases, J. Neurosci. Res. 74 (2003) 342-352. https://doi.org/10.1002/jnr.10737.

[53]

K.J. Garton, P.J. Gough, C.P. Blobel, et al., Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1), J. Biol. Chem. 276 (2001) 37993-38001. https://doi.org/10.1074/jbc.M106434200.

[54]

M. Qian, X. Shen, H. Wang, The distinct role of ADAM17 in APP proteolysis and microglial activation related to Alzheimer's disease, Cell. Mol. Neurobiol. 36 (2016) 471-482. https://doi.org/10.1007/s10571-015-0232-4.

[55]

D.C. Lee, S.W. Sunnarborg, C.L. Hinkle, et al., TACE/ADAM17 processing of EGFR ligands indicates a role as a physiological convertase, Ann. N. Y. Acad. Sci. 995 (2003) 22-38. https://doi.org/10.1111/j.1749-6632.2003.tb03207.x.

[56]

D.F. Obregon, K. Rezai-Zadeh, Y. Bai, et al., ADAM10 activation is required for green tea (–)-epigallocatechin-3-gallate-induced alpha-secretase cleavage of amyloid precursor protein, J. Biol. Chem. 281 (2006) 16419-16427.

[57]

A. Anders, S. Gilbert, W. Garten, et al., Regulation of the alpha-secretase ADAM10 by its prodomain and proprotein convertases, FASEB J. 15 (2001) 1837-1839. https://doi.org/10.1096/fj.01-0007fje.

[58]

L. Reznichenko, T. Amit, H. Zheng, et al., Reduction of iron-regulated amyloid precursor protein and beta-amyloid peptide by (–)-epigallocatechin-3-gallate in cell cultures: implications for iron chelation in Alzheimer's disease, J. Neurochem. 97 (2006) 527-536. https://doi.org/10.1111/j.1471-4159.2006.03770.x.

[59]

J.W. Fernandez, K. Rezai-Zadeh, D. Obregon, et al., EGCG functions through estrogen receptor-mediated activation of ADAM10 in the promotion of non-amyloidogenic processing of APP, FEBS Lett. 584 (2010) 4259-4267. https://doi.org/10.1016/j.febslet.2010.09.022.

[60]

L. Xicota, J. Rodriguez-Morato, M. Dierssen, et al., Potential role of (–)-Epigallocatechin-3-Gallate (EGCG) in the secondary prevention of Alzheimer disease, Curr. Drug Targets 18 (2017) 174-195.

[61]

S.Y. Jeon, K. Bae, Y.H. Seong, et al., Green tea catechins as a BACE1 (beta-secretase) inhibitor, Bioorg. Med. Chem. Lett. 13 (2003) 3905-3908. https://doi.org/10.1016/j.bmcl.2003.09.018.

[62]

Y. Shimmyo, T. Kihara, A. Akaike, et al., Epigallocatechin-3-gallate and curcumin suppress amyloid beta-induced beta-site APP cleaving enzyme-1 upregulation, Neuroreport 19 (2008) 1329-1333.

[63]

J.W. Lee, Y.K. Lee, J.O. Ban, et al., Green tea (–)-epigallocatechin-3-gallate inhibits β-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-κB pathways in mice, J. Nutr. 139 (2009) 1987-1993. https://doi.org/10.3945/jn.109.109785.

[64]

Y.K. Lee, D.Y. Yuk, J.W. Lee, et al., (–)-Epigallocatechin-3-gallate prevents lipopolysaccharide-induced elevation of beta-amyloid generation and memory deficiency, Brain Res. 1250 (2009) 164-174. https://doi.org/10.1016/j.brainres.2008.10.012.

[65]

Y.J. Lee, D.Y. Choi, Y.P. Yun, et al., Epigallocatechin-3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties, J. Nutr. Biochem. 24 (2013) 298-310. https://doi.org/10.1016/j.jnutbio.2012.06.011.

[66]

M.A. Leissring, M.P. Murphy, T.R. Mead, et al., A physiologic signaling role for the gamma-secretase-derived intracellular fragment of APP, Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 4697-4702. https://doi.org/10.1073/pnas.072033799.

[67]

K. Andrich, J. Bieschke, The effect of (–)-epigallo-catechin-(3)-gallate on amyloidogenic proteins suggests a common mechanism, Adv. Exp. Med. Biol. 863 (2015) 139-161. https://doi.org/10.1007/978-3-319-18365-7_7.

