Journal Home > Volume 6 , Issue 3

A substantial amount of emerging research is indicating that the gut microbiota has a significant impact on human health. Alterations of gut microbiota have clear consequences on intestinal homeostasis, physiology, gut microbiome, immune system and host metabolic pathways. Diet composition plays an important role in the control of gut microbial populations and, thus, in the prevention, management and treatment of certain diseases such as cancer, diabetes. A comprehensive analysis of previously reported results revealed that the gut microbiota can be modulated by diet and the composition of gut microbiota can be influenced by various diet components. The symbiotic relationship between different gut microbial communities regulates the immune system and, therefore, any dysbiosis can dysregulate the immune system. Further research is needed to fully understand the mechanisms involved in the interactions between diet composition, gut microbiota and associated diseases.


menu
Abstract
Full text
Outline
About this article

Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health

Show Author's information Muhammad Shahid Riaz RajokaaJunling Shia( )Hafiza Mahreen MehwishbJing ZhuaQi LiaDongyan ShaoaQingsheng HuangaHui Yanga
Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, People’s Republic of China
Department of Biotechnology, University of Agriculture, Faisalabad, Pakistan

Peer review under responsibility of Beijing Academy of Food Sciences.

Abstract

A substantial amount of emerging research is indicating that the gut microbiota has a significant impact on human health. Alterations of gut microbiota have clear consequences on intestinal homeostasis, physiology, gut microbiome, immune system and host metabolic pathways. Diet composition plays an important role in the control of gut microbial populations and, thus, in the prevention, management and treatment of certain diseases such as cancer, diabetes. A comprehensive analysis of previously reported results revealed that the gut microbiota can be modulated by diet and the composition of gut microbiota can be influenced by various diet components. The symbiotic relationship between different gut microbial communities regulates the immune system and, therefore, any dysbiosis can dysregulate the immune system. Further research is needed to fully understand the mechanisms involved in the interactions between diet composition, gut microbiota and associated diseases.

Keywords: Gut microbiota, Probiotics, Human health, Dysbiosis

References(120)

[1]

M.L. Hermannbank, K. Skovgaard, A. Stockmarr, N. Larsen, L. Mølbak, The Gut Microbiotassay: a high-throughput qPCR approach combinable with next generation sequencing to study gut microbial diversity, BMC Genomics 14 (2013) 788.

[2]

S. Prakash, C. Tomaroduchesneau, S. Saha, A. Cantor, The gut microbiota and human health with an emphasis on the use of microencapsulated bacterial cells, BioMed Res. Int. 2011 (2011) 1-12.

[3]

A.J. Bäumler, V. Sperandio, Interactions between the microbiota and pathogenic bacteria in the gut, Nature 535 (2016) 85-93.

[4]

Y. Sanz, Gut microbiota and probiotics in maternal and infant health, Am. J. Clin. Nutr. 94 (2011) 2000S-2005S.

[5]

M.C. Collado, M. Cernada, J. Neu, G. Pérezmartínez, M. Gormaz, M. Vento, Factors influencing gastrointestinal tract and microbiota immune interaction in preterm infants, Pediatric Res. 77 (2015) 726.

[6]

M.R. Charbonneau, L.V. Blanton, D.B. DiGiulio, D.A. Relman, C.B. Lebrilla, D.A. Mills, et al., A microbial perspective of human developmental biology, Nature 535 (2016) 48-55.

[7]

T. Shaheen, M. Siddiq, A. Nadeem, A. Hussain, F. Hayyat, J. Shi, In-vitro assessment of probiotic potential of lactic acid bacteria, J. Biol. Today' World 4 (2015) 190-198.

[8]

J. Wang, H. Jia, Metagenome-wide association studies: fine-mining the microbiome, Nat. Rev. Microbiol. 14 (2016) 508-522.

[9]

S.D. Ehrlich, Metagenomics of the intestinal microbiota: potential applications, Gastroenterol. Clin. Biol. 34 (2010) S23-S28.

[10]

C.A. Lozupone, J.I. Stombaugh, J.I. Gordon, J.K. Jansson, R. Knight, Diversity: stability and resilience of the human gut microbiota, Nature 489 (2012) 220-230.

