Journal Home > Volume 11 , Issue 1

Although monosodium glutamate (MSG) is a widely used food additive, its safety and systemic side effects have not been fully clarified. The intestinal flora is closely associated with human health; however, it remains unclear whether MSG consumption can affect health by acting on the intestinal flora. In this study, serum biomarkers, intestinal structure, intestinal immunity, and intestinal flora were examined to investigate the effects of different doses of sodium glutamate on the body, intestinal function, and intestinal flora of mice. The results showed that 30mg/kg MSG had no significant effect on serum C-reactive protein, trimethylamine N-oxide, angiotensin II, intestinal interleukin (IL)-1β, IL-6, tumor necrosis factor-α, secretory IgA and fecal albumin in mice, but also promoted intestinal development and regulated the intestinal flora. Moreover, 1500 mg/kg MSG increased the risk of cardiovascular disease and damaged the intestinal structure and flora. In this study, MSG was also found to be healthier than salt at the equivalent sodium concentration. Collectively, these findings suggested that low doses of MSG were safe for mice and may have some health benefits as a probiotic by promoting intestinal development and regulating the intestinal flora.


menu
Abstract
Full text
Outline
About this article

Safety assessment of monosodium glutamate based on intestinal function and flora in mice

Show Author's information Jinzhao XuMengqi TangYini LiuJinghan XuXiaoxi Xu( )
Key Laboratory of Dairy Science, Ministry of Education/College of Food Science, Northeast Agricultural University, Harbin 150030, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Abstract

Although monosodium glutamate (MSG) is a widely used food additive, its safety and systemic side effects have not been fully clarified. The intestinal flora is closely associated with human health; however, it remains unclear whether MSG consumption can affect health by acting on the intestinal flora. In this study, serum biomarkers, intestinal structure, intestinal immunity, and intestinal flora were examined to investigate the effects of different doses of sodium glutamate on the body, intestinal function, and intestinal flora of mice. The results showed that 30mg/kg MSG had no significant effect on serum C-reactive protein, trimethylamine N-oxide, angiotensin II, intestinal interleukin (IL)-1β, IL-6, tumor necrosis factor-α, secretory IgA and fecal albumin in mice, but also promoted intestinal development and regulated the intestinal flora. Moreover, 1500 mg/kg MSG increased the risk of cardiovascular disease and damaged the intestinal structure and flora. In this study, MSG was also found to be healthier than salt at the equivalent sodium concentration. Collectively, these findings suggested that low doses of MSG were safe for mice and may have some health benefits as a probiotic by promoting intestinal development and regulating the intestinal flora.

Keywords: Intestinal flora, Monosodium glutamate, Safety assessment, Intestinal inflammation

References(52)

[1]

A. Zanfirescu, A. Ungurianu, A. Tsatsakis, et al., A review of the alleged health hazards of monosodium glutamate, Compr. Rev. Food Sci. Food Saf. 18 (2019) 1111-1134. http://doi.org/10.1111/1541-4337.12448.

[2]

R.A.R. Rocha, M.N. Ribeiro, G.A. Silva, et al., Temporal profile of flavor enhancers MAG, MSG, GMP, and IMP, and their ability to enhance salty taste, in different reductions of sodium chloride, J. Food Sci. 85 (2020) 1565-1575. http://doi.org/10.1111/1750-3841.15121.

[3]

A.B. Pekmezekmek, M. Emre, E. Tunc, et al., L-Glutamic acid monosodium salt reduces the harmful effect of lithium on the development of Xenopus laevis embryos, Environ. Sci. Pollut. Res. Int. 27 (2020) 42124-42132. http://doi.org/10.1007/s11356-020-10155-x.

[4]

K. Niaz, E. Zaplatic, J. Spoor, Extensive use of monosodium glutamate: a threat to public health?, EXCLI J. 17 (2018) 273-278. http://doi.org/10.17179/excli2018-1092.

[5]

S. Wang, B.D. Tonnis, M.L. Wang, et al., Investigation of monosodium glutamate alternatives for content of umami substances and their enhancement effects in chicken soup compared to monosodium glutamate, J. Food Sci. 84 (2019) 3275-3283. http://doi.org/10.1111/1750-3841.14834.

[6]

R. Walker, J.R. Lupien, The safety evaluation of monosodium glutamate, J. Nutr. 130 (2000) 1049S-1052S. http://doi.org/10.1093/jn/130.4.1049S.