[68]

M. Cascella, S. Bimonte, M.R. Muzio, et al., The efficacy of epigallocatechin-3-gallate (green tea) in the treatment of Alzheimer's disease: an overview of pre-clinical studies and translational perspectives in clinical practice, Infect. Agent. Cancer 12 (2017) 36. https://doi.org/10.1186/s13027-017-0145-6.

[69]

C. Soto, E.M. Sigurdsson, L. Morelli, et al., Beta-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer's therapy, Nat. Med. 4 (1998) 822-826. https://doi.org/10.1038/nm0798-822.

[70]

F.E. Cohen, J.W. Kelly, Therapeutic approaches to protein-misfolding diseases, Nature 426 (2003) 905-909. https://doi.org/10.1038/nature02265.

[71]

C. Haass, D.J. Selkoe, Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide, Nat. Rev. Mol. Cell Biol. 8 (2007) 101-112. https://doi.org/10.1038/nrm2101.

[72]

W. Hunstein, Epigallocathechin-3-gallate in AL amyloidosis: a new therapeutic option? Blood 110 (2007) 2216. https://doi.org/10.1182/blood-2007-05-089243.

[73]

J. Bieschke, R.P. Russ, R.P. Friedrich, et al., EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular toxicity, Proc. Natl. Acad. Sci. U.S.A. 107 (2010) 7710-7715. https://doi.org/10.1073/pnas.0910723107

[74]

G. Grelle, A. Otto, M. Lorenz, et al., Black tea theaflavins inhibit formation of toxic amyloid-beta and alpha-synuclein fibrils, Biochemistry 50 (2011) 10624-10636. https://doi.org/10.1021/bi2012383.

[75]

A.J. Gauci, M. Caruana, A. Giese, et al., Identification of polyphenolic compounds and black tea extract as potent inhibitors of lipid membrane destabilization by Aβ42 aggregates, J. Alzheimers Dis. 27 (2011) 767-779. https://doi.org/10.3233/JAD-2011-111061.

[76]

F.L. Palhano, J. Lee, N.P. Grimster, et al., Toward the molecular mechanism(s) by which EGCG treatment remodels mature amyloid fibrils, J. Am. Chem. Soc. 135 (2013) 7503-7510. https://doi.org/10.1021/ja3115696.

[77]

N. Lorenzen, S.B. Nielsen, Y. Yoshimura, et al., How epigallocatechin gallate can inhibit α-synuclein oligomer toxicity in vitro, J. Biol. Chem. 289 (2014) 21299-21310. https://doi.org/10.1074/jbc.M114.554667.

[78]

D.E. Ehrnhoefer, M. Duennwald, P. Markovic, et al., Green tea (–)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington's disease models, Hum. Mol. Genet. 15 (2006) 2743-2751. https://doi.org/10.1093/hmg/ddl210.

[79]

F. Meng, A. Abedini, A. Plesner, et al., The flavanol (–)-epigallocatechin 3-gallate inhibits amyloid formation by islet amyloid polypeptide, disaggregates amyloid fibrils, and protects cultured cells against IAPP-induced toxicity, Biochemistry 49 (2010) 8127-8133. https://doi.org/10.1021/bi100939a.

[80]

N. Ferreira, M.J. Saraiva, M.R. Almeida, Natural polyphenols inhibit different steps of the process of transthyretin (TTR) amyloid fibril formation, FEBS Lett. 585 (2011) 2424-2430. https://doi.org/10.1016/j.febslet.2011.06.030.

[81]

J.M. Lopez del Amo, U. Fink, M. Dasari, et al., Structural properties of EGCG-induced, nontoxic Alzheimer's disease Abeta oligomers, J. Mol. Biol. 421(2012) 517-524. https://doi.org/10.1016/j.jmb.2012.01.013.

[82]

D.E. Ehrnhoefer, J. Bieschke, A. Boeddrich, et al., EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers, Nat. Struct. Mol. Biol. 15 (2008) 558–566. https://doi.org/10.1038/nsmb.1437.

[83]

X.R. Cheng, B.Y. Hau, A.J. Veloso, et al., Surface plasmon resonance imaging of amyloid-β aggregation kinetics in the presence of epigallocatechin gallate and metals, Anal. Chem. 85 (2013) 2049-2055. https://doi.org/10.1021/ac303181q.

[84]

S.J. Hyung, A.S. DeToma, J.R. Brender, et al., Insights into anti-amyloidogenic properties of the green tea extract (–)-epigallocatechin-3-gallate toward metal-associated amyloid-β species, Proc. Natl. Acad. Sci. U.S.A. 110 (2013) 3743-3748. https://doi.org/10.1073/pnas.1220326110.

