Journal Home > Volume 10 , Issue 4

Trametes lactinea mycelia polysaccharides (TLMPS) have a wide range of bioactivities. The potential mechanisms of action of TLMPS against acute alcohol-induced liver injury in vivo were investigated by analyzing the physical and chemical properties of TLMPS and its protective effects on a mouse model of alcoholic liver injury. TLMPS protected the liver against alcohol-induced injury, as evidenced by the reduced alcohol-induced elevation of the liver index, serum biochemical indices, and maintenance of hepatic morphology. Potential mechanisms were analyzed using transcriptome and metabolome analyses. The transcriptome data revealed the involvement of many differentially expressed genes in chemical carcinogenesis, drug metabolism, and metabolism of xenobiotics by cytochrome P450. The metabolome analysis revealed that TLMPS significantly regulated specific metabolites in the liver, including organic acids, lipids, nucleosides, and organic oxygen compounds. KEGG enrichment analysis revealed the significant involvement of different metabolites in choline metabolism, ATP-binding cassette transporters, and glycerophospholipid metabolism. Assessment of the changes in gene expression and metabolites revealed the significantly different expression of several genes encoding key enzymes and metabolites in choline metabolism pathway. The collective findings confirmed that choline metabolism plays an important role in the protective effects of TLMPS against acute alcoholic liver injury.


menu
Abstract
Full text
Outline
About this article

The protective effect and crucial biological pathways analysis of Trametes lactinea mycelium polysaccharides on acute alcoholic liver injury in mice based on transcriptomics and metabonomics

Show Author's information Jinbin Hao1Liyun Ye1Guoliang MengYanjiao SongJunsheng FuXiaoping Wu( )
College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian, China

1 The authors contributed equally to this article.

Peer review under responsibility of KeAi Communications Co., Ltd

Abstract

Trametes lactinea mycelia polysaccharides (TLMPS) have a wide range of bioactivities. The potential mechanisms of action of TLMPS against acute alcohol-induced liver injury in vivo were investigated by analyzing the physical and chemical properties of TLMPS and its protective effects on a mouse model of alcoholic liver injury. TLMPS protected the liver against alcohol-induced injury, as evidenced by the reduced alcohol-induced elevation of the liver index, serum biochemical indices, and maintenance of hepatic morphology. Potential mechanisms were analyzed using transcriptome and metabolome analyses. The transcriptome data revealed the involvement of many differentially expressed genes in chemical carcinogenesis, drug metabolism, and metabolism of xenobiotics by cytochrome P450. The metabolome analysis revealed that TLMPS significantly regulated specific metabolites in the liver, including organic acids, lipids, nucleosides, and organic oxygen compounds. KEGG enrichment analysis revealed the significant involvement of different metabolites in choline metabolism, ATP-binding cassette transporters, and glycerophospholipid metabolism. Assessment of the changes in gene expression and metabolites revealed the significantly different expression of several genes encoding key enzymes and metabolites in choline metabolism pathway. The collective findings confirmed that choline metabolism plays an important role in the protective effects of TLMPS against acute alcoholic liver injury.

Keywords: Transcriptome, Polysaccharide, Trametes lactinea, Hepatoprotective, Metabolome

References(45)

[1]

A.Y. Yus, M.D. Mashitah, S.Y. Ahmad, The effect of culture conditions on the growth of T. lactinea and anti-inflammatory activities via in vitro inhibition of hyaluronidase and lipoxygenase enzyme activities, J. Taiwan Inst. Chem. E. 45 (2014) 2054-2059. https://doi:10.1016/j.jtice.2014.04.003.

[2]

Q.Y. Zhang, N.Y. Huang, J.Z. Wang, et al., The H+/K+-ATPase inhibitory activities of Trametenolic acid B from Trametes lactinea (Berk. ) Pat, and its effects on gastric cancer cells, Fitoterapia. 89 (2013) 210-217. https://doi:10.1016/j.fitote.2013.05.021.