[7]

EFSA Panel of Food Additives and Nutrient Sources added to Food (ANS), A. Mortensen, F. Aguilar, et al., Re-evaluation of glutamic acid (E 620), sodium glutamate (E 621), potassium glutamate (E 622), calcium glutamate (E 623), ammonium glutamate (E 624) and magnesium glutamate (E 625) as food additives, EFSA J. 15 (2017) e04910. http://doi.org/10.2903/j.efsa.2017.4910.

[8]

K. Stanska, A. Krzeski, The umami taste: from discovery to clinical use, Otolaryngol. Pol. 70 (2016) 10-15. http://doi.org/10.5604/00306657.1199991.

[9]

H.N. Henry-Unaeze, Update on food safety of monosodium L-glutamate (MSG), Pathophysiology 24 (2017) 243-249. http://doi.org/10.1016/j.pathophys.2017.08.001.

[10]

S.M. Hazzaa, E.S. El-Roghy, M.A. Abd Eldaim, et al., Monosodium glutamate induces cardiac toxicity via oxidative stress, fibrosis, and P53 proapoptotic protein expression in rats, Environ. Sci. Pollut. Res. Int. 27 (2020) 20014-20024. http://doi.org/10.1007/s11356-020-08436-6.

[11]

O.J. Onaolapo, A.Y. Onaolapo, M.A. Akanmu, et al., Evidence of alterations in brain structure and antioxidant status following 'low-dose' monosodium glutamate ingestion, Pathophysiology 23 (2016) 147-156. http://doi.org/10.1016/j.pathophys.2016.05.001.

[12]

V. Lopez-Miranda, M.L. Soto-Montenegro, J.A. Uranga-Ocio, et al., Effects of chronic dietary exposure to monosodium glutamate on feeding behavior, adiposity, gastrointestinal motility, and cardiovascular function in healthy adult rats, Neurogastroenterol. Motil. 27 (2015) 1559-1570. http://doi.org/10.1111/nmo.12653.

[13]

J.T. Brosnan, A. Drewnowski, M.I. Friedman, Is there a relationship between dietary MSG obesity in animals or humans?, Amino Acids 46 (2014) 2075-2087. http://doi.org/10.1007/s00726-014-1771-6.

[14]

M.X. Byndloss, S.R. Pernitzsch, A.J. Baumler, Healthy hosts rule within: ecological forces shaping the gut microbiota, Mucosal. Immunol. 11 (2018) 1299-1305. http://doi.org/10.1038/s41385-018-0010-y.

[15]

T.R. Sampson, S.K. Mazmanian, Control of brain development, function, and behavior by the microbiome, Cell Host Microbe. 17 (2015) 565-576. http://doi.org/10.1016/j.chom.2015.04.011.

[16]

E.T. Bernardes, V.K. Pettersen, M.W. Gutierrez, et al., Intestinal fungi are causally implicated in microbiome assembly and immune development in mice, Nat. Commun. 11 (2020) 2577. http://doi.org/10.1038/s41467-020-16431-1.

[17]

A. Garcia-Rios, J.D. Torres-Pena, F. Perez-Jimenez, et al., Gut microbiota: a new marker of cardiovascular disease, Curr. Pharm. Des. 23 (2017) 3233-3238. http://doi.org/10.2174/1381612823666170317144853.

[18]

R.A. Reimer, Establishing the role of diet in the microbiota-disease axis, Nat. Rev. Gastroenterol. Hepatol. 16 (2019) 86-87. http://doi.org/10.1038/s41575-018-0093-7.

[19]

L.A. David, C.F. Maurice, R.N. Carmody, et al., Diet rapidly and reproducibly alters the human gut microbiome, Nature 505 (2014) 559-563. http://doi.org/10.1038/nature12820.

[20]

P. Roca-Saavedra, V. Mendez-Vilabrille, J.M. Miranda, et al., Food additives, contaminants and other minor components: effects on human gut microbiota-a review, J. Physiol. Biochem. 74 (2018) 69-83. http://doi.org/10.1007/s13105-017-0564-2.

[21]

B. Chassaing, O. Koren, J.K. Goodrich, et al., Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome, Nature 519 (2015) 92-96. http://doi.org/10.1038/nature14232.

