Journal Home > Volume 3 , Issue 3-4
Objective

α-Glucosidase inhibitors can be used as a new class of antidiabetic drug. By competitively inhibiting glycosidase activity, these inhibitors help to prevent the fast breakdown of sugars and thereby control the blood sugar level. This study provides a wealth of information about α-glucosidase inhibitors isolated from medicinal plants; this knowledge will be useful in finding more potent antidiabetic candidates from the natural resources for the clinical development of antidiabetic therapeutics.

Results

411 compounds exhibiting α-glucosidase inhibitory activity were summarized and isolated them from medicinal plants. The compound classes isolated include: terpenes (61) from 14 genus, alkaloids (37) from 11 genus, quinines (49) from 4 genus, flavonoids (103) from 24 genus, phenols (37) from 9 genus, phenylpropanoids (73) from 20 genus, sterides (8) from 5 genus, and other types of compounds (43).

Conclusion

Compounds with α-glucosidase inhibitory activity are abundant in nature and can be obtained from several sources. They have high α-glucosidase inhibitory potential, and can be clinically developed for treating diabetes mellitus.


menu
Abstract
Full text
Outline
About this article

α-Glucosidase inhibitors isolated from medicinal plants

Show Author's information Zhenhua YinaWei ZhangaFajin Fenga,bYong ZhangaWenyi Kanga( )
Huanghe Science and Technology College, Zhengzhou 450063, China
College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China

Peer review under responsibility of Beijing Academy of Food Sciences.

Abstract

Objective

α-Glucosidase inhibitors can be used as a new class of antidiabetic drug. By competitively inhibiting glycosidase activity, these inhibitors help to prevent the fast breakdown of sugars and thereby control the blood sugar level. This study provides a wealth of information about α-glucosidase inhibitors isolated from medicinal plants; this knowledge will be useful in finding more potent antidiabetic candidates from the natural resources for the clinical development of antidiabetic therapeutics.

Results

411 compounds exhibiting α-glucosidase inhibitory activity were summarized and isolated them from medicinal plants. The compound classes isolated include: terpenes (61) from 14 genus, alkaloids (37) from 11 genus, quinines (49) from 4 genus, flavonoids (103) from 24 genus, phenols (37) from 9 genus, phenylpropanoids (73) from 20 genus, sterides (8) from 5 genus, and other types of compounds (43).

Conclusion

Compounds with α-glucosidase inhibitory activity are abundant in nature and can be obtained from several sources. They have high α-glucosidase inhibitory potential, and can be clinically developed for treating diabetes mellitus.

Keywords: Medicinal plants, α-Glucosidase inhibitor, Inhibitory activity

References(82)

[1]

Y.P. Li, B. Bai, J. Ye, et al., Reviews on preparation and determination of α-glucosidase inhibitor, Food Sci. 29 (2008) 617-619.

[2]

W.Q. Du, X.F. Shi, M.Y. Qiu, et al., Progress in treatment of diabetes drugs, Chin. Hosp. Pharm. J. 25 (2005) 67-69.

[3]

R.J. Playford, C. Pither, R. Gao, et al., Use of the α-glucosidase inhibitor acarbose in patients with ‘Middleton syndrome’: normal gastric anatomy but with accelerated gastric emptying causing postprandial reactive hypoglycemia and diarrhea, Can. J. Gastroenterol. 27 (2013) 403-404.

[4]

R. Mata, S. Cristians, S. Escandón-Rivera, et al., Mexican antidiabetic herbs: valuable sources of inhibitors of α-glucosidases, J. Nat. Prod. 76 (2013) 468-483.

[5]

L.M. Mbaze, H.M.P. Poumale, J.D. Wansi, et al., α-Glucosidase inhibitory pentacyclic triterpenes from the stem bark of Fagara tessmannii (Rutaceae), Phytochemistry 68 (2007) 591-595.

[6]

W.Y. Kang, L. Zhang, Y.L. Song, α-Glucosidase inhibitors from Luculia pinciana, China J. Chin. Med. 34 (2009) 406-409.

[7]

J.G. Luo, L. Ma, L.Y. Kong, New triterpenoid saponins with strong α-glucosidase inhibitory activity from the roots of Gypsophila oldhamiana, Bioorg. Med. Chem. 16 (2008) 2912-2920.

[8]

B.Z. Wang, H. Jiang, Y.G. Xia, et al., α-Glucosidase inhibitory constituents from Acanthopanax senticosus harm leaves, Molecules 17 (2012) 6269-6276.

