AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (510 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

A critical review on the health promoting effects of mushrooms nutraceuticals

Gaoxing MaaWenjian YangbLiyan ZhaoaFei PeibDonglu FangaQiuhui Hua,b( )
College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
College of Food Science and Engineering/ Collaborative Innovation Center for Modern Grain Circulation and Safety/ Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance & Economics, Nanjing, Jiangsu 210023, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Extensive elucidations focusing on the efficient health promoting properties and high nutritional values of mushrooms have been expanded dynamically from the past few decades. Due to its high quality of proteins, polysaccharides, unsaturated fatty acids, mineral substances, triterpenes sterols and secondary metabolites, mushrooms have always been appreciated for their vital role in protecting and curing various health problems, such as immunodeficiency, cancer, inflammation, hypertension, hyperlipidemia, hypercholesterolemia and obesity. Moreover, investigations in recent years have revealed the correlations between the health-promoting benefits and gut microbiota regulating effects induced by the mushrooms intake. Researches on the immense role in the nutritional and health benefits displayed by mushrooms have become an emergent task to study. The present article overviewed and compiled the latest information correlated to the health benefits and underlying functional mechanisms of mushroom nutraceuticals, and concluded that the supplementation of mushrooms as a dietary composition could become a natural adjuvant for the prevention and treatment of several health diseases.

References

[1]

C. Phat, B. Moon, C. Lee, Evaluation of umami taste in mushroom extracts by chemical analysis, sensory evaluation, and an electronic tongue system, Food Chem. 192 (2016) 1068-1077.

[2]
P. Kalač, Edible Mushrooms: Chemical Composition and Nutritional Value, Academic Press, 2016.
[3]

P. Roupas, J. Keogh, M. Noakes, et al., The role of edible mushrooms in health: evaluation of the evidence, J. Funct. Foods. 4 (2012) 687-709.

[4]

I. Roncero-Ramos, C. Delgado-Andrade, The beneficial role of edible mushrooms in human health, Curr. Opin. Food Sci. 14 (2017) 122-128.

[5]

M.J. Feeney, J. Dwyer, C.M. Hasler-Lewis, et al., Mushrooms and health summit proceedings, J. Nutr. 144 (2014) 1128S-1136S.

[6]

H. Thatoi, S.K. Singdevsachan, Diversity, nutritional composition and medicinal potential of Indian mushrooms: a review, Afr. J. Biotechnol. 13 (2014) 523-545.

[7]

A.C. Ruthes, F.R. Smiderle, M. Iacomini, Mushroom heteropolysaccharides: a review on their sources, structure and biological effects, Carbohydr. Polym. 136 (2016) 358-375.

[8]

P.C. Cheung, Mini-review on edible mushrooms as source of dietary fiber: preparation and health benefits, Food. Sci. Hum. Welln. 2 (2013) 162-166.

[9]

H.A. El Enshasy, R. Hatti-Kaul, Mushroom immunomodulators: unique molecules with unlimited applications, Trends Biotechnol. 31 (2013) 668-677.

[10]

K. Kumar, Role of edible mushrooms as functional foods-a review, South Asian J. Food Technol. Environ. 1 (2015) 211-218.

[11]

G. T Tel-Cayan, M. Ozturk, M.E. Duru, et al., Fatty acid profiles in wild mushroom species from Anatolia, Chem. Nat. Compd. 53 (2017) 351-353.

[12]

S.A. Heleno, A. Martins, M.J.R. Queiroz, et al., Bioactivity of phenolic acids: metabolites versus parent compounds: a review, Food Chem. 173 (2015) 501-513.

[13]

S. Khatua, S. Paul, K. Acharya, Mushroom as the potential source of new generation of antioxidant: a review, Res. J. Pharm. Technol. 6 (2013) 496-505.

[14]

J.C. Barreira, M.B.P. Oliveira, I.C. Ferreira, Development of a novel methodology for the analysis of ergosterol in mushrooms, Food Anal. Method 7 (2014) 217-223.

[15]

S.S. Singh, H. Wang, Y.S. Chan, et al., B. Lectins from edible mushrooms, Molecules 20 (2014) 446-469.

[16]

H. Rathore, S. Prasad, S. Sharma, et al., Mushroom nutraceuticals for improved nutrition and better human health: a review, Pharma Nutr. 5 (2017) 35-46.

[17]

K. Ghosh, A review: edible mushrooms as source of dietary fiber and its health effects, J. Phys. Sci. 21 (2016).

[18]

H. Persson, Mushrooms, Medicine 44 (2016) 116-119.

[19]

N.F.M. Yahaya, M.A. Rahman, N. Abdullah, Therapeutic potential of mushrooms in preventing and ameliorating hypertension, Trends Food Sci. Technol. 39 (2014) 104-115.