[85]

B. Zhang, X.R. Cheng, I.S. da Silva, et al., Electroanalysis of the interaction between (–)-epigallocatechin-3-gallate (EGCG) and amyloid-β in the presence of copper, Metallomics 5 (2013) 259-264. https://doi.org/10.1039/c3mt20106f.

[86]

F.F. Liu, X.Y. Dong, L. He, et al., Molecular insight into conformational transition of amyloid β-peptide 42 inhibited by (–)-epigallocatechin-3-gallate probed by molecular simulations, J. Phys. Chem. B. 115 (2011) 11879-11887. https://doi.org/10.1021/jp202640b.

[87]

S.H. Wang, F.F. Liu, X.X. Dong, et al., Thermodynamic analysis of the molecular interactions between amyloid beta-peptide 42 and (–)-epigallocatechin-3-gallate, J. Phys. Chem. B. 114 (2010) 11576-11583. https://doi.org/10.1021/jp1001435.

[88]

S.H. Wang, X.Y. Dong, Y. Sun, Thermodynamic analysis of the molecular interactions between amyloid beta-protein fragments and (–)-epigallocatechin-3-gallate, J. Phys. Chem. B. 116 (2012) 5803-5809.

[89]

P. Nguyen, P. Derreumaux, Understanding amyloid fibril nucleation and Aβ oligomer/drug interactions from computer simulations, Acc. Chem. Res. 47 (2014) 603-611. https://doi.org/10.1021/ar4002075.

[90]

T. Zhang, J. Zhang, P. Derreumaux, et al., Molecular mechanism of the inhibition of EGCG on the Alzheimer Aβ (1-42) dimer, J. Phys. Chem. B 117 (2013) 3993-4002. https://doi.org/10.1021/jp312573y.

[91]

R. Ahmed, B. VanSchouwen, N. Jafari, et al., Molecular mechanism for the (–)-epigallocatechin gallate-induced toxic to nontoxic remodeling of Aβ oligomers, J. Am. Chem. Soc. 139 (2017) 13720-13734. https://doi.org/10.1021/jacs.7b05012.

[92]

C. Zhan, Y. Chen, Y. Tang, et al., Green tea extracts EGCG and EGC display distinct mechanisms in disrupting Aβ42 protofibril, ACS Chem. Neurosci. 11 (2020) 1841-1851. https://doi.org/10.1021/acschemneuro.0c00277.

[93]

F. Tavanti, A. Pedone, M.C. Menziani, Insights into the effect of curcumin and (–)-epigallocatechin-3-gallate on the aggregation of Aβ (1-40) monomers by means of molecular dynamics, Int. J. Mol. Sci. 21 (2020) 5462. https://doi.org/10.3390/ijms21155462.

[94]

M.F. Melzig, M. Janka, Enhancement of neutral endopeptidase activity in SK-N-SH cells by green tea extract, Phytomedicine 10 (2003) 494-498. https://doi.org/10.1078/094471103322331449.

[95]

N. Yamamoto, M. Shibata, R. Ishikuro, et al., Epigallocatechin gallate induces extracellular degradation of amyloid β-protein by increasing neprilysin secretion from astrocytes through activation of ERK and PI3K pathways, Neuroscience 362 (2017) 70-78. https://doi.org/10.1016/j.neuroscience.2017.08.030.

[96]

X. Chang, C. Rong, Y. Chen, et al., (–)-Epigallocatechin-3-gallate attenuates cognitive deterioration in Alzheimer's disease model mice by upregulating neprilysin expression, Exp. Cell Res. 334 (2015) 136-145. https://doi.org/10.1016/j.yexcr.2015.04.004.

[97]

Y.T. Choi, C.H. Jung, S.R. Lee, et al., The green tea polyphenol (–)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons, Life Sci. 70 (2001) 603-614. https://doi.org/10.1016/S0024-3205(01)01438-2.

[98]

C.Y. Kim, C. Lee, G.H. Park, et al., Neuroprotective effect of epigallocatechin-3-gallate against β-amyloid-induced oxidative and nitrosative cell death via augmentation of antioxidant defense capacity, Arch. Pharmacal. Res. 32 (2009) 869-881. https://doi.org/10.1007/s12272-009-1609-z.

