Journal Home > Volume 8 , Issue 1

Alzheimer’s disease (AD) is the most prevalent cause of dementia worldwide. Treatments achieving a marked improvement in symptoms or preventing or delaying the progression of the disease are not available. Various diet-related risk factors for AD have been identified. Evidence for a protective effect of the Mediterranean diet on AD risk is inconclusive. Medical foods are designed to meet specific dietary needs for certain diseases. Improvements in symptomatology and regional brain atrophy in AD have been claimed for several medical foods, for example, those providing ketone bodies as alternative energy supply to neurons, those containing precursors believed to improve synaptic function, and those addressing oxidative stress related to memory loss. Many methodological shortcomings render the interpretation of the available findings of medical food trials in AD difficult. Optimal results of medical foods in AD may be expected when administered in presymptomatic or early stages of the disease. This requires the reliable identification of minimal neuropathological changes related to AD. The outcome measures currently used may not be able to detect subtle changes in cognition and function in early AD. Large-scale clinical studies using valid, sensitive, and reliable assessment tools are needed to establish the efficacy of medical foods in AD.


menu
Abstract
Full text
Outline
About this article

Medical foods in Alzheimer’s disease

Show Author's information Klaus W. Langea,( )Jianjun GuobShigehiko KanayacKatharina M. LangedYukiko NakamuraaShiming Lie
Department of Experimental Psychology, University of Regensburg, 93040 Regensburg, Germany
China Institute of Sport Science, Beijing, China
Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma, Japan
Department of Psychology, University of Winchester, Winchester, United Kingdom
Department of Food Science, Rutgers University, New Brunswick, NJ, USA

Peer review under responsibility of KeAi Communications Co., Ltd.

Abstract

Alzheimer’s disease (AD) is the most prevalent cause of dementia worldwide. Treatments achieving a marked improvement in symptoms or preventing or delaying the progression of the disease are not available. Various diet-related risk factors for AD have been identified. Evidence for a protective effect of the Mediterranean diet on AD risk is inconclusive. Medical foods are designed to meet specific dietary needs for certain diseases. Improvements in symptomatology and regional brain atrophy in AD have been claimed for several medical foods, for example, those providing ketone bodies as alternative energy supply to neurons, those containing precursors believed to improve synaptic function, and those addressing oxidative stress related to memory loss. Many methodological shortcomings render the interpretation of the available findings of medical food trials in AD difficult. Optimal results of medical foods in AD may be expected when administered in presymptomatic or early stages of the disease. This requires the reliable identification of minimal neuropathological changes related to AD. The outcome measures currently used may not be able to detect subtle changes in cognition and function in early AD. Large-scale clinical studies using valid, sensitive, and reliable assessment tools are needed to establish the efficacy of medical foods in AD.

Keywords: Alzheimer’s disease, Nutrition, Ketogenic diet, Medical foods, Mediterranean diet

References(87)

[1]

S. Gauthier, B. Reisberg, M. Zaudig, R.C. Petersen, K. Ritchie, K. Broich, S. Belleville, H. Brodaty, D. Bennett, H. Chertkow, J.L. Cummings, M. de Leon, H. Feldman, M. Ganguli, H. Hampel, P. Scheltens, M.C. Tierney, P. Whitehouse, B. Winblad, Mild cognitive impairment, Lancet 367 (2006) 1262-1270.

[2]

K.W. Lange, B.J. Sahakian, N.P. Quinn, C.D. Marsden, T.W. Robbins, Comparison of executive and visuospatial memory function in Huntington’s disease and dementia of the Alzheimer-type matched for degrees of dementia, J. Neurol. Neurosurg. Psychiatry 58 (1995) 598-606.

[3]

P. Scheltens, K. Blennow, M.M. Breteler, B. de Strooper, G.B. Frisoni, S. Salloway, W.M. van der Flier, Alzheimer’s disease, Lancet 388 (2016) 505-517.