[20]

N. Thangthaeng, M.G. Miller, S.M. Gomes, et al., Daily supplementation with mushroom (Agaricus bisporus) improves balance and working memory in aged rats, Nutr. Res. 35 (2015) 1079-1084.

[21]

M.A. Sayeed, A. Banu, K. Khatun, et al., Effect of edible mushroom (Pleurotus ostreatus) on type-2 diabetics, Ibrahim Med. Coll. J. 8 (2015) 6-11.

[22]

M.E. Valverde, T. Hernández-Pérez, O. Paredes-López, Edible mushrooms: improving human health and promoting quality life, Int. J. Microbiol. 2015 (2015).

[23]

X.-M. Wang, J. Zhang, L.-H. Wu, et al., A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China, Food Chem. 151 (2014) 279-285.

[24]

A. Villares, L. Mateo-Vivaracho, E. Guillamón, Structural features and healthy properties of polysaccharides occurring in mushrooms, Agriculture 2 (2012) 452-471.

[25]
S.M. Badalyan, Potential of mushroom bioactive molecules to develop healthcare biotech products, in: Proceedings of the 8th International Conference on Mushroom Biology and Mushroom Products (ICMBMP8), 2014, pp. 373–378.
[26]

S.P. Wasser, Current findings, future trends, and unsolved problems in studies of medicinal mushrooms, Appl. Microbiol. Biotechnol. 89 (2011) 1323-1332.

[27]

M. Jayachandran, J. Xiao, B. Xu, A critical review on health promoting benefits of edible mushrooms through gut microbiota, Int. J. Mol. Sci. 18 (2017) 1934.

[28]

Q. Kong, S. Dong, J. Gao, et al., In vitro fermentation of sulfated polysaccharides from E. prolifera and L. japonica by human fecal microbiota, Int. J. Biol. Macromol. 91 (2016) 867-871.

[29]

G. Ma, B.M. Kimatu, L. Zhao, et al., In vivo fermentation of a Pleurotus eryngii polysaccharide and its effects on fecal microbiota composition and immune response, Food Funct. 8 (2017) 1810-1821.

[30]

K.-X. Zhu, S.-P. Nie, L.-H. Tan, et al., A polysaccharide from Ganoderma atrum improves liver function in type 2 diabetic rats via antioxidant action and short-chain fatty acids excretion, J. Agric. Food Chem. 64 (2016) 1938-1944.

[31]

S. Yamin, M. Shuhaimi, A. Arbakariya, et al., Effect of Ganoderma lucidum polysaccharides on the growth of Bifidobacterium spp. as assessed using real-time PCR, Int. Food Res. J. 19 (2012) 1199-1205.

[32]

K. Li, C. Zhuo, C. Teng, et al., Effects of Ganoderma lucidum polysaccharides on chronic pancreatitis and intestinal microbiota in mice, Int. J. Biol. Macromol. 93 (2016) 904-912.

[33]

C. Milani, C. Ferrario, F. Turroni, et al., The human gut microbiota and its interactive connections to diet, J. Hum. Nutr. Diet. 29 (2016) 539-546.

[34]

K.-H. Wong, K.-Y. Wong, H.-S. Kwan, et al., Dietary fibers from mushroom sclerotia: 3. In vitro fermentability using human fecal microflora, J. Agric. Food Chem. 53 (2005) 9407-9412.

[35]

X. Xu, J. Yang, Z. Ning, et al., Lentinula edodes-derived polysaccharide rejuvenates mice in terms of immune responses and gut microbiota, Food Funct. 6 (2015) 2653-2663.

[36]

C.-J. Chang, C.-S. Lin, C.-C. Lu, et al., Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota, Nat. Commun. 6 (2015).

[37]

Y. Hu, C. Teng, S. Yu, et al., Inonotus obliquus polysaccharide regulates gut microbiota of chronic pancreatitis in mice, AMB Exp. 7 (2017) 39.

[38]

B.B. Petrovska, Protein fraction in edible Macedonian mushrooms, Eur. Food Res. Technol. 212 (2001) 469-472.

[39]

X. Xu, H. Yan, J. Chen, et al., Bioactive proteins from mushrooms, Biotechnol. Adv. 29 (2011) 667-674.

[40]

L.-G. Yu, D.G. Fernig, M.R. White, et al., Edible mushroom (Agaricus bisporus) lectin, which reversibly inhibits epithelial cell proliferation, blocks nuclear localization sequence-dependent nuclear protein import, J. Biol. Chem. 274 (1999) 4890-4899.

[41]

J.L. Ko, C.I. Hsu, R.H. Lin, et al., A new fungal immunomodulatory protein, FIP‐fve isolated from the edible mushroom, Flammulina velutipes and its complete amino acid sequence, FEBS J. 228 (1995) 244-249.