[3]

N.W. He, L.M. Tian, X.C. Zhai, et al., Composition characterization, antioxidant capacities and anti-proliferative effects of the polysaccharides isolated from Trametes lactinea (Berk. ) Pat, Int. J. Biol. Macromol. 115 (2018) 114-123. https://doi:10.1016/j.ijbiomac.2018.04.049.

[4]

P. Pronko, L. Bardina, V. Satanovskaya, et al., Effect of chronic alcohol consumption on the ethanol- and acetaldehyde-metabolizing systems in the rat gastrointestinal tract, Alcohol Alcohol. 37 (2002) 229-235. https://doi:10.1093/alcalc/37.3.229.

[5]

A. Stornetta, V. Guidolin, S. Balbo, Alcohol-derived acetaldehyde exposure in the oral cavity, Cancers (Basel). 10 (2018) 20-47. https://doi:10.3390/cancers10010020.

[6]

K.T. Suk, M.Y. Kim, S.K. Baik, Alcoholic liver disease: treatment, World J. Gastroenterol. 20 (2014) 12934-12944.

[7]

X. Liu, R.L. Hou, J.J. Yan, et al., Purification and characterization of Inonotus hispidus exopolysaccharide and its protective effect on acute alcoholic liver injury in mice, Int. J. Biol. Macromol. 129 (2019) 41-49. https://doi:10.1016/j.ijbiomac.2019.02.011.

[8]

R.L. Hou, X. Liu, J.J. Yan, et al., Characterization of natural melanin from Auricularia auricula and its hepatoprotective effect on acute alcohol liver injury in mice, Food Funct. 10 (2019) 1017-1027. https://doi:10.1039/C8FO01624K.

[9]

Y.M. Jin, X.M. Tao, Y.N. Shi, et al., Salvianolic acid B exerts a protective effect in acute liver injury by regulating the Nrf2/HO-1 signaling pathway, Can. J. Physiol. Pharmacol. 98 (2020) 162-168. https://doi:10.1139/cjpp-2019-0349.

[10]

L.Y. Ye, S.R. Liu, F. Xie, et al., Enhanced production of polysaccharides and triterpenoids in Ganoderma lucidum fruit bodies on induction with signal transduction during the fruiting stage, Plos One 13 (2018) e0196287. https://doi:10.1371/journal.pone.0196287.

[11]

X.Y. Ren, L. He, J.W. Cheng, et al., Optimization of the solid-state fermentation and properties of apolysaccharide from Paecilomyces cicadae (Miquel) samon and its antioxidant activities in vitro, Plos One. 9 (2014) e87578. https://doi:10.1371/journal.pone.0087578.

[12]

Y.L. Feng, W.Q. Li, X.Q. Wu, et al., Statistical optimization of media for mycelial growth and exo-polysaccharide production by Lentinus edodes and a kinetic model study of two growth morphologies, Biochem. Eng. J. 49 (2010) 104-112. https://doi:10.1016/j.bej.2009.12.002.

[13]

B.Z. Chen, B.R. Ke, L.Y. Ye, et al., Isolation and varietal characterization of Ganoderma resinaceum from areas of Ganoderma lucidum production in China, Sci. Hortic. 224 (2017) 109-114. https://doi:10.1016/j.scienta.2017.06.002.

[14]

M. Dubois, K.A. Gilles, J.K. Hamilton, et al., Colorimetric method for determination of sugars and related substances, Anal. Chem. 28 (1956) 350-356. https://doi:10.1021/ac60111a017.

[15]

N. Blumenkrantz, G. Asboe-Hansen, New method for quantitative determination of uronic acids, Anal. Biochem. 54 (1973) 484-489. https://doi:10.1016/0003-2697(73)90377-1.

[16]

M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72 (1976) 248-254. https://doi:10.1016/0003-2697(76)90527-3.

[17]

H.N. Sun, T.H. Mu, X.L. Liu, et al., Purple sweet potato (Ipomoea batatas L. ) anthocyanins: preventive effect on acute and subacute alcoholic liver damage and dealcoholic effect, J. Agric. Food Chem. 62 (2014) 2364-2373. https://doi:10.1021/jf405032f.