[4]

D.A. Butterfield, O.M. Lauderback, Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress, Free Radic. Biol. Med. 32 (2002) 1050-1060.

[5]

L. Crews, E. Masliah, Molecular mechanisms of neurodegeneration in Alzheimer’s disease, Hum. Mol. Genet. 19 (2010) R12-R20.

[6]

H.W. Querfurth, F.M. LaFerla, Alzheimer’s disease, N. Engl. J. Med. 362 (2010) 329-344.

[7]

A.C. Tricco, C. Soobiah, S. Berliner, J.M. Ho, C.H. Ng, H.M. Ashoor, M.H. Chen, B. Hemmelgarn, S.E. Straus, Efficacy and safety of cognitive enhancers for patients with mild cognitive impairment: a systematic review and meta-analysis, CMAJ 185 (2013) 1393-1401.

[8]

K.W. Lange, Diet, exercise, and mental disorders − public health challenges of the future, Mov. Nutr. Health Dis. 2 (2018) 39-59.

[9]

K. Moore, C.F. Hughes, M. Ward, L. Hoey, H. McNulty, Diet, nutrition and the ageing brain: current evidence and new directions, Proc. Nutr. Soc. 77 (2018) 152-163.

[10]
World Health Organization, Towards a Dementia Plan: a WHO Guide, World Health Organization, Geneva, 2018.
[11]

D.R. Gustafson, M. Clare Morris, N. Scarmeas, R.C. Shah, J. Sijben, K. Yaffe, X. Zhu, New perspectives on Alzheimer’s disease and nutrition, J. Alzheimers Dis. 46 (2015) 1111-1127.

[12]

S.D. Petersson, E. Philippou, Mediterranean diet, cognitive function, and dementia: a systematic review of the evidence, Adv. Nutr. 7 (2016) 889-904.

[13]

K.W. Lange, K.M. Lange, E. Makulska-Gertruda, Y. Nakamura, A. Reissmann, S. Kanaya, J. Hauser, Ketogenic diets and Alzheimer’s disease, Food Sci. Hum. Wellness 6 (2017) 1-9.

[14]

R.C. Shah, Medical foods for Alzheimer’s disease, Drugs Aging 28 (2011) 421-428.

[15]
N.R. Sahyoun, K. Sankavaram, Historical origins of the Mediterranean diet, regional dietary profiles, and the development of the dietary guidelines, in: D.F. Romagnolo, O.I. Selmin (Eds.), Mediterranean Diet, Dietary Guidelines and Impact on Health and Disease, Humana Press, Cham, 2016, pp. 43–56.
DOI
[16]

M. Baumgart, H.M. Snyder, M.C. Carrillo, S. Fazio, H. Kim, H. Johns, Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective, Alzheimers Dement. 11 (2015) 718-726.

[17]

N. Scarmeas, Y. Stern, M.X. Tang, R. Mayeux, J.A. Luchsinger, Mediterranean diet and risk for Alzheimer’s disease, Ann. Neurol. 6 (2006) 912-921.

[18]

N. Scarmeas, J.A. Luchsinger, N. Schupf, A.M. Brickman, S. Cosentino, M.X. Tang, Y. Stern, Physical activity, diet, and risk of Alzheimer disease, JAMA 302 (2009) 627-637.

[19]

N. Scarmeas, Y. Stern, R. Mayeux, J.J. Manly, N. Schupf, J.A. Luchsinger, Mediterranean diet and mild cognitive impairment, Arch. Neurol. 66 (2009) 216-225.

[20]

E.H. Martínez -Lapiscina, P. Clavero, E. Toledo, R. Estruch, J. Salas-Salvadó, B. San Julián, A. Sanchez-Tainta, E. Ros, C. Valls-Pedret, M.A. Martinez-Gonzalez, Mediterranean diet improves cognition: the PREDIMED-NAVARRA randomised trial, J. Neurol. Neurosurg. Psychiatry 84 (2013) 1318-1325.