[9]

R. Kubínová, R. Pořízková, A. Navrátilová, et al., Antimicrobial and enzyme inhibitory activities of the constituents of Plectranthus madagascariensis (Pers.) Benth, J. Enzyme Inhib. Med. Chem. 29 (2014) 1-4.

[10]

P. Prabhakar Reddy, A.K. Tiwari, R. Ranga Rao, et al., New Labdanediterpenes as intestinal alpha-glucosidase inhibitor from antihyperglycemic extract of Hedychium spicatum (Ham. Ex Smith) rhizomes, Bioorg. Med. Chem. Lett. 19 (2009) 2562-2565.

[11]

M.A. Naveed, N. Riaz, M. Saleema, et al., Longipetalosides A–C, new steroidal saponins from Tribulus longipetalus, Steroids 83 (2014) 45-51.

[12]

J. Hua, J. Qi, B.Y. Yu, Iridoid and phenylpropanoid glycosides from Scrophularia ningpoensis Hemsl. and their α-glucosidaseinhibitory activities, Fitoterapia 93 (2014) 67-73.

[13]

N.P. Thao, B.T. Luyen, B.H. Tai, et al., Rat intestinal sucrase inhibition of constituents from the roots of Rosa rugosa Thunb, Bioorg. Med. Chem. Lett. 24 (2014) 1192-1196.

[14]

B. Jabeen, N. Riaz, M. Saleem, et al., Isolation of natural compounds from Phlomis stewartii showing α-glucosidase inhibitory activity, Phytochemistry 96 (2013) 443-448.

[15]

D. Kumar, V. Shah, R. Ghosh, et al., A new triterpenoidsaponin from Glinus oppositifolius with α-glucosidase inhibitory activity, Nat. Prod. Res. 27 (2013) 624-630.

[16]

Z.W. Wang, J.S. Wang, J. Luo, et al., α-Glucosidase inhibitory triterpenoids from the stem barks of Uncaria laevigata, Fitoterapia 90 (2013) 30-37.

[17]

Z.H. Guo, J. Huang, G.S. Wan, et al., New inhibitors of a-glucosidase in Salacia hainanensis Chun et How, J. Nat. Med. 67 (2013) 844-849.

[18]

S. Escandón-Rivera, M. González-Andrade, R. Bye, et al., α-Glucosidase inhibitors from Brickellia cavanillesii, J. Nat. Prod. 75 (2012) 968-974.

[19]

H. Gao, Y.N. Huang, B. Gao, et al., Inhibitory effect on α-glucosidase by Adhatoda vasica Nees, Food Chem. 108 (2008) 965-972.

[20]

K. Ikeda, M. Takahashi, M. Nishida, et al., Homonojirimycin analogues and their glucosides from Lobelia sessilifolia and Adenophora spp. (Campanulaceae), Carbohydr. Res. 323 (2000) 73-80.

[21]

H.X. Yang, R.X. Zhu, Research progress of DNJ, Bull. Ser. 34 (2003) 6-10.

[22]

T.K. Tabopda, J. Ngoupayo, P.K. Awoussong, et al., Triprenylated flavonoids from Dorstenia psilurus and their α-glucosidase inhibition properties, J. Nat. Prod. 71 (2008) 2068-2072.

[23]

J. Ma, S.J. Liu, Research progress of DNJ in mulberry twig, Food Sci. Technol. 9 (2006) 112-114.

[24]

M. Shibano, K. Kakutani, M. Taniguchi, et al., Antioxidant constituents in the dayflower (Commelina communis L.) and their α-glucosidase-inhibitory activity, J. Nat. Med. 62 (2008) 349-353.

[25]

T.K. Tabopda, J. Ngoupayo, J. Liu, et al., Bioactive aristolactams from Piper umbellatum, Phytochemistry 69 (2008) 1726-1731.

[26]

J.D. Wansi, J. Wandji, L.M. Meváa, et al., α-Glucosidase inhibitory and antioxidant acridone alkaloids from the stem bark of Oriciopsis glaberrima ENGL. (Rutaceae), Chem. Pharm. Bull. 54 (2006) 292-296.

[27]

S.D. Kim, α-Glucosidase inhibitor from Buthus martensi Karsch, Food Chem. 136 (2013) 297-300.