[42]

C. Munoz, F. Guillen, A. Martinez, et al., Induction and characterization of laccase in the ligninolytic fungus Pleurotus eryngii, Curr. Microbiol. 34 (1997) 1-5.

[43]

C.-H. Lin, G.-T. Sheu, Y.-W. Lin, et al., A new immunomodulatory protein from Ganoderma microsporum inhibits epidermal growth factor mediated migration and invasion in A549 lung cancer cells, Process Biochem. 45 (2010) 1537-1542.

[44]

M. Puri, I. Kaur, M.A. Perugini, et al., Ribosome-inactivating proteins: current status and biomedical applications, Drug Discov. Today 17 (2012) 774-783.

[45]

M. Jose Alves, I. CFR Ferreira, J. Dias, et al., A review on antifungal activity of mushroom (basidiomycetes) extracts and isolated compounds, Curr. Top. Med. Chem. 13 (2013) 2648-2659.

[46]

S. Chatterjee, M.K. Sarma, U. Deb, et al., Mushrooms: from nutrition to mycoremediation, Environ. Sci. Pollut. Res. 24 (2017) 19480-19493.

[47]

M. Beaumont, K.J. Portune, N. Steuer, et al., Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: a randomized, parallel, double-blind trial in overweight humans, Am. J. Clin. Nutr. 106 (2017) 1005-1019.

[48]

Y. Zhu, X. Shi, X. Lin, et al., Beef, chicken, and soy proteins in diets induce different gut microbiota and metabolites in rats, Front. Micro 8 (2017) 1395.

[49]

C. Diling, Z. Chaoqun, Y. Jian, et al., Immunomodulatory activities of a fungal protein extracted from Hericium erinaceus through regulating the gut Microbiota, Front. Immunol. 8 (2017) 666.

[50]

M.E. Duru, G.T. Çayan, Biologically active terpenoids from mushroom origin: a review, Rec. Nat. Prod. 9 (2015) 456-483.

[51]

S. Boonsong, W. Klaypradit, P. Wilaipun, Antioxidant activities of extracts from five edible mushrooms using different extractants, Agric. Nat. Res. 50 (2016) 89-97.

[52]

Y. Asakawa, F. Nagashima, T. Hashimoto, et al., Pungent and bitter, cytotoxic and antiviral terpenoids from some bryophytes and inedible fungi, Nat. Prod. Commun. 9 (2014) 409-417.

[53]

F.-Q. Song, Y. Liu, X.-S. Kong, Chang, et al., Progress on understanding the anticancer mechanisms of medicinal mushroom: inonotus obliquus, Asian Pac. J. Can. Prev. 14 (2013) 1571-1578.

[54]

A. Klaus, M. Kozarski, J. Vunduk, et al., Antibacterial and antifungal potential of wild basidiomycete mushroom Ganoderma applanatum, Lek. Sirovine. 36 (2017) 37-46.

[55]

E.A. Elsayed, H. El Enshasy, M.A. Wadaan, et al., Mushrooms: a potential natural source of anti-inflammatory compounds for medical applications, Med. Inflamm. 2014 (2014).

[56]

M. Öztürk, G. Tel-Çayan, A. Muhammad, et al., Mushrooms: a source of exciting bioactive compounds, Stud. Nat. Prod. Chem. 45 (2015) 363-456.

[57]

A. Dundar, V. Okumus, S. Ozdemir, et al., Antioxidant, antimicrobial, cytotoxic and anticholinesterase activities of seven mushroom species with their phenolic acid composition, J. Hortic. 2 (2015) 1-6.

[58]

I. Lee, B. Ahn, J. Choi, et al., Selective cholinesterase inhibition by lanostane triterpenes from fruiting bodies of Ganoderma lucidum, Bioorg. Med. Chem. Lett. 21 (2011) 6603-6607.

[59]

M. D’Archivio, C. Filesi, R. Varì, et al., Bioavailability of the polyphenols: status and controversies, Int. J. Mol. Sci. 11 (2010) 1321-1342.

[60]

I.C. Ferreira, L. Barros, R. Abreu, Antioxidants in wild mushrooms, Curr. Med. Chem. 16 (2009) 1543-1560.

[61]

S.A. Heleno, L. Barros, A. Martins, et al., Phenolic, polysaccharidic, and lipidic fractions of mushrooms from Northeastern Portugal: chemical compounds with antioxidant properties, J. Agric. Food Chem. 60 (2012) 4634-4640.

[62]

T. Finimundy, G. Gambato, R. Fontana, et al., Aqueous extracts of Lentinula edodes and Pleurotus sajor-caju exhibit high antioxidant capability and promising in vitro antitumor activity, Nutr. Res. 33 (2013) 76-84.

[63]

I. Palacios, M. Lozano, C. Moro, et al., Antioxidant properties of phenolic compounds occurring in edible mushrooms, Food Chem. 128 (2011) 674-678.