[99]

N. Dragicevic, A. Smith, X., Lin, et al., Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce Alzheimer's amyloid-induced mitochondrial dysfunction, J. Alzheimers. Dis. 26 (2011) 507-521. https://doi.org/10.3233/JAD-2011-101629.

[100]

S.J. Kim, H.J. Jeong, K.M. Lee, et al., Epigallocatechin-3-gallate suppresses NF-kappaB activation and phosphorylation of p38 MAPK and JNK in human astrocytoma U373MG cells, J. Nutr. Biochem. 18 (2007) 587-596. https://doi.org/10.1016/j.jnutbio.2006.11.001.

[101]

C.C. Wei, H.C. Huang, W.J. Chen, et al., Epigallocatechin gallate attenuates amyloid β-induced inflammation and neurotoxicity in EOC 13.31 microglia, Eur. J. Pharmacol. 770 (2016) 16-24. https://doi.org/10.1016/j.ejphar.2015.11.048.

[102]

Z.X. Zhang, Y.B. Li, R.P. Zhao, Epigallocatechin gallate attenuates β-amyloid generation and oxidative stress involvement of PPARγ in N2a/APP695 Cells, Neurochem. Res. 42 (2017) 468-480. https://doi.org/10.1007/s11064-016-2093-8.

[103]

X. Zhong, M. Liu, W. Yao, et al., Epigallocatechin-3-gallate attenuates microglial inflammation and neurotoxicity by suppressing the activation of canonical and noncanonical inflammasome via TLR4/NF-kappaB pathway, Mol. Nutr. Food Res. 63 (2019) e1801230. https://doi.org/10.1002/mnfr.201801230.

[104]

T. Kohri, N. Matsumoto, M. Yamakawa, et al., Metabolic fate of (–)-[4-3H]epigallocatechin gallate in rats after oral administration, J. Agric. Food Chem. 49 (2001) 4102-4112. https://doi.org/10.1021/jf001491+.

[105]

K. Nakagawa, S. Okuda, T. Miyazawa, Dose-dependent incorporation of tea catechins, (–)-epigallocatechin-3-gallate and (–)-epigallocatechin, into human plasma, Biosci. Biotechnol. Biochem. 61 (1997) 1981-1985. https://doi.org/10.1271/bbb.61.1981.

[106]

T. Unno, T. Takeo, Absorption of (–)-epigallocatechin gallate into the circulation system of rats, Biosci. Biotechnol. Biochem. 59 (1995) 1558-1559. https://doi.org/10.1271/bbb.59.1558.

[107]

L. Chen, M.J. Lee, H. Li, et al., Absorption, distribution, elimination of tea polyphenols in rats, Drug Metab. Dispos. 25 (1997) 1045-1050.

[108]

M.J. Lee, P. Maliakal, L. Chen, et al., Pharmacokinetics of tea catechins after ingestion of green tea and (–)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability, Cancer Epidemiol. Biomarkers Prev. 11 (2002) 1025-1032.

[109]

M. Suganuma, S. Okabe, M. Oniyama, et al., Wide distribution of [3H](–)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue, Carcinogenesis 19 (1998) 1771-1776. https://doi.org/10.1093/carcin/19.10.1771.

[110]

L.C. Lin, M.N. Wang, T.Y. Tseng, et al., Pharmacokinetics of (–)-epigallocatechin-3-gallate in conscious and freely moving rats and its brain regional distribution, J. Agric. Food Chem. 55 (2007) 1517-1524. https://doi.org/10.1021/jf062816a.

[111]

M. Pervin, K. Unno, A. Nakagawa, et al., Blood brain barrier permeability of (–)-epigallocatechin gallate, its proliferation-enhancing activity of human neuroblastoma SH-SY5Y cells, and its preventive effect on age-related cognitive dysfunction in mice, Biochem. Biophys. Rep. 9 (2017) 180-186. https://doi.org/10.1016/j.bbrep.2016.12.012.

[112]

B.B. Wei, M.Y. Liu, X. Zhong, et al., Increased BBB permeability contributes to EGCG-caused cognitive function improvement in natural aging rats: pharmacokinetic and distribution analyses, Acta Pharmacol. Sin. 40 (2019) 1490-1500. https://doi.org/10.1038/s41401-019-0243-7.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 06 January 2021
Revised: 02 March 2021
Accepted: 16 March 2021
Published: 04 February 2022
Issue date: May 2022

Copyright

© 2022 Beijing Academy of Food Sciences.

Acknowledgements

This research was supported by Dong-A University.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return