Journal Home > Volume 8 , Issue 1

Microalgae has been consumed in human diet for thousands of years. It is an under-exploited crop for production of dietary foods. Microalgae cultivation does not compete with land and resources required for traditional crops and has a superior yield compared to terrestrial crops. Its high protein content has exhibited a huge potential to meet the dietary requirements of growing population. Apart from being a source of protein, presence of various bio-active components in microalgae provide an added health benefit. This review describes various microalgal sources of proteins and other bio-active components. One of the heavily studied group of bio-active components are pigments due to their anticarcenogenic, antioxidative and antihypertensive properties. Compared to various plant and floral species, microalgae contain higher amounts of pigments. Microalgal derived proteins have complete Essential Amino Acids (EAA) profiles and their protein content is higher than conventional sources such as meat, poultry and dairy products. However, microalgal based functional foods have not flooded the market. The lack of awareness coupled with scarce incentives for producers result in under-exploitation of microalgal potential. Application of microalgal derived components as dietary and nutraceutical supplements is discussed comprehensively.


menu
Abstract
Full text
Outline
About this article

Microalgae: A potential alternative to health supplementation for humans

Show Author's information Apurav Krishna KoyandeaKit Wayne ChewaKrishnamoorthy RambabubYang TaocDinh-Toi Chud,ePau-Loke Showa,( )
Department of Chemical Engineering, Faculty of Engineering, University of Nottingham Malaysia, 43500, Selangor Darul Ehsan, Malaysia
Department of Chemical Engineering, School of Civil and Chemical Engineering, VIT University, Vellore, 632014, Tamil Nadu, India
College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu, 210095, China
Institute for Research and Development, Duy Tan University, K7/25 QuangTrung, Danang, Viet Nam
Faculty of Biology, Hanoi National University of Education, 136 XuanThuy, CauGiay, Hanoi, Viet Nam

Peer review under responsibility of KeAi Communications Co., Ltd.

Abstract

Microalgae has been consumed in human diet for thousands of years. It is an under-exploited crop for production of dietary foods. Microalgae cultivation does not compete with land and resources required for traditional crops and has a superior yield compared to terrestrial crops. Its high protein content has exhibited a huge potential to meet the dietary requirements of growing population. Apart from being a source of protein, presence of various bio-active components in microalgae provide an added health benefit. This review describes various microalgal sources of proteins and other bio-active components. One of the heavily studied group of bio-active components are pigments due to their anticarcenogenic, antioxidative and antihypertensive properties. Compared to various plant and floral species, microalgae contain higher amounts of pigments. Microalgal derived proteins have complete Essential Amino Acids (EAA) profiles and their protein content is higher than conventional sources such as meat, poultry and dairy products. However, microalgal based functional foods have not flooded the market. The lack of awareness coupled with scarce incentives for producers result in under-exploitation of microalgal potential. Application of microalgal derived components as dietary and nutraceutical supplements is discussed comprehensively.

Keywords: Health, Protein, Human, Supplement, Microalgae

References(89)

[1]
Know Your World: Facts About World Hunger & Poverty (n. d.). http://www.thp.org/knowledge-center/know-your-world-facts-about-hunger-poverty/(Accessed 18 September 2018).
[2]
FAO – News Article: World's future food security "in jeopardy" due to multiple challenges, report warns (n. d.). http://www.fao.org/news/story/en/item/471169/icode/(Accessed 18 September 2018).
[3]

J.J. Milledge, Commercial application of microalgae other than as biofuels: a brief review, Rev. Environ. Sci. Biotechnol. (2011), http://dx.doi.org/10.1007/s11157-010-9214-7.

[4]

E. Christaki, P. Florou-Paneri, E. Bonos, Microalgae: a novel ingredient in nutrition, Int. J. Food Sci. Nutr. 62 (2011) 794–799, http://dx.doi.org/10.3109/09637486.2011.582460.