[64]

E.M. Yahia, F. Gutiérrez-Orozco, M.A. Moreno-Pérez, Identification of phenolic compounds by liquid chromatography-mass spectrometry in seventeen species of wild mushrooms in Central Mexico and determination of their antioxidant activity and bioactive compounds, Food Chem. 226 (2017) 14-22.

[65]

Q. Hu, D. Wang, J. Yu, et al., Neuroprotective effects of six components from Flammulina velutipes on H2O2-induced oxidative damage in PC12 cells, J. Funct. Foods 37 (2017) 586-593.

[66]

D. Cör, T. Botić, A. Gregori, et al., The effects of different solvents on bioactive metabolites and “in vitro” antioxidant and anti-acetylcholinesterase activity of Ganoderma lucidum fruiting body and primordia extracts, Maced. J. Chem. Chem. Eng. 36 (2017) 129-141.

[67]

S. Lee, D. Lee, T.S. Jang, et al., Anti-inflammatory phenolic metabolites from the edible fungus Phellinus baumii in LPS-stimulated RAW 264.7 cells, Molecules 22 (2017) 1583.

[68]

K. Liu, X. Xiao, J. Wang, et al., Polyphenolic composition and antioxidant, antiproliferative, and antimicrobial activities of mushroom Inonotus sanghuang, LWT-Food Sci. Technol. 82 (2017) 154-161.

[69]

H.J. Shao, J.B. Jeong, K.J. Kim, et al., Anti‐inflammatory activity of mushroom‐derived hispidin through blocking of NF‐κB activation, J. Sci. Food Agric. 95 (2015) 2482-2486.

[70]

H.-Y. Chang, M.-J. Sheu, C.-H. Yang, et al., Analgesic effects and the mechanisms of anti-inflammation of hispolon in mice, Evid.-Based Compl. Alt. Med. 2011 (2011).

[71]

S. Patel, A. Goyal, Recent developments in mushrooms as anti-cancer therapeutics: a review, Biotechnology 2 (2012) 1-15.

[72]

L.K. Lai, N.Z. Abidin, N. Abdullah, et al., Anti-human papillomavirus (HPV) 16 E6 activity of Ling Zhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst.(Aphyllophoromycetideae) extracts, Int. J. Med. Mushrooms 12 (2010) 279-286.

[73]

E. Guillamón, A. García-Lafuente, M. Lozano, et al., Edible mushrooms: role in the prevention of cardiovascular diseases, Fitoterapia 81 (2010) 715-723.

[74]

P. Kalač, A review of chemical composition and nutritional value of wild‐growing and cultivated mushrooms, J. Sci. Food Agric. 93 (2013) 209-218.

[75]

G. Jaworska, K. Pogoń, E. Bernaś, et al., Nutraceuticals and antioxidant activity of prepared for consumption commercial mushrooms Agaricus bisporus and Pleurotus ostreatus, J. Food Qual. 38 (2015) 111-122.

[76]

S.A. Heleno, L. Barros, A. Martins, et al., Nutritional value, bioactive compounds, antimicrobial activity and bioaccessibility studies with wild edible mushrooms, LWT-Food Sci. Technol. 63 (2015) 799-806.

[77]

P. Saiki, Y. Kawano, L.J. Van Griensven, et al., The anti-inflammatory effect of Agaricus brasiliensis is partly due to its linoleic acid content, Food Funct. 8 (2017) 4150-4158.

[78]

M. Öztürk, G. Tel, F.A. Öztürk, et al., The cooking effect on two edible mushrooms in Anatolia: fatty acid composition, total bioactive compounds, antioxidant and anticholinesterase activities, Rec. Nat. Prod. 8 (2014) 189-194.

[79]

K. Ahmad, N. Singh, Evaluation of nutritional quality of developed functional bread fortified with mushroom and dates, Clarion 5 (2016) 23-28.

[80]

B. Arora, B. Arora, S. Kamal, et al., Sensory, nutritional and quality attributes of sponge cake supplemented with mushroom (Agaricus bisporus) powder, Nutr. Food Sci. 47 (2017) 578-590.

[81]

A.C.P. Vital, C. Croge, S.M. Gomes-da-Costa, et al., Effect of addition of Agaricus blazei mushroom residue to milk enriched with Omega‐3 on the prevention of lipid oxidation and bioavailability of bioactive compounds after in vitro gastrointestinal digestion, Int. J. Food Sci. Technol. 52 (2017) 1483-1490.

[82]

F. Yang, L. Zhong, L. Zhao, et al., Evaluation of anti-fatigue property of the extruded product of cereal grains mixed with Cordyceps militaris on mice, J. Int. Soc. Sports Nutr. 14 (2017) 15.