[21]

C. Valls-Pedret, A. Sala-Vila, M. Serra-Mir, D. Corella, R. de la Torre, M.A. Martínez-González, E.H. Martínez-Lapiscina, M. Fitó, A. Pérez-Heras, J. Salas-Salvadó, R. Estruch, E. Ros, Mediterranean diet and age-related cognitive decline: a randomized clinical trial, JAMA Intern. Med. 175 (2015) 1094-1103.

[22]

M.C. Morris, D.A. Evans, C.C. Tangney, J.L. Bienias, R.S. Wilson, Associations of vegetable and fruit consumption with age-related cognitive change, Neurology 67 (2006) 1370-1376.

[23]

N.A. Kelsey, H.M. Wilkins, D.A. Linseman, Nutraceutical antioxidants as novel neuroprotective agents, Molecules 15 (2010) 7792-7814.

[24]

S. Huhn, S. Kharabian Masouleh, M. Stumvoll, A. Villringer, A.V. Witte, Components of a Mediterranean diet and their impact on cognitive functions in aging, Front. Aging Neurosci. 7 (2015) 132.

[25]

R. Hornedo-Ortega, A.B. Cerezo, R.M. de Pablos, S. Krisa, T. Richard, M.C. García-Parrilla, A.M. Troncoso, Phenolic compounds characteristic of the Mediterranean diet in mitigating microglia-mediated neuroinflammation, Front. Cell. Neurosci. 12 (2018) 373.

[26]

K.W. Lange, Red wine, resveratrol, and Alzheimer’s disease, Mov. Nutr. Health Dis. 2 (2018) 31-38.

[27]

K.W. Lange, S. Li, Resveratrol, pterostilbene and dementia, BioFactors 44 (2018) 83-90.

[28]

F. Sofi, C. Macchi, A. Casini, Mediterranean diet and minimizing neurodegeneration, Curr. Nutr. Rep. 2 (2013) 75-80.

[29]

B. Singh, A.K. Parsaik, M.M. Mielke, P.J. Erwin, D.S. Knopman, R.C. Petersen, R.O. Roberts, Association of Mediterranean diet with mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis, J. Alzheimers Dis. 39 (2014) 271-282.

[30]

V. Berti, M. Walters, J. Sterling, C.G. Quinn, M. Logue, R. Andrews, D.C. Matthews, R.S. Osorio, A. Pupi, S. Vallabhajosula, R.S. Isaacson, M.J. de Leon, L. Mosconi, Mediterranean diet and 3-year Alzheimer brain biomarker changes in middle-aged adults, Neurology 90 (2018) e1789-e1798.

[31]

K.W. Lange, Lifestyle and attention deficit/hyperactivity disorder, Mov. Nutr. Health Dis. 2 (2018) 22-30.

[32]

C.A. Anastasiou, M. Yannakoulia, M.H. Kosmidis, E. Dardiotis, G.M. Hadjigeorgiou, P. Sakka, X. Arampatzi, A. Bougea, I. Labropoulos, N. Scarmeas, Mediterranean diet and cognitive health: initial results from the Hellenic longitudinal investigation of ageing and diet, PLoS One 12 (2017) e0182048.

[33]

K.W. Lange, J. Guo, S. Kanaya, K.M. Lange, Y. Nakamura, S. Li, Mediterranean diet and Alzheimer’s disease, Mov. Nutr. Health Dis. 3 (2019) 1.

[34]

S. Hoyer, Oxidative energy metabolism in Alzheimer brain. Studies in early-onset and late-onset cases, Mol. Chem. Neuropathol. 16 (1992) 207-224.

[35]

E.M. Reiman, K. Chen, G.E. Alexander, R.J. Caselli, D. Bandy, D. Osborne, A.M. Saunders, J. Hardy, Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia, PNAS 101 (2004) 284-289.

[36]

L. Mosconi, S. De Santi, J. Li, W.H. Tsui, Y. Li, M. Boppana, E. Laska, H. Rusinek, M.J. de Leon, Hippocampal hypometabolism predicts cognitive decline from normal aging, Neurobiol. Aging 29 (2008) 676-692.