[5]
H. Wolkers, M. Barbosa, D. Kleinegris, R. Bosma, R.H. Wijffels, Microalgae: The Green Gold of the Future?, Wageningen, 2011 (Accessed 27 November 2018) www.groenegrondstoffen.nl.
[6]

S. Bleakley, M. Hayes, Algal proteins: extraction, application, and challenges concerning production Foods 6 (2017) 34, http://dx.doi.org/10.3390/foods6050033.

[7]
M.M. van Krimpen, P. Bikker, I.M. van der Meer, C.M.C. van der Peet-Schwering, J.M. Vereijken, Cultivation, Processing and Nutritional Aspects for Pigs and Poultry of European Protein Sources as Alternatives for Imported Soybean Products, Wageningen, 2013 (Accessed 26 November 2018) http://www.livestockresearch.wur.nl.
[8]
J.S. Wallace, Increasing Agricultural Water Use Efficiency to Meet Future Food Production, 2000 (Accessed 26 November 2018) https://pdfs.semanticscholar.org/cdcb/d4447f604b2e1c95c513edab6d0a004224d9.pdf.
[9]
D. Pimentel, M. Pimentel, Sustainability of Meat-based and Plant-based Diets and the Environment, 2003 (Accessed 26 November 2018) https://academic.oup.com/ajcn/article-abstract/78/3/660S/4690010.
DOI
[10]
P. Sampath-Wiley, C.D. Neefus, L.S. Jahnke, Seasonal Effects of Sun Exposure and Emersion on Intertidal Seaweed Physiology: Fluctuations in Antioxidant Contents, Photosynthetic Pigments and Photosynthetic Efficiency in the Red Alga Porphyra umbilicalis Kützing (Rhodophyta, Bangiales), 2008, http://dx.doi.org/10.1016/j.jembe.2008.05.001.
DOI
[11]

R. Sathasivam, R. Radhakrishnan, A. Hashem, E.F. Abd Allah, Microalgae metabolites: a rich source for food and medicine, Saudi J. Biol. Sci. (2017), http://dx.doi.org/10.1016/j.sjbs.2017.11.003.

[12]
E.W. Becker, Microalgae for human and animal nutrition, in: Handb. Microalgal Cult., John Wiley & Sons, Ltd., 2013, pp. 461–503, http://dx.doi.org/10.1002/9781118567166.ch25.
DOI
[13]

O. Pulz, W. Gross, Valuable products from biotechnology of microalgae, Appl. Microbiol. Biotechnol. 65 (2004) 635–648, http://dx.doi.org/10.1007/s00253-004-1647-x.

[14]
S. Liang, X. Liu, F. Chen, Z. Chen, Current microalgal health food R & D activities in China, in: P.O. Ang (Ed.), Asian Pacific Phycol. 21st Century Prospect. Challenges, Springer, Netherlands, Dordrecht, 2004, pp. 45–48.
DOI
[15]
D. Soletto, L. Binaghi, A. Lodi, J.C.M. Carvalho, A. Converti, Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources, (n. d.). doi: https://doi.org/10.1016/j.aquaculture.2004.10.005.
DOI
[16]

J.L. García, M. de Vicente, B. Galán, Microalgae, old sustainable food and fashion nutraceuticals, Microb. Biotechnol. 10 (2017) 1017–1024, http://dx.doi.org/10.1111/1751-7915.12800.

[17]
L. Gouveia, A.P. Batista, I. Sousa, A. Raymundo, N.M. Bandarra, Microalgae in Novel Food Product, 2008.
[18]

P. Spolaore, C. Joannis-Cassan, E. Duran, A. Isambert, Commercial applications of microalgae, J. Biosci. Bioeng. 101 (2006) 87–96, http://dx.doi.org/10.1263/jbb.101.87.

[19]
T.M. Mata, A.A. nio Martins, N.S. Caetano, Microalgae for biodiesel production and other applications: A review, (n. d.). doi: https://doi.org/10.1016/j.rser.2009.07.020.
DOI
[20]

A.P. Batista, N. Bandarra, A. Raymundo, L. Gouveia, Microalgae biomass - a potential ingredient for the food industry, EFFoST/EHED Jt. Conf. (2007).