[83]

V. Sabaratnam, W. Kah-Hui, M. Naidu, et al., Neuronal health–Can culinary and medicinal mushrooms help?, J. Trad. Compl. Med. 3 (2013) 62-68.

[84]

D.-J. Chung, M.-Y. Yang, Y.-R. Li, et al., Ganoderma lucidum repress injury of ethanol-induced steatohepatitis via anti-inflammation, anti-oxidation and reducing hepatic lipid in C57BL/6J mice, J. Funct. Foods. 33 (2017) 314-322.

[85]

Q.-D. Xiang, Q. Yu, H. Wang, et al., Immunomodulatory activity of Ganoderma atrum polysaccharide on purified T lymphocytes through Ca2+/CaN and MAPK pathway based on RNA-seq, J. Agric. Food Chem. 65 (2017) 5306-5315.

[86]

H. Wang, Q. Yu, S.-P. Nie, et al., Polysaccharide purified from Ganoderma atrum induced activation and maturation of murine myeloid-derived dendritic cells, Food Chem. Toxicol. 108 (2017) 478-485.

[87]

X. Zhao, D. Zhou, Y. Liu, et al., Ganoderma lucidum polysaccharide inhibits prostate cancer cell migration via the protein arginine methyltransferase 6 signaling pathway, Mol. Med. Rep. 17 (2017) 147-157.

[88]

M. Jin, Y. Zhu, D. Shao, et al., Effects of polysaccharide from mycelia of Ganoderma lucidum on intestinal barrier functions of rats, Int. J. Biol. Macromol. 94 (2017) 1-9.

[89]

S. Xu, Y. Dou, B. Ye, et al., Ganoderma lucidum polysaccharides improve insulin sensitivity by regulating inflammatory cytokines and gut microbiota composition in mice, J. Funct. Foods 38 (2017) 545-552.

[90]

L.J. Standish, C.A. Wenner, E.S. Sweet, et al., Trametes versicolor mushroom immune therapy in breast cancer, J. Soc. Integr. Oncol. 6 (2008) 122-128.

[91]

J. Huang, Y. Ou, T.W.D. Yew, et al., Hepatoprotective effects of polysaccharide isolated from Agaricus bisporus industrial wastewater against CCl4-induced hepatic injury in mice, Int. J. Biol. Macromol. 82 (2016) 678-686.

[92]

Ad.R.A. Pires, A.C. Ruthes, S.M.S.C. Cadena, et al., Cytotoxic effect of a mannogalactoglucan extracted from Agaricus bisporus on HepG2 cells, Carbohydr. Polym. 170 (2017) 33-42.

[93]

F.R. Smiderle, G. Alquini, M.Z. Tadra-Sfeir, et al., Agaricus bisporus and Agaricus brasiliensis (1→6)-β-d-glucans show immunostimulatory activity on human THP-1 derived macrophages, Carbohydr. Polym. 94 (2013) 91-99.

[94]

S. Li, H. Liu, W. Wang, et al., Antioxidant and anti-aging effects of acidic-extractable polysaccharides by Agaricus bisporus, Int. J. Biol. Macromol. 106 (2017) 1297-1306.

[95]

Y. Zhang, G. Ma, L. Fang, et al., The immunostimulatory and anti-tumor activities of polysaccharide from Agaricus bisporus (brown), J. Food Nutr. Res. 2 (2014) 122-126.

[96]

Y. Zhang, T. Hu, H. Zhou, et al., Antidiabetic effect of polysaccharides from Pleurotus ostreatus in streptozotocin-induced diabetic rats, Int. J. Biol. Macromol. 83 (2016) 126-132.

[97]

Y. Zhang, X. Yang, G. Jin, et al., Polysaccharides from Pleurotus ostreatus alleviate cognitive impairment in a rat model of Alzheimer’s disease, Int. J. Biol. Macromol. 92 (2016) 935-941.

[98]

Y. Zhang, Z. Wang, G. Jin, et al., Regulating dyslipidemia effect of polysaccharides from Pleurotus ostreatus on fat-emulsion-induced hyperlipidemia rats, Int. J. Biol. Macromol. 101 (2017) 107-116.

[99]

X.Y. Cao, J.L. Liu, W. Yang, et al., Antitumor activity of polysaccharide extracted from Pleurotus ostreatus mycelia against gastric cancer in vitro and in vivo, Mol. Med. Rep. 12 (2015) 2383-2389.

[100]

Z. Ren, J. Li, X. Song, et al., The regulation of inflammation and oxidative status against lung injury of residue polysaccharides by Lentinula edodes, Int. J. Biol. Macromol. 106 (2017) 185-192.

[101]

G. Ya, A Lentinus edodes polysaccharide induces mitochondrial-mediated apoptosis in human cervical carcinoma HeLa cells, Int. J. Biol. Macromol. 103 (2017) 676-682.