[11]

L. Dethlefsen, P.B. Eckburg, E.M. Bik, D.A. Relman, Assembly of the human intestinal microbiota, Trends Ecol. Evol. 21 (2006) 517-523.

[12]

M.J. Claesson, I.B. Jeffery, S. Conde, S.E. Power, E.M. O'Connor, S. Cusack, et al., Gut microbiota composition correlates with diet and health in the elderly, Nature 488 (2012) 178.

[13]

R.D. Berg, The indigenous gastrointestinal microflora, Trends Microbiol. 4 (1996) 430-435.

[14]

M.H. Fraher, P.W. O'Toole, E.M. Quigley, Techniques used to characterize the gut microbiota: a guide for the clinician, Nat. Rev. Gastroenterol. Hepatol. 9 (2012) 312-322.

[15]

F. Fouhy, R.P. Ross, G.F. Fitzgerald, C. Stanton, P.D. Cotter, Composition of the early intestinal microbiota: knowledge: knowledge gaps and the use of high-throughput sequencing to address these gaps, Gut Microbes 3 (2012) 203-220.

[16]

M.C. Collado, M. Cernada, C. Baüerl, M. Vento, G. Pérez-Martínez, Microbial ecology and host-microbiota interactions during early life stages, Gut Microbes 3 (2012) 352-365.

[17]

M. Breban, Gut microbiota and inflammatory joint diseases, Joint Bone Spine 83 (6) (2016) 645-649.

[18]

M.-M. Grölund, O.-P. Lehtonen, E. Eerola, P. Kero, Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery, J. Pediatr. Gastroenterol. Nutr. 28 (1999) 19-25.

[19]

J. Doré, G. Corthier, The human intestinal microbiota, Gastroenterol. Clin. Biol. 34 (2010) S7-S15.

[20]

J.K. Goodrich, J.L. Waters, A.C. Poole, J.L. Sutter, O. Koren, R. Blekhman, et al., Human genetics shape the gut microbiome, Cell 159 (2014) 789-799.

[21]

M. Arumugam, J. Raes, E. Pelletier, D. Le Paslier, T. Yamada, D.R. Mende, et al., Enterotypes of the human gut microbiome, Nature 473 (2011) 174-180.

[22]

G.D. Wu, J. Chen, C. Hoffmann, K. Bittinger, Y.-Y. Chen, S.A. Keilbaugh, et al., Linking long-term dietary patterns with gut microbial enterotypes, Science 334 (2011) 105-108.

[23]

E. Le Chatelier, T. Nielsen, J. Qin, E. Prifti, F. Hildebrand, G. Falony, et al., Richness of human gut microbiome correlates with metabolic markers, Nature 500 (2013) 541-546.

[24]

F. Sommer, F. Bäckhed, The gut microbiota—masters of host development and physiology, Nat. Rev. Microbiol. 11 (2013) 227-238.

[25]

H. Garn, J.F. Neves, R.S. Blumberg, H. Renz, Effect of barrier microbes on organ-based inflammation, J. Allergy Clin. Immunol. 131 (2013) 1465-1478.

[26]

D. Gevers, R. Knight, J.F. Petrosino, K. Huang, A.L. McGuire, B.W. Birren, et al., The Human Microbiome Project: a community resource for the healthy human microbiome, PLoS Biol. 10 (2012) e1001377.

[27]

K. Aagaard, J. Petrosino, W. Keitel, M. Watson, J. Katancik, N. Garcia, et al., The Human Microbiome Project strategy for comprehensive sampling of the human microbiome and why it matters, FASEB J. 27 (2013) 1012-1022.

[28]

X.C. Morgan, C. Huttenhower, Meta'omic analytic techniques for studying the intestinal microbiome, Gastroenterology 146 (2014) 1437-1448(e1).

[29]

G.T. Macfarlane, S. Macfarlane, Bacteria colonic fermentation, and gastrointestinal health, J. AOAC Int. 95 (2012) 50-60.