[37]

K. Chen, N. Ayutyanont, J.B. Langbaum, A.S. Fleisher, C. Reschke, W. Lee, X. Liu, D. Bandy, G.E. Alexander, P.M. Thompson, L. Shaw, J.Q. Trojanowski, C.R. Jack, S.M. Landau, N.L. Foster, D.J. Harvey, M.W. Weiner, R.A. Koeppe, W.J. Jagust, E.M. Reiman, Characterizing Alzheimer’s disease using a hypometabolic convergence index, Neuroimage 56 (2011) 52-60.

[38]

R.J. Bateman, C. Xiong, T.L.S. Benzinger, A.M. Fagan, A. Goate, N.C. Fox, D.S. Marcus, N.J. Cairns, X. Xie, T.M. Blazey, D.M. Holtzman, A. Santacruz, V. Buckles, A. Oliver, K. Moulder, P.S. Aisen, B. Ghetti, W.E. Klunk, E. McDade, R.N. Martins, C.L. Masters, R. Mayeux, J.M. Ringman, M.N. Rossor, P.R. Schofield, R.A. Sperling, S. Salloway, J.C. Morris, Clinical and biomarker changes in dominantly inherited Alzheimer’s disease, N. Engl. J. Med. 367 (2012) 795-804.

[39]

C.A. Castellano, S. Nugent, N. Paquet, S. Tremblay, C. Bocti, G. Lacombe, H. Imbeault, E. Turcotte, T. Fulop, S.C. Cunnane, Lower brain 18F-fluorodeoxyglucose uptake but normal 11C-acetoacetate metabolism in mild Alzheimer’s disease dementia, J. Alzheimers Dis. 43 (2015) 1343-1353.

[40]

E.H. Kossoff, B.A. Zupec-Kania, J.M. Rho, Ketogenic diets: an update for child neurologists, J. Child Neurol. 24 (2009) 979-988.

[41]

O.E. Owen, A.P. Morgan, H.G. Kemp, J.M. Sullivan, M.G. Herrera, G.F. Cahill Jr., Brain metabolism during fasting, J. Clin. Invest. 46 (1967) 1589-1595.

[42]

E.J. Drenick, L.C. Alvarez, G.C. Tamasi, A.S. Brickman, Resistance to symptomatic insulin reactions after fasting, J. Clin. Invest. 51 (1972) 2757-2762.

[43]

S.C. Cunnane, A. Courchesne-Loyer, C. Vandenberghe, V. St-Pierre, M. Fortier, M. Hennebelle, E. Croteau, C. Bocti, T. Fulop, C.-A. Castellano, Can ketones help rescue brain fuel supply in later life? Implications for cognitive health during aging and the treatment of Alzheimer’s disease, Front. Mol. Neurosci. 9 (2016) 53.

[44]

M.A. Reger, S.T. Henderson, C. Hale, B. Cholerton, L.D. Baker, G.S. Watson, K. Hyde, D. Chapman, S. Craft, Effects of beta-hydroxybutyrate on cognition in memory-impaired adults, Neurobiol. Aging 25 (2004) 311-314.

[45]

S.T. Henderson, J.L. Vogel, L.J. Barr, F. Garvin, J.J. Jones, L.C. Costantini, Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial, Nutr. Metab. (Lond) 6 (2009) 31.

[46]

T. Ohnuma, A. Toda, A. Kimoto, Y. Takebayashi, R. Higashiyama, Y. Tagata, M. Ito, T. Ota, N. Shibata, H. Arai, Benefits of use, and tolerance of, medium-chain triglyceride medical food in the management of Japanese patients with Alzheimer’s disease: a prospective, open-label pilot study, Clin. Interv. Aging 11 (2016) 29-36.

[47]

M.K. Taylor, D.K. Sullivan, J.D. Mahnken, J.M. Burns, R.H. Swerdlow, Feasibility and efficacy data from a ketogenic diet intervention in Alzheimer’s disease, Alzheimers Dement. 4 (2017) 28-36.