[102]

Y. Zhang, Q. Li, J. Wang, et al., Polysaccharide from Lentinus edodes combined with oxaliplatin possesses the synergy and attenuation effect in hepatocellular carcinoma, Cancer Lett. 377 (2016) 117-125.

[103]

J. Du, R. Wang, W. Zhang, et al., A polysaccharide derived from Lentinus edodes impairs the immunosuppressive function of myeloid-derived suppressor cells via the p38 pathways, RSC Adv. 7 (2017) 36533-36540.

[104]

J. Wang, W. Li, X. Huang, et al., A polysaccharide from Lentinus edodes inhibits human colon cancer cell proliferation and suppresses tumor growth in athymic nude mice, Oncotarget 8 (2017) 610-623.

[105]

I.B. Jeff, E. Fa, M. Tian, et al., In vivo anticancer and immunomodulating activities of mannogalactoglucan-type polysaccharides from Lentinus edodes (Berkeley) Singer, Cent.-Eur. J. Immunol. 41 (2016) 47.

[106]

H. Xu, S. Zou, X. Xu, et al., Anti-tumor effect of β-glucan from Lentinus edodes and the underlying mechanism, Sci. Rep. 6 (2016).

[107]

T. Feng, W. Jia, W.-H. Wang, et al., Structural characterization and immunological activities of a novel water-soluble polysaccharide from the fruiting bodies of culinary-medicinal winter mushroom, Flammulina velutipes (Agaricomycetes), Int. J. Med. Mushrooms 18 (2016) 807-819.

[108]

G. Chen, Y. Fu, W. Yang, et al., Effects of polysaccharides from the base of Flammulina Velutipes stipe on growth of murine RAW264. 7, B16F10 and L929 cells, Int. J. Biol. Macromol. 107 (2017) 2150-2156.

[109]

W. Yang, J. Yu, L. Zhao, et al., Polysaccharides from Flammulina velutipes improve scopolamine-induced impairment of learning and memory of rats, J. Funct. Foods. 18 (2015) 411-422.

[110]

S. Govindan, E.E.R. Johnson, J. Christopher, et al., Antioxidant and anti-aging activities of polysaccharides from Calocybe indica var, APK2, Exp. Toxicol. Pathol. 68 (2016) 329-334.

[111]
Govindan, S. Keeper, C. Jaba, P. et al., Calocybe indica polysaccharides alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress induced by D-galactose in mice, Proceedings of 8th International Conference on Mushroom Biology and Mushroom Products (ICMBMP8), New Delhi, India, 19-22 November 2014. Volume I, II (2014) 394-406. ICAR-Directorate of Mushroom Research.
[112]

D. Ren, N. Wang, J. Guo, et al., Chemical characterization of Pleurotus eryngii polysaccharide and its tumor-inhibitory effects against human hepatoblastoma HepG-2 cells, Carbohydr. Polym. 138 (2016) 123-133.

[113]

L. Chen, Y. Zhang, O. Sha, et al., Hypolipidaemic and hypoglycaemic activities of polysaccharide from Pleurotus eryngii in Kunming mice, Int. J. Biol. Macromol. 93 (2016) 1206-1209.

[114]

D. Xu, H. Wang, W. Zheng, et al., Charaterization and immunomodulatory activities of polysaccharide isolated from Pleurotus eryngii, Int. J. Biol. Macromol. 92 (2016) 30-36.

[115]

G. Ma, W. Yang, A.M. Mariga, et al., Purification, characterization and antitumor activity of polysaccharides from Pleurotus eryngii residue, Carbohydr. Polym. 114 (2014) 297-305.

[116]

G. Yang, L. Yang, Y. Zhuang, et al., Ganoderma lucidum polysaccharide exerts anti-tumor activity via MAPK pathways in HL-60 acute leukemia cells, J. Recept. Signal. Transduct. 36 (2016) 6-13.

[117]

S. Huang, J. Mao, K. Ding, et al., Polysaccharides from Ganoderma lucidum promote cognitive function and neural progenitor proliferation in mouse model of Alzheimer’s disease, Stem Cell Rep. 8 (2017) 84-94.

[118]

C. Xiao, Q. Wu, J. Zhang, et al., Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice, J. Ethnopharmacol. 196 (2017) 47-57.

[119]

K. Nagai, Y. Ueno, S. Tanaka, et al., Polysaccharides derived from Ganoderma lucidum fungus mycelia ameliorate indomethacin-induced small intestinal injury via induction of GM-CSF from macrophages, Cell. Immunol. 320 (2017) 20-28.

[120]

M. He, D. Su, Q. Liu, et al., Mushroom lectin overcomes hepatitis B virus tolerance via TLR6 signaling, Sci. Rep. 7 (2017) 5814.