[30]

A.W. Walker, S.H. Duncan, E.C.M. Leitch, M.W. Child, Flint HJ pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon, Appl. Environ. Microbiol. 71 (2005) 3692-3700.

[31]

G. Macfarlane, J. Cummings, C. Allison, Protein degradation by human intestinal bacteria, Microbiology 132 (1986) 1647-1656.

[32]

J. Cummings, G. Macfarlane, The control and consequences of bacterial fermentation in the human colon, J. Appl. Bacteriol. 70 (1991) 443-459.

[33]

H.M. Hamer, V. De Preter, K. Windey, K. Verbeke, Functional analysis of colonic bacterial metabolism: relevant to health?, Am. J. Physiol. Gastrointest. Liver Physiol. 302 (2012) G1-G9.

[34]

E.A. Magee, C.J. Richardson, R. Hughes, J.H. Cummings, Contribution of dietary protein to sulfide production in the large intestine: an in vitro and a controlled feeding study in humans, Am. J. Clin. Nutr. 72 (2000) 1488-1494.

[35]

P.C. Elwood, D.I. Givens, A.D. Beswick, A.M. Fehily, J.E. Pickering, J. Gallacher, The survival advantage of milk and dairy consumption: an overview of evidence from cohort studies of vascular diseases diabetes and cancer, J. Am. Coll. Nutr. 27 (2008) 723S-734S.

[36]

R. Sprong, A. Schonewille, R. Van der Meer, Dietary cheese whey protein protects rats against mild dextran sulfate sodium?induced colitis: role of mucin and microbiota, J. Dairy Sci. 93 (2010) 1364-1371.

[37]

M. Guerville, G. Boudry, Gastro-intestinal and hepatic mechanisms limiting the entry and dissemination of lipopolysaccharide into the systemic circulation, Am. J. Physiol. Gastrointest. Liver Physiol. 311 (2016) G1-G15, http://dx.doi.org/10.1152/ajpgi.00098.2016.

[38]

M. Blaut, Relationship of prebiotics and food to intestinal microflora, Eur. J. Nutr.41 (2002), i11–i6.

[39]

J.H. Cummings, H.N. Englyst, What is dietary fibre, Trends Food Sci. Technol. 2 (1991) 99-103.

[40]

F. Respondek, K.S. Swanson, K.R. Belsito, B.M. Vester, A. Wagner, L. Istasse, et al., Short-chain fructooligosaccharides influence insulin sensitivity and gene expression of fat tissue in obese dogs, J. Nutr. 138 (2008) 1712-1718.

[41]

G. Glenn, M. Roberfroid, Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics, J. Nutr. 125 (1995) 1401-1412.

[42]

A.T. Vieira, M.M. Teixeira, FdS. Martins, The role of probiotics and prebiotics in inducing gut immunity, Front. Immunol. 4 (2013) 445.

[43]

S.L. Schnorr, M. Candela, S. Rampelli, M. Centanni, C. Consolandi, G. Basaglia, et al., Gut microbiome of the Hadza hunter-gatherers, Nat. Commun. 5 (2014).

[44]

C. De Filippo, D. Cavalieri, M. Di Paola, M. Ramazzotti, J.B. Poullet, S. Massart, et al., Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 14691-14696.

[45]

J. Ou, F. Carbonero, E.G. Zoetendal, J.P. DeLany, M. Wang, K. Newton, et al., Diet microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans, Am. J. Clin. Nutr. 98 (2013) 111-120.

[46]

G. Marlow, S. Ellett, I.R. Ferguson, S. Zhu, N. Karunasinghe, A.C. Jesuthasan, et al., Transcriptomics to study the effect of a Mediterranean-inspired diet on inflammation in Crohn's disease patients, Hum. Genomics 7 (1) (2013).

[47]

F. De Filippis, N. Pellegrini, L. Vannini, I.B. Jeffery, A. La Storia, L. Laghi, et al., High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome, Gut 65 (2016) 1812-1821, http://dx.doi.org/10.1136/gutjnl-2015-309957.

[48]

M. Glick-Bauer, M.-C. Yeh, The health advantage of a vegan diet: exploring the gut microbiota connection, Nutrients 6 (2014) 4822-4838.