[21]
T. Bruton, A Review of the Potential of Marine Algae as a Source of Biofuel in Ireland, 2009 (Accessed 27 November 2018) http://www.fao.org/uploads/media/0902SEI - A Review of the Potential of Marine Algae.pdf.
[22]
T. Cai, S.Y. Park, Y. Li, Nutrient Recovery From Wastewater Streams by Microalgae: Status and Prospects, 2013, http://dx.doi.org/10.1016/j.rser.2012.11.030.
DOI
[23]

M.P. Caporgno, A. Mathys, Trends in microalgae incorporation into innovative food products with potential health benefits, Front. Nutr. 5 (2018), http://dx.doi.org/10.3389/fnut.2018.00058.

[24]
Global Chlorella Market Information: By Origin (Organic, Conventional), by Form (Powder, Liquid, Tablet Capsules and others), by Application (Food & Beverages, Pharmaceuticals, Animal Feed, others) and Region Forecast till 2023, 2018 (Accessed 26 November 2018) https://www.marketresearchfuture.com/report info.pdf?report id=4413.
[25]
Chlorella, Production, Uses, Market - Oilgae - Oil from Algae (n. d.). http://www.oilgae.com/nonfuel products/chlorella.html (Accessed 26 November 2018).
[26]
K. Rani, N. Sandal, P.K. Sahoo, A comprehensive review on chlorella-its composition, health benefits, market and regulatory scenario, Pharma Innov. J. 7 (2018) 584–589 (Accessed 26 November 2018) www.thepharmajournal.com.
[27]
C.J. Barrow, F. Shahidi, Marine Nutraceuticals and Functional Foods, 1st ed., CRC Press, 2007.
DOI
[28]
[29]

P. Parikh, U. Mani, U. Iyer, Role of spirulina in the control of glycemia and lipidemia in type 2 diabetes mellitus, J. Med. Food 4 (2001) 193–199, http://dx.doi.org/10.1089/10966200152744463.

[30]
E.E. Mazokopakis, I.K. Starakis, M.G. Papadomanolaki, N.G. Mavroeidi, E.S. Ganotakis, The hypolipidaemic effects of Spirulina (Arthrospira platensis) supplementation in a Cretan population: a prospective study, J. Sci. Food Agric. 94 (n. d.) 432–437. doi: https://doi.org/10.1002/jsfa.6261.
DOI
[31]
P.V. Torres-Duran, A. Ferreira-Hermosillo, M.A. Juarez-Oropeza, Antihyperlipemic and Antihypertensive Effects of Spirulina maxima in an Open Sample of Mexican Population: A Preliminary Report, 2007, http://dx.doi.org/10.1186/1476-511X-6-33.
DOI
[32]

C. Selmi, P.S. Leung, L. Fischer, B. German, C. -Y. Yang, T.P. Kenny, G.R. Cysewski, M.E. Gershwin, The effects of Spirulina on anemia and immune function in senior citizens, Cell. Mol. Immunol. 8 (2011) 248–254, http://dx.doi.org/10.1038/cmi.2010.76.

[33]

Z. Khan, P. Bhadouria, P. Bisen, Nutritional and therapeutic potential of spirulina, Curr. Pharm. Biotechnol. 6 (2005) 373–379, http://dx.doi.org/10.2174/138920105774370607.

[34]

B. Capelli, G.R. Cysewski, Potential health benefits of spirulina microalgae, Nutrafoods 9 (2010) 19–26, http://dx.doi.org/10.1007/BF03223332.

[35]
H. Begum, F.M. Yusoff, S. Banerjee, H. Khatoon, M. Shariff, Critical Reviews in Food Science and Nutrition Availability and Utilization of Pigments from Microalgae Availability and Utilization of Pigments from Microalgae (n. d.). doi: https://doi.org/10.1080/10408398.2013.764841.
DOI
[36]
S. Kobylewski, M.F. Jacobson, Food Dyes A Rainbow of Risks, University of California, Los Angeles, 2010 (Accessed 12 October 2018) https://cspinet.org/sites/default/files/attachment/food-dyes-rainbow-of-risks.pdf.
[37]

R.S. Parmar, C. Singh, A comprehensive study of eco-friendly natural pigment and its applications, Biochem. Biophys. Rep. 13 (2018) 22–26, http://dx.doi.org/10.1016/j.bbrep.2017.11.002.