[121]

S. Kumaran, A.K. Pandurangan, R. Shenbhagaraman, et al., Isolation and characterization of lectin from the artist’s conk medicinal mushroom, Ganoderma applanatum (Agaricomycetes) and evaluation of its antiproliferative activity in HT-29 colon cancer cells, Int. J. Med. Mushrooms. 19 (2017) 675-684.

[122]

Y. Ditamo, L.L. Rupil, V.G. Sendra, et al., In vivo immunomodulatory effect of the lectin from edible mushroom Agaricus bisporus, Food Funct. 7 (2016) 262-269.

[123]

S. Žurga, M.P. Nanut, J. Kos, et al., Fungal lectin MpL enables entry of protein drugs into cancer cells and their subcellular targeting, Oncotarget 8 (2017) 26896-26910.

[124]

G. Chandrasekaran, Y.-C. Lee, H. Park, et al., Antibacterial and antifungal activities of lectin extracted from fruiting bodies of the Korean cauliflower medicinal mushroom, Sparassis latifolia (Agaricomycetes), Int. J. Med. Mushrooms 18 (2016) 291-299.

[125]

R.S. Singh, H.P. Kaur, V. Rana, et al., Immunomodulatory and therapeutic potential of a mucin-specific mycelial lectin from Aspergillus panamensis, Int. J. Biol. Macromol. 96 (2017) 241-248.

[126]

S. Li, Z. Jiang, W. Xu, et al., FIP-sch2, a new fungal immunomodulatory protein from Stachybotrys chlorohalonata, suppresses proliferation and migration in lung cancer cells, Appl. Microbiol. Biotechnol. 101 (2017) 3227-3235.

[127]

P.-Y. Chu, H.-L. Sun, J.-L. Ko, et al., Oral fungal immunomodulatory protein-Flammulina velutipes has influence on pulmonary inflammatory process and potential treatment for allergic airway disease: a mouse model, J. Microbiol. Immunol. Infect. 50 (2017) 297-306.

[128]

I.-L. Hsin, S.-C. Wang, J.-R. Li, et al., Immunomodulatory proteins FIP-gts and chloroquine induce caspase-independent cell death via autophagy for resensitizing cisplatin-resistant urothelial cancer cells, Phytomedicine 23 (2016) 1566-1573.

[129]

H. Xu, Y.-Y. Kong, X. Chen, et al., Recombinant FIP-gat, a fungal immunomodulatory protein from Ganoderma atrum, induces growth inhibition and cell death in breast cancer cells, J. Agric. Food Chem. 64 (2016) 2690-2698.

[130]

I.-L. Hsin, C.-C. Ou, M.-F. Wu, et al., GMI, an immunomodulatory protein from Ganoderma microsporum, potentiates cisplatin-induced apoptosis via autophagy in lung cancer cells, Mol. Pharm. 12 (2015) 1534-1543.

[131]

S. Lam, T. Ng, Hypsin, a novel thermostable ribosome-inactivating protein with antifungal and antiproliferative activities from fruiting bodies of the edible mushroom Hypsizigus marmoreus, Biochem. Biophys. Res. Commun. 285 (2001) 1071-1075.

[132]

H. Wang, T.B. Ng, Isolation and characterization of velutin, a novel low-molecular-weight ribosome-inactivating protein from winter mushroom (Flammulina velutipes) fruiting bodies, Life Sci. 68 (2001) 2151-2158.

[133]

J.H. Wong, H. Wang, T. Ng, Marmorin, a new ribosome inactivating protein with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the mushroom Hypsizigus marmoreus, Appl. Microbiol. Biotechnol. 81 (2008) 669-674.

[134]

R. Zhang, G. Tian, Y. Zhao, et al., A novel ribonuclease with HIV‐1 reverse transcriptase inhibitory activity purified from the fungus Ramaria formosa, J. Basic Microbiol. 55 (2015) 269-275.

[135]

C. Xiao, Q. Wu, J. Zhang, et al., Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice, J. Ethnopharmacol. 196 (2017) 47-57.

[136]

X. Dan, W. Liu, J.H. Wong, et al., A ribonuclease isolated from wild Ganoderma lucidum suppressed autophagy and triggered apoptosis in colorectal cancer cells, Front. Pharmacol. 7 (2016).

[137]

R. Zhang, L. Zhao, H. Wang, et al., A novel ribonuclease with antiproliferative activity toward leukemia and lymphoma cells and HIV-1 reverse transcriptase inhibitory activity from the mushroom, Hohenbuehelia serotina, Int. J. Mol. Med. 33 (2014) 209-214.

[138]

R. Zhang, G. Zhang, D. Hu, et al., A novel ribonuclease with antiproliferative activity from fresh fruiting bodies of the edible mushroom Lyophyllum shimeiji, Biochem. Genet. 48 (2010) 658-668.