[49]

I. Ferrocino, R. Di Cagno, M. De Angelis, S. Turroni, L. Vannini, E. Bancalari, et al., Fecal microbiota in healthy subjects following omnivore, vegetarian and vegan diets: culturable populations and rRNA DGGE profiling, PLoS One 10 (2015) e0128669.

[50]

B.B. Matijašić, T. Obermajer, L. Lipoglavšek, I. Grabnar, G. Avguštin, I. Rogelj, Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia, Eur. J. Nutr. 53 (2014) 1051-1064.

[51]

L. Gabert, C. Vors, C. Louche‐Pélissier, V. Sauvinet, S. Lambert‐Porcheron, J. Drai, et al., 13C tracer recovery in human stools after digestion of a fat‐rich meal labelled with [1,1, 1‐13C3] tripalmitin and [1,1, 1‐13C3] triolein, Rapid Commun. Mass Spectrom. 25 (2011) 2697-2703.

[52]

E. Murphy, P. Cotter, S. Healy, T. Marques, O. O'sullivan, F. Fouhy, et al., Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models, Gut 59 (2010) 1635-1642.

[53]

H. Daniel, A.M. Gholami, D. Berry, C. Desmarchelier, H. Hahne, G. Loh, et al., High-fat diet alters gut microbiota physiology in mice, ISME J. 8 (2014) 295-308.

[54]

S.F. Clarke, E.F. Murphy, K. Nilaweera, P.R. Ross, F. Shanahan, P.W. O’Toole, et al., The gut microbiota and its relationship to diet and obesity: new insights, Gut Microbes 3 (2012) 186-202.

[55]

C. Zhang, S. Li, L. Yang, P. Huang, W. Li, S. Wang, et al., Structural modulation of gut microbiota in life-long calorie-restricted mice, Nat. Commun. 4 (2013).

[56]

L.A. David, C.F. Maurice, R.N. Carmody, D.B. Gootenberg, J.E. Button, B.E. Wolfe, et al., Diet rapidly and reproducibly alters the human gut microbiome, Nature 505 (2014) 559-563.

[57]

P.J. Turnbaugh, F. Bäckhed, L. Fulton, J.I. Gordon, Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome, Cell Host Microbe. 3 (2008) 213-223.

[58]

R.E. Ley, F. Bäckhed, P. Turnbaugh, C.A. Lozupone, R.D. Knight, J.I. Gordon, Obesity alters gut microbial ecology, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 11070-11075.

[59]

W. Shen, H.R. Gaskins, M.K. McIntosh, Influence of dietary fat on intestinal microbes inflammation, barrier function and metabolic outcomes, J. Nutr. Biochem. 25 (2014) 270-280.

[60]

M.S. Riaz, T. Shaheen, N. Batool, S. Saleem, A. Haris, F. Hayat, et al., Moddulation of immune system by taking probiotic bacteria: especially focus on lactic acid bacteria, Asian J. Agric. Biol. 3 (2) (2015) 74-77.

[61]

M. Ndagijimana, L. Laghi, B. Vitali, G. Placucci, P. Brigidi, M.E. Guerzoni, Effect of a synbiotic food consumption on human gut metabolic profiles evaluated by 1nullH Nuclear Magnetic Resonance spectroscopy, Int. J. Food Microbiol. 134 (2009) 147-153.

[62]

S. Sierra, F. Lara-Villoslada, L. Sempere, M. Olivares, J. Boza, J. Xaus, Intestinal and immunological effects of daily oral administration of Lactobacillus salivarius CECT5713 to healthy adults, Anaerobe 16 (2010) 195-200.

[63]

N. Pérez, J.C. Iannicelli, C. Girard-Bosch, S. González, A. Varea, L. Disalvo, et al., Effect of probiotic supplementation on immunoglobulins: isoagglutinins and antibody response in children of low socio-economic status, Eur. J. Nutr. 49 (2010) 173-179.

[64]

M. Baron, Original research: a patented strain of bacillus coagulans increased immune response to viral challenge, Postgrad. Med. 121 (2009) 114-118.