[38]

G. Farré, G. Sanahuja, S. Naqvi, C. Bai, T. Capell, C. Zhu, P. Christou, Travel advice on the road to carotenoids in plants, Plant Sci. 179 (2010) 28–48, http://dx.doi.org/10.1016/j.plantsci.2010.03.009.

[39]
K.J.M. Mulders, Phototrophic Pigment Production with Microalgae, Wageningen University, 2014 (Accessed 12 October 2018) http://edepot.wur.nl/323615.
[40]

L. Brennan, P. Owende, Biofuels from microalgae — a review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sustain. Energy Rev. 14 (2010) 557–577, http://dx.doi.org/10.1016/j.rser.2009.10.009.

[41]

B. Wang, Y. Li, N. Wu, C.Q. Lan, CO2 bio-mitigation using microalgae, Appl. Microbiol. Biotechnol. 79 (2008) 707–718, http://dx.doi.org/10.1007/s00253-008-1518-y.

[42]
N. Hanagata, T. Takeuchi, Y. Fukukj, D.J. Barnes, I. Karube, Tolerance of microalgae to high co, and high temperature, Phytochemistry 31 (1992) 3345–3348 (Accessed 3 December 2018) https://ac.els-cdn.com/003194229283682O/1-s2.0-003194229283682O-main.pdf?tid=8ee73d4ac623-4327-bf18-6f52c4877a73&acdnat=1543813543d35f685f64ecb1821b8b94e6c2e02d69.
[43]
Z. Wu, S. Wu, X. Shi, Supercritical Fluid Extraction and Determ Ination of Lute in in Heterotrophically Cultivated Chlorella pyrenoidosa, 2007 (Accessed 30 November 2018) https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1745-4530.2007.00102.x.
DOI
[44]

S. Takaichi, Carotenoids in algae: distributions, biosyntheses and functions, Mar. Drugs 9 (2011) 1101–1118, http://dx.doi.org/10.3390/md9061101.

[45]
R. Sathasivam, N. Juntawong, Modified medium for enhanced growth of Dunaliella strains, Int. J. Curr. Sci. 5 (2013) 67–73 (Accessed 27 November 2018) http://www.currentsciencejournal.info/issuespdf/Ramaraj.pdf.
DOI
[46]

D.B. Rodrigues, C.R. Menezes, A.Z. Mercadante, E. Jacob-Lopes, L.Q. Zepka, Bioactive pigments from microalgae Phormidium autumnale, Food Res. Int. 77 (2015) 273–279, http://dx.doi.org/10.1016/j.foodres.2015.04.027.

[47]
W.J. Henley, K.M. Major, J.L. Hironaka, Response to salinity and heat stress in two halotolerant chlorophyte algae, J. Phycol. 38 (n. d.) 757–766. doi: https://doi.org/10.1046/j.1529-8817.2002.01172.x.
DOI
[48]

R. Raja, C. Anbazhagan, D. Lakshmi, R. Rengasamy, Nutritional studies on Dunaliella salina (Volvocales, Chlorophyta) under laboratory conditions, Seaweed Res. Util. 26 (2004) 127–146.

[49]

M.A. Borowitzka, High-value products from microalgae—their development and commercialisation, J. Appl. Phycol. 25 (2013) 743–756, http://dx.doi.org/10.1007/s10811-013-9983-9.

[50]

M.A. Gammone, G. Riccioni, N.D. ' Orazio, Carotenoids: potential allies of cardiovascular health? Food Nutr. Res. (2015), http://dx.doi.org/10.3402/fnr.v59.26762.