[48]

C.J. Rebello, J.N. Keller, A.G. Liu, W.D. Johnson, F.L. Greenway, Pilot feasibility and safety study examining the effect of medium chain triglyceride supplementation in subjects with mild cognitive impairment: a randomized controlled trial, BBA Clin. 3 (2015) 123-125.

[49]

R. Guerreiro, J. Hardy, Genetics of Alzheimer’s disease, Neurotherapeutics 11 (2014) 732-737.

[50]

M. Ota, J. Matsuo, I. Ishida, K. Hattori, T. Teraishi, H. Tonouchi, K. Ashida, T. Takahashi, H. Kunugi, Effect of a ketogenic meal on cognitive function in elderly adults: potential for cognitive enhancement, Psychopharmacology 233 (21–22) (2016) 3797-3802.

[51]

T.B. Vanitallie, Preclinical sporadic Alzheimer’s disease: target for personalized diagnosis and preventive intervention, Metabolism 62 (Suppl. 1) (2013) S30-S33.

[52]
U.S. Food and Drug Administration, Medical Foods Guidance Documents & Regulatory Information, Available from URLhttps://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/MedicalFoods/default.htm(Accessed 15 January 2019), 2019.
[53]
The Commission of the European Communities, Commission Directive 1999/21/EC of 25 March 1999 on Dietary Foods for Special Medical Purposes, Official Journal L 091, 07/04/1999 P. 0029-0036, Available from URLhttp://eur-lex.europa.eu/LexUriServ/LexUriServ.
[54]

P. Thaipisuttikul, J.E. Galvin, Use of medical foods and nutritional approaches in the treatment of Alzheimer’s disease, Clin. Pract. 9 (2012) 199-209.

[55]

A. Sharma, M. Bemis, A.R. Desilets, Role of medium chain triglycerides (Axona®) in the treatment of mild to moderate Alzheimer’s disease, Am. J. Alzheimers Dis. Other Demen. 29 (2014) 409-414.

[56]

R.D. Terry, E. Masliah, D.P. Salmon, N. Butters, R. DeTeresa, R. Hill, L.A. Hansen, R. Katzman, Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment, Ann. Neurol. 30 (1991) 572-580.

[57]

D.J. Selkoe, Alzheimer’s disease is a synaptic failure, Science 298 (2002) 789-791.

[58]

R.M. Nitsch, J.K. Blusztajn, A.G. Pittas, B.E. Slack, J.H. Growdon, R.J. Wurtman, Evidence for a membrane defect in Alzheimer disease brain, Proc. Natl. Acad. Sci. U. S. A. 89 (1992) 1671-1675.

[59]

J.W. Pettegrew, K. Panchalingam, R.L. Hamilton, R.J. McClure, Brain membrane phospholipid alterations in Alzheimer’s disease, Neurochem. Res. 26 (2001) 771-782.

[60]

P.S. Sastry, Lipids of nervous tissue: composition and metabolism, Prog. Lipid Res. 24 (1985) 69-176.

[61]

M.G. Olde Rikkert, F.R. Verhey, R. Blesa, C.A. von Arnim, A. Bongers, J. Harrison, J. Sijben, E. Scarpini, M.F. Vandewoude, B. Vellas, R. Witkamp, P.J. Kamphuis, P. Scheltens, Tolerability and safety of Souvenaid in patients with mild Alzheimer’s disease: results of multi-center, 24-week, open-label extension study, J. Alzheimers Dis. 44 (2015) 471-480.

[62]

P. Scheltens, P.J.G.H. Kamphuis, F.R.J. Verhey, M.G.M. Olde Rikkert, R.J. Wurtman, D. Wilkinson, J.W.R. Twisk, A. Kurz, Efficacy of a medical food in mild Alzheimer’s disease: a randomized, controlled trial, Alzheimers Dement. 6 (2010) 1-10.