[65]

Y. Sanz, G. De Palma, Gut microbiota and probiotics in modulation of epithelium and gut-associated lymphoid tissue function, Int. Rev. Immunol. 28 (2009) 397-413.

[66]

B. Chassaing, O. Koren, J.K. Goodrich, A.C. Poole, S. Srinivasan, R.E. Ley, et al., Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome, Nature 519 (2015) 92-96.

[67]

H. Tlaskalová-Hogenová, R. Štěpánková, T. Hudcovic, L. Tučková, B. Cukrowska, R. Lodinová-Žádnıková, et al., Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases, Immunol. Lett. 93 (2004) 97-108.

[68]

C.A. Thaiss, N. Zmora, M. Levy, E. Elinav, The microbiome and innate immunity, Nature 535 (2016) 65-74.

[69]

M. Shahid Riaz, T. Shaheen, N. Batool, S. Saleem, F. Hayat, Lactic acid bacteria as probiotic candidate and their application, J. Biol. Today's World 4 (2015) 209-216.

[70]

F. Bäckhed, R.E. Ley, J.L. Sonnenburg, D.A. Peterson, J.I. Gordon, Host-bacterial mutualism in the human intestine, Science 307 (2005) 1915-1920.

[71]

J.F. Rawls, B.S. Samuel, J.I. Gordon, Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota, Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 4596-4601.

[72]

C. Manichanh, L. Rigottier-Gois, E. Bonnaud, K. Gloux, E. Pelletier, L. Frangeul, et al., Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach, Gut 55 (2006) 205-211.

[73]

S. Subramanian, S. Huq, T. Yatsunenko, R. Haque, M. Mahfuz, M.A. Alam, et al., Persistent gut microbiota immaturity in malnourished Bangladeshi children, Nature 510 (2014) 417-421.

[74]

P.J. Turnbaugh, M. Hamady, T. Yatsunenko, B.L. Cantarel, A. Duncan, R.E. Ley, et al., A core gut microbiome in obese and lean twins, Nature 457 (2009) 480-484.

[75]

N. Qin, F. Yang, A. Li, E. Prifti, Y. Chen, L. Shao, et al., Alterations of the human gut microbiome in liver cirrhosis, Nature 513 (2014) 59-64.

[76]

J.M. Brown, S.L. Hazen, The gut microbial endocrine organ: bacterially-Derived signals driving cardiometabolic diseases, Annu. Rev. Med. 66 (2015) 343.

[77]

F.H. Karlsson, V. Tremaroli, I. Nookaew, G. Bergström, C.J. Behre, B. Fagerberg, et al., Gut metagenome in European women with normal: impaired and diabetic glucose control, Nature 498 (2013) 99-103.

[78]

J. Qin, Y. Li, Z. Cai, S. Li, J. Zhu, F. Zhang, et al., A metagenome-wide association study of gut microbiota in type 2 diabetes, Nature 490 (2012) 55-60.

[79]

N.W. Palm, M.R. De Zoete, T.W. Cullen, N.A. Barry, J. Stefanowski, L. Hao, et al., Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease, Cell 158 (2014) 1000-1010.

[80]

J.P. Zackular, M.A. Rogers, M.T. Ruffin, P.D. Schloss, The human gut microbiome as a screening tool for colorectal cancer, Cancer Prev. Res. 7 (2014) 1112-1121.

[81]

E.Y. Hsiao, S.W. McBride, S. Hsien, G. Sharon, E.R. Hyde, T. McCue, et al., Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders, Cell 155 (2013) 1451-1463.

[82]

I.B. Jeffery, D.B. Lynch, P.W. O'Toole, Composition and temporal stability of the gut microbiota in older persons, ISME J. 10 (2015) 170-182.

[83]

J.L. Sonnenburg, F. Bäckhed, Diet-microbiota interactions as moderators of human metabolism, Nature 535 (2016) 56-64.

[84]

G. Trinchieri, Microbiome and cancer, Semin. Immunopathol. 37 (2015) 65.

[85]

R.F. Schwabe, C. Jobin, The microbiome and cancer, Nat. Rev. Cancer 13 (2013) 800-812.