[51]

G. Riccioni, N. D'orazio, N. Palumbo, V. Bucciarelli, E. Di Ilio, L.A. Bazzano, T. Bucciarelli, Relationship between plasma antioxidant concentrations and carotid intima-media thickness: the asymptomatic carotid atherosclerotic disease in Manfredonia study, Eur. J. Cardiovasc. Prev. Rehabil. 16 (2009) 351–357, http://dx.doi.org/10.1097/HJR.0b013e328325d807.

[52]

A. Martins, N.S. Caetano, T.M. Mata, Microalgae for biodiesel production and other applications: a review, Renew. Sustain. Energy Rev. 14 (2010) 217–232, http://dx.doi.org/10.1016/j.rser.2009.07.020.

[53]

R.T. Lorenz, G.R. Cysewski, Commercial potential for Haematococcus microalgae as a natural source of astaxanthin, Trends Biotechnol. 18 (2000) 160–167, http://dx.doi.org/10.1016/S0167-7799(00)01433-5.

[54]

D. Pelah, A. Sintov, E. Cohen, The effect of salt stress on the production of canthaxanthin and astaxanthin by Chlorella zofingiensis grown under limited light intensity, World J. Microbiol. Biotechnol. 20 (2004) 483–486, http://dx.doi.org/10.1023/B:WIBI.0000040398.93103.21.

[55]

P. -F. Ip, F. Chen, Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture, Process Biochem. 40 (2005) 3491–3496, http://dx.doi.org/10.1016/j.procbio. 2005.02.014.

[56]

I. Higuera-Ciapara, L. Félix-Valenzuela, F.M. Goycoolea, L.F. Élix-Valenzuela, Astaxanthin: a review of its chemistry and applications, Crit. Rev. Food Sci. Nutr. 46 (2006) 185–196, http://dx.doi.org/10.1080/10408690590957188.

[57]

M. Guerin, M.E. Huntley, M. Olaizola, Haematococcus astaxanthin: applications for human health and nutrition, Trends Biotechnol. 21 (2003) 210–216, http://dx.doi.org/10.1016/S0167-7799(03)00078-7.

[58]

J.S. Park, J.H. Chyun, Y.K. Kim, L.L. Line, B.P. Chew, Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans, Nutr. Metab. (Lond.) 7 (18) (2010), http://dx.doi.org/10.1186/1743-7075-7-18.

[59]

J.H. Kim, M.J. Chang, H.D. Choi, Y. -K. Youn, J.T. Kim, J.M. Oh, W.G. Shin, Protective effects of haematococcus astaxanthin on oxidative stress in healthy smokers, J. Med. Food 14 (2011) 1469–1475, http://dx.doi.org/10.1089/jmf. 2011.1626.

[60]

H. Yoshida, H. Yanai, K. Ito, Y. Tomono, T. Koikeda, H. Tsukahara, N. Tada, Administration of natural astaxanthin increases serum HDL-cholesterol and adiponectin in subjects with mild hyperlipidemia, Atherosclerosis 209 (2010) 520–523, http://dx.doi.org/10.1016/j.atherosclerosis.2009.10.012.

[61]

W.M. Bishop, H.M. Zubeck, Evaluation of microalgae for use as nutraceuticals and nutritional supplements, J. Nutr. Food Sci. 2 (2012), http://dx.doi.org/10.4172/2155-9600.1000147.

[62]

N. Seyidoglu, S. Inan, C. Aydin, A prominent superfood: Spirulina platensis, Intech Open 2 (64) (2014), http://dx.doi.org/10.5772/32009.

[63]

S. Nagini, F. Palitti, A.T. Natarajan, Chemopreventive potential of chlorophyllin: a review of the mechanisms of action and molecular targets, Nutr. Cancer 67 (2015) 203–211, http://dx.doi.org/10.1080/01635581.2015. 990573.

[64]

J. Das, A. Samadder, J. Mondal, S.K. Abraham, A. Rahman Khuda-Bukhsh, Nano-encapsulated chlorophyllin significantly delays progression of lung cancer both in in vitro and in vivo models through activation of mitochondrial signaling cascades and drug-DNA interaction, Environ. Toxicol. Pharmacol. 46 (2016) 147–157, http://dx.doi.org/10.1016/j.etap.2016.07.006.