[28]

T. Damsud, S. Adisakwattana, P. Phuwapraisirisan, Three new phenylpropanoyl amides from the leaves of Piper sarmentosu and their a-glucosidase inhibitory activities, Phytochem. Lett. 6 (2013) 350-354.

[29]

C. Uvarani, N. Jaivel, M. Sankaran, et al., Axially chiral biscarbazoles and biological evaluation of the constituents from Murraya koenigii, Fitoterapia 94 (2014) 10-20.

[30]

A. Tabussuma, N. Riaz, M. Saleema, et al., a-Glucosidase inhibitory constituents from Chrozophora plicata, Phytochem. Lett. 6 (2013) 614-619.

[31]

B.Q. Tang, T.T. Yang, W.Q. Yang, et al., Chemical constituents in leaves of Morus atropurpurea and their α-glucosidase activity, Chin. Traditi. Herb. Drugs 44 (2013) 3109-3113.

[32]

W.Y. Kang, L. Zhang, Y.L. Song, α-Glucosidase inhibitors from Rubia cordifolia L., China J. Chin. Med. 34 (2009) 1104-1107.

[33]

K.S. Babu, A.K. Tiwari, P.V. Srinivas, et al., Yeast and mammalian α-glucosidase inhibitory constituents from Himalayan rhubarb Rheum emodi Wall.ex Meisson, Bioorg. Med. Chem. Lett. 14 (2004) 3841-3845.

[34]

Y.D. Yue, Y.T. Zhang, Z.X. Liu, et al., Xanthone glycosides from swertiabimaculata with α-glucosidase inhibitory activity, Planta Med. 80 (2014) 502-508.

[35]

C.T. Luo, H.H. Zheng, S.S. Mao, et al., Xanthones from Swertia mussotii and the α-glycosidase inhibitory activities, Planta Med. 80 (2014) 201-208.

[36]

H.Y. Zhang, L. Yan, Research progress in anti-microbial of flavonoids, Anti Infect. Pharm. 6 (2009) 92-95.

[37]

N. Jong-Anurakkun, M.R. Bhandari, G. Hong, et al., α-Glucosidase inhibitor from Chinese aloes, Fitoterapia 79 (2008) 456-457.

[38]

S.S. Lee, H.C. Lin, C.K. Chen, Acylated flavonol monorhamnosides, α-glucosidase inhibitors, from Machilus philippinensis, Phytochemistry 69 (2008) 2347-2353.

[39]

E.J. Seo, M.J. Curtis-Long, B.W. Lee, et al., Xanthones from Cudrania tricuspidata displaying potent α-glucosidase inhibition, Bioorg. Med. Chem. Lett. 17 (2007) 6421-6424.

[40]

H. Ichiki, O. Takeda, I. Sakakibara, et al., Inhibitory effects of compounds from Anemarrhenae Rhizoma on α-glucosidase and aldose reductase and its contents by drying conditions, J. Nat. Med. 61 (2007) 146-153.

[41]

M. Iio, A. Yoshioka, Y. Imayoshi, et al., Effect of flavonoids on α-glucosidase and β-fructosidase from yeast, Agric. Biol. Chem. 48 (1984) 1559-1563.

[42]

A. Kato, Y. Minoshima, J. Yamamoto, et al., Protective effects of dietary chamomile tea on diabetic complications, J. Agric. Food Chem. 56 (2008) 8206-8211.

[43]

J. Watanabe, J. Kawabata, H. Kurihara, et al., Isolation and identification of α-glucosidase inhibitors from Tochu-cha, Biosci. Biotechnol. Biochem. 61 (1997) 177-178.

[44]

W.Y. Kang, J.M. Wang, L. Zhang, α-Glucosidase inhibitors from Forsythia suspense (Thunb) Vahl, China J. Chin. Mater. Med. 35 (2010) 1156-1159.

[45]

D.S. Lee, S.H. Lee, Genistein, a soy isoflavone, is a potent α-glucosidase inhibitor, FEBS Lett. 501 (2001) 84-86.

[46]

S.A. Raoa, P.V. Srinivas, A.K. Tiwari, et al., Isolation, characterization and chemobiological quantification of α-glucosidase enzyme inhibitory and free radical scavenging constituents from Derris scandens Benth, J. Chromatogr. B 855 (2007) 166-172.

[47]

N. Jong-Anurakkun, M.R. Bhandari, J. Kawabata, α-Glucosidase inhibitors from Devil tree (Alstonia scholaris), Food Chem. 103 (2007) 1319-1323.