[86]

M.B. Burns, J. Lynch, T.K. Starr, D. Knights, R. Blekhman, Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment, Genome Med. 7 (2015) 55.

[87]

Y. Nami, B. Haghshenas, M. Haghshenas, N. Abdullah, A. Yari Khosroushahi, The prophylactic effect of probiotic enterococcus lactis IW5 against different human cancer cells, Front. Microbiol. 6 (2015) 1317.

[88]

A.Q. Yu, L. Li, The potential role of probiotics in cancer prevention and treatment, Nutr. Cancer 68 (2016) 535-544.

[89]

Hojjat Sadeghi-Aliabadi*, F. Mohammadi, Fazeli Hossain, Mirlohi Maryam, Effects of Lactobacillus plantarum A7 with probiotic potential on colon cancer and normal cells proliferation in comparison with a commercial strain, Iran J. Basic Med. Sci. 17 (2014) 815-819.

[90]

V. Dubey, A.R. Ghosh, K. Bishayee, A.R. Khuda-Bukhsh, Appraisal of the anti-cancer potential of probiotic Pediococcus pentosaceus GS4 against colon cancer: in vitro and in vivo approaches, J. Funct. Foods 23 (2016) 66-79.

[91]

Amir Saber Gharamaleki, B. Alipour, Zeinab Faghfoori, Ahmad YariKhosroushahi, Prophylactic effects of dairy kluyveromyces marxianusYAS through overexpression of BAX, CASP 3, CASP 8 and CASP 9 on human colon cancer cell lines, Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. (2016) 10.

[92]

R.E. Ley, Obesity and the human microbiome, Curr. Opin. Gastroenterol. 26 (2010) 5-11.

[93]

L. Zhao, The gut microbiota and obesity: from correlation to causality, Nat. Rev. Microbiol. 11 (2013) 639-647.

[94]

P.J. Turnbaugh, R.E. Ley, M.A. Mahowald, V. Magrini, E.R. Mardis, J.I. Gordon, An obesity-associated gut microbiome with increased capacity for energy harvest, Nature 444 (2006) 1027-1131.

[95]

H. Zhang, J.K. DiBaise, A. Zuccolo, D. Kudrna, M. Braidotti, Y. Yu, et al., Human gut microbiota in obesity and after gastric bypass, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 2365-2370.

[96]

M.F. Gregor, G.S. Hotamisligil, Inflammatory mechanisms in obesity, Annu. Rev. Immunol. 29 (2011) 415-445.

[97]

P.D. Cani, S. Possemiers, T. Van de Wiele, Y. Guiot, A. Everard, O. Rottier, et al., Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability, Gut 58 (2009) 1091-1103.

[98]

F. Bäckhed, J.K. Manchester, C.F. Semenkovich, J.I. Gordon, Mechanisms underlying the resistance to diet-induced obesity in germ-free mice, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 979-984.

[99]

C.K. Fleissner, N. Huebel, M.M.A. El-Bary, G. Loh, S. Klaus, M. Blaut, Absence of intestinal microbiota does not protect mice from diet-induced obesity, Br. J. Nutr. 104 (2010) 919-929.

[100]

F. Bäckhed, H. Ding, T. Wang, L.V. Hooper, G.Y. Koh, A. Nagy, et al., The gut microbiota as an environmental factor that regulates fat storage, Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 15718-15723.

[101]

B. Fontaine-Bisson, F. Renström, O. Rolandsson, F. Payne, G. Hallmans, I. Barroso, et al., Evaluating the discriminative power of multi-trait genetic risk scores for type 2 diabetes in a northern Swedish population, Diabetologia 53 (2010) 2155-2162.

[102]

K. Forslund, F. Hildebrand, T. Nielsen, G. Falony, E. Le Chatelier, S. Sunagawa, et al., Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota, Nature 528 (2015) 262-266.

[103]

J. Xu, F. Lian, L. Zhao, Y. Zhao, X. Chen, X. Zhang, et al., Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula, ISME J. 9 (2015) 552-562.