[65]

R. Raghav Sonani, R. Prasad Rastogi, R. Patel, D. Madamwar Ravi Raghav Sonani, D. Madamwar, Recent advances in production, purification and applications of phycobiliproteins, World J. Biol. Chem. 7 (2016) 100–109, http://dx.doi.org/10.4331/wjbc.v7.i1.100.

[66]

S. Sekar, M. Chandramohan, Phycobiliproteins as a commodity: trends in applied research, patents and commercialization, J. Appl. Phycol. 20 (2008) 113–136, http://dx.doi.org/10.1007/s10811-007-9188-1.

[67]

American Dietetic Association, Dietitians of Canada, American College of Sports Medicine, N.R. Rodriguez, N.M. Di Marco, S. Langley, American College of Sports Medicine position stand. Nutrition and athletic performance, Med. Sci. Sports Exerc. 41 (2009) 709–731, http://dx.doi.org/10.1249/mss. 0b013e31890eb86.

[68]

G. Wu, Dietary protein intake and human health, Food Funct. 7 (2016) 1251–1265, http://dx.doi.org/10.1039/C5FO01530H.

[69]
I.S. Chronakis, M. Madsen, Algal proteins, in: G.O. Phillips, P.A. Williams (Eds.), Handb. Food Proteins, Woodhead Publishing Series in Food Sciences, Technology and Nutrition, 2011, pp. 353–394.
DOI
[70]

F. Depeint, W. Robert Bruce, N. Shangari, R. Mehta, P.J. O'brien, Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolism, Chem. Biol. Interact. 163 (2006) 94–112, http://dx.doi.org/10.1016/j.cbi.2006.04.014.

[71]

J. Fabregas, C. Herrero, Vitamin content of four marine microalgae. Potential use as source of vitamins in nutrition, J. Ind. Microbiol. 5 (1990) 259–263, http://dx.doi.org/10.1007/BF01569683.

[72]
M.N. Islam, F. Alsenani, P.M. Schenk, Microbial Functional Foods and Nutraceuticals, John Wiley & Sons Ltd., 2017, http://dx.doi.org/10.1002/9781119048961.ch1.
DOI
[73]

F. Watanabe, S. Takenaka, H. Kittaka-Katsura, S. Ebara, E. Miyamoto, Characterization and bioavailability of vitamin B12-compounds from edible algae, J. Nutr. Sci. Vitaminol. 48 (2002) 325–331, http://dx.doi.org/10.3177/jnsv.48.325.

[74]

M.T. Croft, A.D. Lawrence, E. Raux-Deery, M.J. Warren, A.G. Smith, Algae acquire vitamin B12through a symbiotic relationship with bacteria, Nature 438 (2005) 90–93, http://dx.doi.org/10.1038/nature04056.

[75]

L.H. Allen, Causes of vitamin B 12 and folate deficiency, Food Nutr. Bull. 29 (2008) 20–34.

[76]

J. Ortiz, E. Uquiche, P. Robert, N. Romero, V. Quitral, C. Llantén, Functional and nutritional value of the Chilean seaweeds Codium fragile, Gracilaria chilensis and Macrocystis pyrifera, Eur. J. Lipid Sci. Technol. 111 (2009) 320–327, http://dx.doi.org/10.1002/ejlt.200800140.

[77]

P. Ferraces-Casais, M.A. Lage-Yusty, A. Rodríguez-Bernaldo De Quirós, J. López-Hernández, Evaluation of bioactive compounds in fresh edible seaweeds, Food Anal. Methods 5 (2012) 828–834, http://dx.doi.org/10.1007/s12161-011-9321-2.

[78]

G. Hernández-Carmona, S. Carrillo-Domínguez, D.L. Arvizu-Higuera, Y.E. Rodríguez-Montesinos, J.I. Murillo-Álvarez, M. Munoz-Ochoa, R.M. ˜ Castillo-Domínguez, Monthly variation in the chemical composition of Eisenia arborea J.E. Areschoug, J. Appl. Phycol. 21 (2009) 607–616, http://dx.doi.org/10.1007/s10811-009-9454-5.