[63]

P. Scheltens, J.W.R. Twisk, R. Blesa, E. Scarpini, C.A.F. von Arnim, A. Bongers, J. Harrison, S.H.N. Swinkels, C.J. Stam, H. de Waal, R.J. Wurtman, R.L. Wieggers, B. Vellas, P.J.G.H. Kamphuis, Efficacy of Souvenaid in mild Alzheimer’s disease: results from a randomized, controlled trial, J. Alzheimers Dis. 31 (2012) 225-236.

[64]

A. Rijpma, M. van der Graaf, M.M. Lansbergen, O. Meulenbroek, A. Cetinyurek-Yavuz, J.W. Sijben, A. Heerschap, M.G.M. Olde Rikkert, The medical food Souvenaid affects brain phospholipid metabolism in mild Alzheimer’s disease: results from a randomized controlled trial, Alzheimers Res. Ther. 9 (2017) 51.

[65]

J. Selhub, P.F. Jacques, A.G. Bostom, P.W. Wilson, I.H. Rosenberg, Relationship between plasma homocysteine and vitamin status in the Framingham study population. Impact of folic acid fortification, Public Health Rev. 28 (2000) 117-145.

[66]

A.J. MacFarlane, L.S. Greene-Finestone, Y. Shi, Vitamin B-12 and homocysteine status in a folate-replete population: results from the Canadian Health Measures Survey, Am. J. Clin. Nutr. 94 (2011) 1079-1087.

[67]

Y.Y. Wong, O.P. Almeida, K.A. McCaul, B.B. Yeap, G.J. Hankey, L. Flicker, Homocysteine, frailty, and all-cause mortality in older men: the health in men study, J. Gerontol. A Biol. Sci. Med. Sci. 68 (2013) 590-598.

[68]

H.M. Jochemsen, R.P. Kloppenborg, L.C. de Groot, E. Kampman, W.P. Mali, Y. van der Graaf, M.I. Geerlings, Study SMART Group, Homocysteine, progression of ventricular enlargement, and cognitive decline: the Second Manifestations of ARTerial disease-Magnetic Resonance study, Alzheimers Dement. 9 (2013) 302-309.

[69]

M. Gallucci, A. Zanardo, M. Bendini, F. Di Paola, P. Boldrini, E. Grossi, Serum folate, homocysteine, brain atrophy, and auto-CM system: the Treviso Dementia (TREDEM) study, J. Alzheimers Dis. 38 (2014) 581-587.

[70]

G. Douaud, H. Refsum, C.A. de Jager, R. Jacoby, T.E. Nichols, S.M. Smith, A.D. Smith, Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 9523-9528.

[71]

L.K. Yang, K.C. Wong, M.Y. Wu, S.L. Liao, C.S. Kuo, R.F. Huang, Correlations between folate, B12, homocysteine levels, and radiological markers of neuropathology in elderly post-stroke patients, J. Am. Coll. Nutr. 26 (2007) 272-278.

[72]

I. Blasko, M. Hinterberger, G. Kemmler, S. Jungwirth, W. Krampla, T. Leitha, K. Heinz Tragl, P. Fischer, Conversion from mild cognitive impairment to dementia: influence of folic acid and vitamin B12 use in the VITA cohort, J. Nutr. Health Aging 16 (2007) 687-694.

[73]

L.M. de Lau, H. Refsum, A.D. Smith, C. Johnston, M.M. Breteler, Plasma folate concentration and cognitive performance: Rotterdam scan study, Am. J. Clin. Nutr. 86 (2007) 728-734.

[74]

W.R. Shankle, J. Hara, L.W. Barrentine, M.V. Curole, CerefolinNAC therapy of hyperhomocysteinemia delays cortical and white matter atrophy in Alzheimer’s disease and cerebrovascular disease, J. Alzheimers Dis. 54 (2016) 1073-1084.