[104]

S.E. Epstein, J. Zhu, M.S. Burnett, Y.F. Zhou, G. Vercellotti, Hajjar D. Infection, Atherosclerosis potential roles of pathogen burden and molecular mimicry, Arterioscler. Thromb. Vasc. Biol. 20 (2000) 1417-1420.

[105]

K.J. Mattila, P.J. Pussinen, S. Paju, Dental infections and cardiovascular diseases: a review, J. Periodontol. 76 (2005) 2085-2088.

[106]

S. Jerwood, J. Cohen, Unexpected antimicrobial effect of statins, J. Antimicrob. Chemother. 61 (2008) 362-364.

[107]

O. Koren, A. Spor, J. Felin, F. Fåk, J. Stombaugh, V. Tremaroli, et al., Human oral, gut, and plaque microbiota in patients with atherosclerosis, Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 4592-4598.

[108]

S.J. Ott, N.E. El Mokhtari, M. Musfeldt, S. Hellmig, S. Freitag, A. Rehman, et al., Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease, Circulation 113 (2006) 929-937.

[109]

F.H. Karlsson, F. Fåk, I. Nookaew, V. Tremaroli, B. Fagerberg, D. Petranovic, et al., Symptomatic atherosclerosis is associated with an altered gut metagenome, Nat. Commun. 3 (2012) 1245.

[110]

A. Toulouse, A.M. Sullivan, Progress in Parkinson's disease—where do we stand, Prog. Neurobiol. 85 (2008) 376-392.

[111]

J. Hardy, P. Lewis, T. Revesz, A. Lees, C. Paisan-Ruiz, The genetics of Parkinson's syndromes: a critical review, Curr. Opin. Genet. Dev. 19 (2009) 254-265.

[112]

E.A. Mayer, R. Knight, S.K. Mazmanian, J.F. Cryan, K. Tillisch, Gut microbes and the brain: paradigm shift in neuroscience, J. Neurosci. 34 (2014) 15490-15496.

[113]

J.F. Cryan, T.G. Dinan, Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour, Nat. Rev. Neurosci. 13 (2012) 701-712.

[114]

A. Keshavarzian, S.J. Green, P.A. Engen, R.M. Voigt, A. Naqib, C.B. Forsyth, et al., Colonic bacterial composition in Parkinson's disease, Mov. Disord. 30 (2015) 1351-1360.

[115]

E.A. Mayer, K. Tillisch, The brain-gut axis in abdominal pain syndromes, Annu. Rev. Med. 62 (2011).

[116]

M.H. McLean, D. Dieguez, L.M. Miller, H.A. Young, Does the microbiota play a role in the pathogenesis of autoimmune diseases?, Gut 64 (2014),http://dx.doi.org/10.1136/gutjnl-2014-308514.

[117]

S. van Hemert, A.C. Breedveld, J. Rovers, J. Vermeiden, B. Witteman, M.G. Smits, et al., Migraine associated with gastrointestinal disorders: review of the literature and clinical implications, Front. Neurol. 5 (2013) 241-.

[118]

S. O’Mahony, V. Felice, K. Nally, H. Savignac, M. Claesson, P. Scully, et al., Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats, Neuroscience 277 (2014) 885-901.

[119]

S. O’Mahony, G. Clarke, Y. Borre, T. Dinan, J. Cryan, Serotonin: tryptophan metabolism and the brain-gut-microbiome axis, Behav. Brain Res. 277 (2015) 32-48.

[120]

E.A. Mayer, T. Savidge, R.J. Shulman, Brain?gut microbiome interactions and functional bowel disorders, Gastroenterology 146 (2014) 1500-1512.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 15 May 2017
Revised: 20 July 2017
Accepted: 26 July 2017
Published: 08 August 2017
Issue date: September 2017

Copyright

© 2017 Beijing Academy of Food Sciences.

Acknowledgements

Acknowledgements

This study was supported by the National Key Technology R&D Program (grant number 2015BAD16B02) and the National Natural Science Foundation of China (NSFC) (grant number 31201408 and 31471718).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return