[79]

S. Škrovánková, Seaweed vitamins as nutraceuticals, Adv. Food Nutr. Res. 64 (2011) 357–369, http://dx.doi.org/10.1016/B978-0-12-387669-0.00028-4.

[80]

K. Wayne, J. Ying, P. Loke, N. Hui, J. Ching, T. Chuan, D. Lee, J. Chang, Bioresource technology microalgae biorefinery: high value products perspectives, Bioresour. Technol. 229 (2017) 53–62, http://dx.doi.org/10.1016/j.biortech.2017.01.006.

[81]

S. Takenaka, S. Sugiyama, S. Ebara, E. Miyamoto, K. Abe, Y. Tamura, F. Watanabe, S. Tsuyama, Y. Nakano, Feeding dried purple laver (nori) to vitamin B 12-deficient rats significantly improves vitamin B 12 status, Br. J. Nutr. 85 (2001) 699–703, http://dx.doi.org/10.1079/BJN2001352.

[82]

V. Hajhashemi, G. Vaseghi, M. Pourfarzam, A. Abdollahi, Are antioxidants helpful for disease prevention? Res. Pharm. Sci. 5 (2010) 1–8 (Accessed 8 November 2018) http://www.ncbi.nlm.nih.gov/pubmed/21589762.

[83]

L.A. Pham-Huy, H. He, C. Pham-Huy, Free Radicals, Antioxidants in disease and health, Int. J. Biomed. Sci. 4 (2008) 89–96.

[84]

S. Topdag, A. Aslaner, C. Tataroglu, Z. Ilce, Evaluation of antioxidant capacity in lung carcinoma, Indian J. Thorac. Cardiovasc. Surg. 21 (2005) 269–271, http://dx.doi.org/10.1007/s12055-005-0004-8.

[85]

K.K. Kattappagari, R.T. CS, R.K. Kommalapati, C. Poosarla, S.R. Gontu, B.V.R. Reddy, Role of antioxidants in facilitating the body functions: a review, J. Orofacial Sci. 7 (2015) 71–75, http://dx.doi.org/10.4103/0975-8844.169745.

[86]
R. Matsukawa, M. Hotta, Y. Masuda, M. Chihara, I. Karube, Antioxidants from Carbon Dioxide Fixing Chlorella sorokiniana, 2000 (Accessed 28 November 2018) https://link.springer.com/content/pdf/10.1023%2FA%3A1008141414115.pdf.
[87]

F.M.I. Natrah, F.M. Yusoff, M. Shariff, F. Abas, N.S. Mariana, Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value, J. Appl. Phycol. 19 (2007) 711–718, http://dx.doi.org/10.1007/s10811- 007-9192-5.

[88]

R.H. Wijffels, M.J. Barbosa, An outlook on microalgal biofuels, Science (80-.) 329 (2010) 796–799, http://dx.doi.org/10.1126/science.1189003.

[89]
Algae Products Market by Application (Nutraceuticals, Food & Feed Supplements, Pharmaceuticals, Paints & Colorants, Pollution Control, Others) – Growth, Future Prospects, Competitive Analysis, and Forecast 2016–2023, 2017 (Accessed 30 November 2018) https://www.credenceresearch.com/report/algae-products-market.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 03 December 2018
Revised: 10 January 2019
Accepted: 01 March 2019
Published: 02 March 2019
Issue date: March 2019

Copyright

© 2019 “Society information”.

Acknowledgements

Acknowledgements

This work was supported by the Fundamental Research Grant Scheme, Malaysia [FRGS/1/2015/SG05/UNIM/03/1]; the Ministry of Science and Technology, Malaysia [MOSTI02-02-12-SF0256]; the Prototype Research Grant Scheme, Malaysia [PRGS/2/2015/SG05/UNIM/03/1], and International Cooperation Seeds Funding of Nanjing Agricultural University (Grant number: 2018-AH-04).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return