[22]

Q.N. Peng, D.X. Huo, C.C. Ma, et al., Monosodium glutamate induces limited modulation in gut microbiota, J. Funct. Foods 49 (2018) 493-500. http://doi.org/10.1016/j.jff.2018.09.015.

[23]

Z.M. Feng, T.J. Li, L. Wu, et al., Monosodium L-glutamate and dietary fat differently modify the composition of the intestinal microbiota in growing pigs, Obes. Facts 8 (2015) 87-100. http://doi.org/10.1159/000380889.

[24]

S. Reagan-Shaw, M. Nihal, N. Ahmad, Dose translation from animal to human studies revisited, J. FASEB 22 (2018). http://doi.org/10.1096/fj.07-9574LSF.

[25]

S. Wu, R. Hu, H. Nakano, et al., Modulation of gut microbiota by Lonicera caerulea L. berry polyphenols in a mouse model of fatty liver induced by high fat diet, Molecules 23 (2018). http://doi.org/10.3390/molecules23123213.

[26]

Z. Feng, T. Li, C. Wu, et al., Monosodium L-glutamate and dietary fat exert opposite effects on the proximal and distal intestinal health in growing pigs, Appl. Physiol. Nutr. Metab. 40 (2015) 353-363. http://doi.org/10.1139/apnm-2014-0434.

[27]

T. Aoki, E. Oyanagi, C. Watanabe, et al., The effect of voluntary exercise on gut microbiota in partially hydrolyzed guar gum intake mice under high-fat diet feeding, Nutrients 12 (2020) 2508. http://doi.org/10.3390/nu12092508.

[28]

G. Derosa, P. Maffioli, A. Sahebkar, Improvement of plasma adiponectin, leptin and C-reactive protein concentrations by orlistat: a systematic review and meta-analysis, Br. J. Clin. Pharmacol. 81 (2016) 819-834. http://doi.org/10.1111/bcp.12874.

[29]

R.A. Ngala, M.A. Awe, P. Nsiah, The effects of plasma chromium on lipid profile, glucose metabolism and cardiovascular risk in type 2 diabetes mellitus. A case - control study, PLoS One 13 (2018) e0197977. http://doi.org/10.1371/journal.pone.0197977.

[30]

Q. Yang, X.L. Yu, Q. Su, et al., Blockade of c-Src within the paraventricular nucleus attenuates inflammatory cytokines and oxidative stress in the mechanism of the TLR4 signal pathway in salt-induced hypertension, Neurosci. Bull. 36 (2020) 385-395. http://doi.org/10.1007/s12264-019-00435-z.

[31]

X. Sun, X. Jiao, Y. Ma, et al., Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome, Biochem. Biophys. Res. Commun. 481 (2016) 63-70. http://doi.org/10.1016/j.bbrc.2016.11.017.

[32]

M.M. Seldin, Y. Meng, H. Qi, et al., Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-kappaB, J. Am. Heart Assoc. 5 (2016) e002767. http://doi.org/10.1161/JAHA.115.002767.

[33]

K. Bielinska, M. Radkowski, M. Grochowska, et al., High salt intake increases plasma trimethylamine N-oxide (TMAO) concentration and produces gut dysbiosis in rats, Nutrition 54 (2018) 33-39. http://doi.org/10.1016/j.nut.2018.03.004.

[34]

B. Liang, F.H. Leenen, Prevention of salt induced hypertension and fibrosis by angiotensin converting enzyme inhibitors in Dahl S rats, Br. J. Pharmacol. 152 (2007) 903-914. http://doi.org/10.1038/sj.bjp.0707472.

[35]

R. Rezaei, D.A. Knabe, C.D. Tekwe, et al., Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs, Amino Acids 44 (2013) 911-923. http://doi.org/10.1007/s00726-012-1420-x.

[36]

J. Zhang, Y. Yin, X.G. Shu, et al., Oral administration of MSG increases expression of glutamate receptors and transporters in the gastrointestinal tract of young piglets, Amino Acids 45 (2013) 1169-1177. http://doi.org/10.1007/s00726-013-1573-2.

[37]

X. Zhang, X. Cui, X. Jin, et al., Preventive role of salsalate in diabetes is associated with reducing intestinal inflammation through improvement of gut dysbiosis in ZDF rats, Front. Pharmacol. 11 (2020) 300. http://doi.org/10.3389/fphar.2020.00300.