[18]

Y.H. Xie, L.X. Wang, H. Sun, et al., Immunomodulatory, antioxidant and intestinal morphology-regulating activities of alfalfa polysaccharides in mice, Int. J. Biol. Macromol. 133 (2019) 1107-1114. https://doi:10.1016/j.ijbiomac.2019.04.144.

[19]

Z. Yun, H.X. Qu, H. Wang, et al., Comparative transcriptome and metabolome provides new insights into the regulatory mechanisms of accelerated senescence in litchi fruit after cold storage, Sci. Rep. UK. 6 (2016) 19356-19356. https://doi:10.1038/srep19356.

[20]

M. Pertea, D. Kim, G.M. Pertea, et al., Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown, Nat. Protoc. 11 (2016) 1650-1667. https://doi:10.1038/nprot.2016.095.

[21]

R.J. Hao, X.D. Du, C.Y. Yang, et al., Integrated application of transcriptomics and metabolomics provides insights into unsynchronized growth in pearl oyster Pinctada fucata martensii, Sci. Total Environ. 666 (2019) 46-56. https://doi:10.1016/j.scitotenv.2019.02.221.

[22]

H.H. Guo, H.X. Guo, L. Zhang, et al., Metabolome and transcriptome association analysis reveals dynamic regulation of purine metabolism and flavonoid synthesis in transdifferentiation during somatic embryogenesis in cotton, Int. J. Mol. Sci. 20 (2019) 2070-2093. https://doi:10.3390/ijms20092070.

[23]

J. Chong, O. Soufan, C. Li, et al., MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis, Nucleic Acids Res. W1 (2018) W486-W494. https://doi:10.1093/nar/gky310.

[24]

Q.G. Meng, Y.H. Li, T.C. Xiao, et al., Antioxidant and antibacterial activities of polysaccharides isolated and purified from Diaphragma juglandis fructus, Int. J. Biol. Macromol. 105 (2017) 431-437. https://doi:10.1016/j.ijbiomac.2017.07.062.

[25]

R. Kasimu, C.L. Chen, X.Y. Xie, et al., Water-soluble polysaccharide from Erythronium sibiricum bulb: structural characterisation and immunomodulating activity, Int. J. Biol. Macromol. 105 (2017) 452-462. https://doi:10.1016/j.ijbiomac.2017.07.060.

[26]

W. Zheng, T. Zhao, W.W. Feng, et al., Purification, characterization and immunomodulating activity of a polysaccharide from flowers of Abelmoschus esculentus, Carbohydr. Polym. 106 (2014) 335-342. https://doi:10.1016/j.carbpol.2014.02.079.

[27]

S. Zhang, B. He, J.B. Ge, et al., Extraction, chemical analysis of Angelica sinensis polysaccharides and antioxidant activity of the polysaccharides in ischemia-reperfusion rats, Int. J. Biol. Macromol. 47 (2010) 546-550. https://doi:10.1016/j.ijbiomac.2010.07.012.

[28]

T. Zhao, G.H. Mao, W.W. Feng, et al., Isolation, characterization and antioxidant activity of polysaccharide from Schisandra sphenanthera, Carbohydr. Polym. 105 (2014) 26-33. https://doi:10.1016/j.carbpol.2014.01.059.

[29]

J. Chena, H.N. Suna, A.D. Suna, et al., Studies of the protective effect and antioxidant mechanism of blueberry anthocyanins in a CC14-induced liver injury model in mice, Food Agr. Immunol. 23 (2012) 352-362. https://doi:10.1080/09540105.2011.634378.

[30]

J.K. Marx, Oxygen free radicals linked to many diseases, Science 235 (1987) 529-531. https://doi:10.1126/science.3810154.

[31]

J.I. Beier, G.E. Arteel, C.J. McClain, Advances in alcoholic liver disease, Curr. Gastroenterol. Rep. 13 (2011) 56-64. https://doi:10.1007/s11894-010-0157-5.

[32]

J.L. Xiang, W.X. Zhu, Z.X. Li, et al., Effect of juice and fermented vinegar from Hovenia dulcis peduncles on chronically alcohol-induced liver damage in mice, Food Funct. 3 (2012) 628-634. https://doi:10.1039/C2FO10266H.