[139]

X. Wu, C. Huang, Q. Chen, et al., A novel laccase with inhibitory activity towards HIV‐I reverse transcriptase and antiproliferative effects on tumor cells from the fermentation broth of mushroom Pleurotus cornucopiae, Biomed. Chromatogr. 28 (2014) 548-553.

[140]

J. Sun, Q.-J. Chen, M.-J. Zhu, et al., An extracellular laccase with antiproliferative activity from the sanghuang mushroom Inonotus baumii, J. Mol. Catal. B: Enzym. 99 (2014) 20-25.

[141]

S. Zhao, C.-B. Rong, C. Kong, et al., A novel laccase with potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from mycelia of mushroom Coprinus comatus, Biomed. Res. Int. 2014 (2014).

[142]

A. Matuszewska, M. Karp, M. Jaszek, et al., Laccase purified from Cerrena unicolor exerts antitumor activity against leukemic cells, Oncol. Lett. 11 (2016) 2009-2018.

[143]

H. Wang, T. Ng, Purification of a laccase from fruiting bodies of the mushroom Pleurotus eryngii, Appl. Microbiol. Biotechnol. 69 (2006) 521-525.

[144]

H. Wang, T. Ng, A laccase from the medicinal mushroom Ganoderma lucidum, Appl. Microbiol. Biotechnol. 72 (2006) 508-513.

[145]

S. Wang, L. Bao, F. Zhao, et al., Isolation, identification, and bioactivity of monoterpenoids and sesquiterpenoids from the mycelia of edible mushroom Pleurotus cornucopiae, J. Agric. Food Chem. 61 (2013) 5122-5129.

[146]

Y.Q. Wang, L. Bao, X.L. Yang, et al., Four new cuparene‐type sesquiterpenes from Flammulina velutipes, Helv. Chim. Acta 95 (2012) 261-267.

[147]

Q.-Q. Tao, K. Ma, L. Bao, et al., Sesquiterpenoids with PTP1B inhibitory activity and cytotoxicity from the edible mushroom Pleurotus citrinopileatus, Planta Med. 82 (2016) 639-644.

[148]

H.-P. Chen, W.-B. Dong, T. Feng, et al., Four new sesquiterpenoids from fruiting bodies of the fungus Inonotus rickii, J. Asian Nat. Prod. Res. 16 (2014) 581-586.

[149]

Y. Wang, L. Bao, X. Yang, et al., Bioactive sesquiterpenoids from the solid culture of the edible mushroom Flammulina velutipes growing on cooked rice, Food Chem. 132 (2012) 1346-1353.

[150]

R. Bai, C.-C. Zhang, X. Yin, et al., Striatoids A–F, cyathane diterpenoids with neurotrophic activity from cultures of the fungus Cyathus striatus, J. Nat. Prod. 78 (2015) 783-788.

[151]

J. Han, Y. Chen, L. Bao, et al., Anti-inflammatory and cytotoxic cyathane diterpenoids from the medicinal fungus Cyathus africanus, Fitoterapia 84 (2013) 22-31.

[152]

Z. Xu, S. Yan, K. Bi, et al., Isolation and identification of a new anti-inflammatory cyathane diterpenoid from the medicinal fungus Cyathus hookeri Berk, Fitoterapia 86 (2013) 159-162.

[153]

S. Wang, Y. Li, L. Bao, et al., Eryngiolide A, A cytotoxic macrocyclic diterpenoid with an unusual cyclododecane core skeleton produced by the edible mushroom Pleurotus eryngii, Org. Lett. 14 (2012) 3672-3675.

[154]

K.H. Kim, E. Moon, S.U. Choi, et al., Lanostane triterpenoids from the mushroom Naematoloma fasciculare, J. Nat. Prod. 76 (2013) 845-851.

[155]

K. Arpha, C. Phosri, N. Suwannasai, et al., Astraodoric acids A–D: new lanostane triterpenes from edible mushroom Astraeus odoratus and their anti-mycobacterium tuberculosis H37Ra and cytotoxic activity, J. Agric. Food Chem. 60 (2012) 9834-9841.

[156]

I. Lee, J. Seo, J. Kim, et al., Lanostane triterpenes from the fruiting bodies of Ganoderma lucidum and their inhibitory effects on adipocyte differentiation in 3T3-L1 cells, J. Nat. Prod. 73 (2009) 172-176.

Food Science and Human Wellness
Pages 125-133
Cite this article:
Ma G, Yang W, Zhao L, et al. A critical review on the health promoting effects of mushrooms nutraceuticals. Food Science and Human Wellness, 2018, 7(2): 125-133. https://doi.org/10.1016/j.fshw.2018.05.002

751

Views

23

Downloads

179

Crossref

N/A

Web of Science

182

Scopus

0

CSCD

Altmetrics

Published: 19 June 2018
© 2018 “Society information”.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return