[38]

Z. Sun, X. Wang, X. Deng, et al., Beneficial effects of lexipafant, a PAF antagonist on gut barrier dysfunction caused by intestinal ischemia and reperfusion in rats, Dig. Surg. 17 (2000) 57-65. http://doi.org/10.1159/000018801.

[39]

J. Hu, H. Luo, J. Wang, et al., Enteric dysbiosis-linked gut barrier disruption triggers early renal injury induced by chronic high salt feeding in mice, Exp. Mol. Med. 49 (2017) e370. http://doi.org/10.1038/emm.2017.122.

[40]

E. Kaczmarek, T. Banasiewicz, A. Seraszek-Jaros, et al., Digital image analysis of inflammation markers in colorectal mucosa by using a spatial visualization method, Pathol. Res. Pract. 210 (2014) 147-154. http://doi.org/10.1016/j.prp.2013.11.007.

[41]

C. Chen, J. Wang, J. Chen, et al., Morusin alleviates mycoplasma pneumonia via the inhibition of Wnt/beta-catenin and NF-kappaB signaling, Biosci. Rep. 39 (2019). http://doi.org/10.1042/BSR20190190.

[42]

K. Endt, B. Stecher, S. Chaffron, et al., The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea, PLoS Pathog. 6 (2010) e1001097. http://doi.org/10.1371/journal.ppat.1001097.

[43]

J.J. Li, X.Y. Wu, J.L. Chen, Antiplatelet drug ticagrelor delays gastric ulcer healing in rats, Exp. Ther. Med. 14 (2017) 3774-3779. http://doi.org/10.3892/etm.2017.4955.

[44]

S.L.F. Aguiar, M.C.G. Miranda, M.A.F. Guimaraes, et al., High-salt diet induces IL-17-dependent gut inflammation and exacerbates colitis in mice, Front. Immunol. 8 (2017) 1969. http://doi.org/10.3389/fimmu.2017.01969.

[45]

A. Quagliariello, I. Aloisio, N. Bozzi Cionci, et al., Effect of Bifidobacterium breve on the intestinal microbiota of coeliac children on a gluten free diet: a pilot study, Nutrients 8 (2016) 660. http://doi.org/10.3390/nu8100660.

[46]

R. Tian, D. Ning, Z. He, et al., Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity, Microbiome 8 (2020) 51. http://doi.org/10.1186/s40168-020-00825-w.

[47]

T. Liu, Z. Guo, X. Song, et al., High-fat diet-induced dysbiosis mediates MCP-1/CCR2 axis-dependent M2 macrophage polarization and promotes intestinal adenoma-adenocarcinoma sequence, J. Cell Mol. Med. 24 (2020) 2648-2662. http://doi.org/10.1111/jcmm.14984.

[48]

K. Machiels, M. Joossens, J. Sabino, et al., A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis, Gut 63 (2014) 1275-1283. http://doi.org/10.1136/gutjnl-2013-304833.

[49]

C. Hu, F. Li, Y. Duan, et al., Glutamic acid supplementation reduces body fat weight in finishing pigs when provided solely or in combination with arginine and it is associated with colonic propionate and butyrate concentrations, Food Funct. 10 (2019) 4693-4704. http://doi.org/10.1039/c9fo00520j.

[50]

S. Estruel-Amades, M. Massot-Cladera, F.J. Perez-Cano, et al., Hesperidin effects on gut microbiota and gut-associated lymphoid tissue in healthy rats, Nutrients 11 (2019) 234. http://doi.org/10.3390/nu11020324.

[51]

J. Qin, Y. Li, Z. Cai, et al., A metagenome-wide association study of gut microbiota in type 2 diabetes, Nature 490 (2012) 55-60. http://doi.org/10.1038/nature11450.

[52]

Y. Wan, F. Wang, J. Yuan, et al., Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial, Gut 68 (2019) 1417-1429. http://doi.org/10.1136/gutjnl-2018-317609.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 08 December 2020
Revised: 10 March 2021
Accepted: 22 March 2021
Published: 11 September 2021
Issue date: January 2022

Copyright

© 2021 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

Acknowledgements

This study was supported by the Inner Mongolia Autonomous Region Science and Technology Achievement Transformation Project (CGZH2018035).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return