[48]

A. Gamberucci, L. Konta, A. Colucci, et al., Green tea flavonols inhibit glucosidase Ⅱ, Biochem. Pharmacol. 72 (2006) 640-646.

[49]

M.R. Bhandari, N. Jong-Anurakkun, G. Hong, et al., α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.), Food Chem. 106 (2008) 247-252.

[50]

J. Zhao, X.W. Zhou, X.B. Chen, et al., α-Glucosidase inhibitory constituents from Toona sinensis, Chem. Nat. Comp. 45 (2009) 244-246.

[51]

Q. Wu, X.W. Yang, L. Zou, et al., Bioactivity guided isolation of alpha-glucosidase inhibitor from whole herbs of Crossostephium chinense, China J. Chin. Mater. Med. 34 (2009) 2206-2211.

[52]

J. Saijyo, Y. Suzuki, Y. Okuno, et al., α-Glucosidase Inhibitor from Bergenia ligulata, J. Oleo Sci. 57 (2008) 431-435.

[53]

M.I. Choudhary, I. Baig, M. Nur-e-Alam, et al., New α-glucosidase inhibitors from the Mongolian medicinal plant Ferula mongolica, Helv. Chim. Acta 84 (2001) 2409-2416.

[54]

M. Shahira, M.M. Salama, A new α-glucosidase inhibitor from Achillea fragrantissima (Forssk.) Sch. Bip. growing in Egypt, Nat. Prod. Res. 28 (2014) 812-818.

[55]

J. Feng, X.W. Yang, R.F. Wang, Bio-assay guided isolation and identification of a-glucosidase inhibitors from the leaves of Aquilaria sinensis, Phytochemistry 72 (2011) 242-247.

[56]

T.H. Quang, N.T. Thanh, C.V. Minh, et al., α-Glucosidase inhibitors from the roots of Sophora flavescens, Bull. Korean Chem. Soc. 33 (2012) 1791-1793.

[57]

Y.G. Chen, P. Li, P. Li, et al., α-Glucosidase inhibitory effect and simultaneous quantification of three major flavonoid glycosides in Microctis folium, Molecules 18 (2013) 4221-4232.

[58]

T.X. Wang, Z.H. Yin, W. Zhang, et al., Chemical constituents from Psoralea corylifolia and their antioxidant α-glucosidase inhibitory and antimicrobial activities, China J. Chin. Mater. Med. 38 (2013) 2328-2333.

[59]

J.D. Wansi, M.C. Lallemand, D.D. Chiozem, et al., α-Glucosidase inhibitory constituents from stem bark of Terminalia superba (Combretaceae), Phytochemistry 68 (2007) 2096-2100.

[60]

L. Zhang, B. Bai, X.H. Liu, et al., α-Glucosidase inhibitors from Chinese Yam (Dioscorea opposita Thunb.), Food Chem. 126 (2011) 203-206.

[61]

Y.H. Chu, S.H. Wu, J.F. Hsieh, Isolation and characterization of α-glucosidase inhibitory constituents from Rhodio lacrenulata, Food Res. Int. 57 (2014) 8-14.

[62]

K. Ma, J.J. Han, L. Bao, et al., Two sarcoviolins with antioxidative and α-glucosidase inhibitory activity from the edible mushroom Sarcodon leucopus collected in Tibet, J. Nat. Prod. 77 (2014) 942-947.

[63]

H.H.T. Tran, M.C. Nguyen, H.T. Le, et al., Inhibitors of a-glucosidase and a-amylase from Cyperus rotundus, Pharm. Biol. 52 (2014) 74-77.

[64]

C. Wan, T. Yuan, L. Li, et al., Maplexins, new a-glucosidase inhibitors from red maple (Acer rubrum) stems, Bioorg. Med. Chem. Lett. 22 (2012) 597-600.

[65]

T. Yuan, C.P. Wan, H. Ma, et al., New phenolics from the flowers of Punica granatum and their in vitro α-glucosidase inhibitory activities, Planta Med. 79 (2013) 1674-1679.

[66]

H. Gao, Y.N. Huang, B. Gao, et al., α-Glucosidase inhibitory effect by the flower buds of Tussilago farfara L., Food Chem. 106 (2008) 1195-1201.

[67]

H. Matsuuraa, H. Miyazakia, C. Asakawaa, et al., Isolation of α-glucosidase inhibitors from hyssop (Hyssopus officinalis), Phytochemistry 65 (2004) 91-97.