[75]

J. Tost, DNA methylation: an introduction to the biology and the disease-associated changes of a promising biomarker, Methods Mol. Biol. 507 (2009) 3-20.

[76]

S.G. Gray, Epigenetic treatment of neurological disease, Epigenomics 3 (2011) 431-450.

[77]

Y.P. Zhu, Y. Feng, T. Liu, Y.C. Wu, Epigenetic modification and its role in Alzheimer’s disease, Integr. Med. Int. 2 (2015) 63-72.

[78]

Z. Sezgin, Y. Dincer, Alzheimer’s disease and epigenetic diet, Neurochem. Int. 78 (2014) 105-116.

[79]

S. Chiu, M.A. Woodbury-Fariña, M.U. Shad, M. Husni, J. Copen, Y. Bureau, Z. Cernovsky, J.J. Hou, H. Raheb, K. Terpstra, V. Sanchez, A. Hategan, M. Kaushal, R. Campbell, The role of nutrient-based epigenetic changes in buffering against stress, aging, and Alzheimer’s disease, Psychiatr. Clin. N. Am. 37 (2014) 591-623.

[80]

D. Athanasopoulos, G. Karagiannis, M. Tsolaki, Recent findings in Alzheimer disease and nutrition focusing on epigenetics, Adv. Nutr. 7 (2016) 917-927.

[81]

J.K. Harrison, A.H. Noel-Storr, N. Demeyere, E.L. Reynish, T.J. Quinn, Outcomes measures in a decade of dementia and mild cognitive impairment trials, Alzheimers Res. Ther. 8 (2016) 48.

[82]

Y. Morrison, L. Wilson, F. Kelly, C. Bennett, F. Duffy, S. McGoldrick, E. Reynish, Assessment of outcome in clinical trials in mild Alzheimer’s disease: urgent time for a rethink? OA Elderly Med. 1 (2013) 3.

[83]

L. Demers, M. Oremus, A. Perrault, N. Champoux, C. Wolfson, Review of outcome measurement instruments in Alzheimer’s disease drug trials: psychometric properties of functional and quality of life scales, J. Geriatr. Psychiatry Neurol. 13 (2000) 170-180.

[84]

H. Posner, R. Curiel, C. Edgar, S. Hendrix, E. Liu, D.A. Loewenstein, G. Morrison, L. Shinobu, K. Wesnes, P.D. Harvey, Outcomes assessment in clinical trials of Alzheimer’s disease and its precursors: readying for short-term and long-term clinical trial needs, Innov. Clin. Neurosci. 14 (2017) 22-29.

[85]

L. Webster, D. Groskreutz, A. Grinbergs-Saull, R. Howard, J.T. O’Brien, G. Mountain, S. Banerjee, B. Woods, R. Perneczky, L. Lafortune, C. Roberts, J. McCleery, J. Pickett, F. Bunn, D. Challis, G. Charlesworth, K. Featherstone, C. Fox, C. Goodman, R. Jones, S. Lamb, E. Moniz-Cook, J. Schneider, S. Shepperd, C. Surr, J. Thompson-Coon, C. Ballard, C. Brayne, A. Burns, L. Clare, P. Garrard, P. Kehoe, P. Passmore, C. Holmes, I. Maidment, L. Robinson, G. Livingston, Core outcome measures for interventions to prevent or slow the progress of dementia for people living with mild to moderate dementia: systematic review and consensus recommendations, PLoS One 12 (2017) e0179521.

[86]

L. Bherer, K.I. Erickson, T. Liu-Ambrose, A review of the effects of physical activity and exercise on cognitive and brain functions in older adults, J. Aging Res. 2013 (2013) 657508.

[87]

K.W. Lange, Movement and nutrition in health and disease, Mov. Nutr. Health Dis. 1 (2017) 1-2.

Publication history
Copyright
Rights and permissions

Publication history

Received: 21 January 2019
Revised: 13 February 2019
Accepted: 14 February 2019
Published: 22 February 2019
Issue date: March 2019

Copyright

© 2019 “Society information”.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return