[33]

Q. Dong, F. Chu, C. Wu, et al., Scutellaria baicalensis Georgi extract protects against alcohol induced acute liver injury in mice and affects the mechanism of ER stress, Mol. Med. Rep. 13 (2016) 3052-3062. https://doi:10.3892/mmr.2016.4941.

[34]

C.L. Zhang, T. Zeng, X.L. Zhao, et al., Protective effects of garlic oil on hepatocarcinoma induced by N-nitrosodiethylamine in rats, Int. J. Bio. Sci. 8 (2012) 363-374. https://doi:10.7150/ijbs.3796.

[35]

K. Pradeep, C.V. Mohan, K. Gobianand, et al., Effect of Cassia fistula Linn. leaf extract on diethylnitrosamine induced hepatic injury in rats, Chem. Biol. Interact. 167 (2007) 12-18. https://doi:10.1016/j.cbi.2006.12.011.

[36]

J.K. Reddy, M.S. Rao, Lipid metabolism and liver inflammation. Ⅱ. Fatty liver disease and fatty acid oxidation, Am. J. Physiol. -Gastr. L. 290 (2006) G852-G858. https://doi:10.1152/ajpgi.00521.2005.

[37]

J. Sun, D.Y. Shi, S. Li, et al., Chemical constituents of the red alga Laurencia tristicha, J. Asian Nat. Prod. Res. 9 (2007) 725-734. https://doi:10.1080/10286020601103338.

[38]

N. Ge, H. Liang, Y.Y. Zhao, et al., Aplysin protects against alcohol-induced liver injury via alleviating oxidative damage and modulating endogenous apoptosis-related genes expression in rats, J. Food Sci. 83 (2018) 2612-2621. https://doi:10.1111/1750-3841.14320.

[39]

J. Yi, W. Xia, J.P. Wu, et al., Betulinic acid prevents alcohol-induced liver damage by improving the antioxidant system in mice, J. Vet. Sci. 15 (2014) 141-148. https://doi:10.4142/jvs.2014.15.1.141.

[40]

X.Y. Zhao, L.Q. Wang, H. Zhang, et al., Protective effect of artemisinin on chronic alcohol induced-liver damage in mice, Environ. Toxicol. Phar. 52 (2017) 221-226. https://doi:10.1016/j.etap.2017.04.008.

[41]

S.H. Zeisel, K.A. Da Costa, P.D. Franklin, et al., Choline, an essential nutrient for humans, FASEB J. 5 (1991) 2093-2098.

[42]

R.J.Wurtman, M.J.Hirsch, J.H.Growdon, Lecithin consumption raises serum free choline levels, Lancet 2 (1977) 68-69.https://doi:10.1016/S0140-6736(77)90067-8.

[43]

D.J.Tuma, A.J.Barak, D.F.Schafer, et al., Possible interrelationship of ethanol metabolism and choline oxidation in the liver, Biochem.Cell Biol.51(1973) 117-120.https://doi:10.1139/o73-016.

[44]

R.Roberti, L.Binaglla, G.Michal, et al., The effect of acute ethanol ingestion on in vitro metabolism of choline and ethanolamine derivatives in rat liver, Biochem.Pharmacol.23 (1974) 3289-3298.https://doi:10.1016/0006-2952(74)90652-2.

[45]

S.F.Li, H.X.Liu, Y.B.Jin, et al., Metabolomics study of alcohol-induced liver injury and hepatocellular carcinoma xenografts in mice, J.Chromatogr.B.879 (2011) 2369-2375.https://doi:10.1016/j.jchromb.2011.06.018.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 18 August 2020
Revised: 20 October 2020
Accepted: 25 October 2020
Published: 04 June 2021
Issue date: July 2021

Copyright

© 2021 Beijing Academy of Food Sciences. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

Acknowledgements

This work was supported by the National Key Research and Development Program of China (grant number 2019YFC1710501), the construction of a modern agricultural industrial technology system in Fujian province and an expert workstation of the modern edible mushroom industrial technology systeminvolving Pleurotus pulmonarius and Ganoderma lucidum (project number Minnong General [2019] no. 144).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return