[68]

Z.Y. Du, R.R. Liu, W.Y. Shao, et al., α-Glucosidase inhibition of natural curcuminoids and curcumin analogs, Eur. J. Med. Chem. 41 (2006) 213-218.

[69]

S.H. Lam, J.M. Chen, C.J. Kang, et al., α-Glucosidase inhibitors from the seeds of Syagrus romanzoffiana, Phytochemistry 69 (2008) 1173-1178.

[70]

Q. Liu, H.J. Hu, P.F. Li, et al., Diterpenoids and phenylethanoid glycosides from the roots of Clerodendrum bungei and their inhibitory effects against angiotensin converting enzyme and α-glucosidase, Phytochemistry 103 (2014) 196-202.

[71]

A. Ishikawa, H. Yamashita, M. Hiemori, et al., Characterization of inhibitors of postprandial hyperglycemia from the leaves of Nerium indicum, J. Nutr. Sci. Vitaminol. (Tokyo) 53 (2007) 166-173.

[72]

E.Y. Jeong, K.S. Cho, H.S. Lee, α-Amylase and α-glucosidase inhibitors isolated from Triticum aestivum L. sprouts, J. Korean Soc. Appl. Biol. Chem. 55 (2012) 47-51.

[73]

S. El-Mekkawy, M.R. Meselhy, N. Nkobole, et al., Three new a-glucosidase inhibitors from guggul, the oleogum resin of Commiphora wightii, Nat. Prod. Res. 27 (2013) 146-154.

[74]

Y. He, X.B. Wang, B.Y. Fan, et al., Honokioltrimers and dimers via biotransformation catalyzed by Momordica charantia peroxidase: novel and potent a-glucosidase inhibitors, Bioorg. Med. Chem. 22 (2014) 762-771.

[75]

H. Gao, Y.N. Huang, P.Y. Xu, et al., Inhibitory effect on α-glucosidase by the fruits of Terminalia chebula Retz, Food Chem. 105 (2007) 628-634.

[76]

M.A. Naveed, N. Riaz, M. Saleem, et al., Longipetalosides A–C, new steroidal saponins from Tribulus longipetalus, Steroids 83 (2014) 45-51.

[77]

S. Fatmawati, K. Shimizua, S. Kondo, Ganoderol B: a potent α-glucosidase inhibitor isolated from the fruiting body of Ganoderma lucidum, Phytomedicine 18 (2011) 1053-1055.

[78]

R.T. Dewi, S. Tachibana, A. Darmawan, Effect on a-glucosidase inhibition and antioxidant activities of butyrolactone derivatives from Aspergillus terreus MC751, Med. Chem. Res. 23 (2014) 454-460.

[79]

F. Brindis, R. Rodríguez, R. Bye, et al., (Z)-3-Butylidenephthalide from Ligusticum porteri, and α-glucosidase inhibitor, J. Nat. Prod. 74 (2010) 314-320.

[80]

Y.Y. Zhang, J.G. Luo, C.X. Wan, et al., Geranylated 2-arylbenzofurans from Morus alba var. tatarica and their α-glucosidase and protein tyrosine phosphatase 1B inhibitory activities, Fitoterapia 92 (2014) 116-126.

[81]

O. Muraoka, T. Morikawa, S. Miyake, et al., Quantitative analysis of neosalacinol and neokotalanol, another two potent α-glucosidase inhibitors from Salacia species, by LC-MS with ion pair chromatography, J. Nat. Med. 65 (2010) 142-148.

[82]

R.Y. Yan, H.Q. Wang, C. Liu, et al., α-Glucosidase-inhibitory iminosugars from the leaves of Suregada glomerulata, Bioorg. Med. Chem. 21 (2013) 6796-6803.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 05 November 2014
Accepted: 20 November 2014
Published: 08 December 2014
Issue date: December 2014

Copyright

© 2015 Beijing Academy of Food Sciences.

Acknowledgements

This research was supported by Key Project in Science and Technology Agency of Henan Province (Nos. 132102310261 and 142102310147) and Natural Science Project in Department of Education of Henan Province (Nos. 13B360981 and 14B360011), Henan Province Department of Education Teachers, the backbone of Youth Fund (2013GGJS-220), and Key Project in Science and Technology Agency of Zhengzhou City (No. 120140790).

Rights and permissions

Return