Journal Home > Volume 11 , Issue 1

Deadwood plays a key role for biodiversity in forests. A significant number of beetles from this group are currently listed as endangered in the Red List. In addition to other management recommendations, there have been recent efforts to enrich stands with dead wood to promote biodiversity. An important parameter for forestry enterprises is the optimization of these interventions. The study investigated the abundance, species richness, gamma diversity, conservation value and biomass of saproxylic beetles in natural forests using window traps. A total of 89 traps were used for saproxylic beetle monitoring, of which 29 were placed on lying logs, 30 on snags and 30 as controls in forest stand space. A total of 35,011 beetles were recorded in 564 species (61 families). Notably, 20,515 of these belong to saproxylic beetles (59%) in 311 species (55%), with 62 classified as Red-List species (20%). In the group of ‘all saproxylic beetles’, the results indicate that α diversity and γ diversity (q ​= ​0) remain consistent across various deadwood types, while β diversity showed significant differences. Significant differences were found in the Red-List species group, where α diversity and γ diversity differed, with higher values observed in snags. Rarefaction based total species richness of site was estimated to be 391 species, including 74 Red-Listed species. Comparing the sample coverage of the studied stand categories showed that all saproxylic species exhibit a pronounced preference for inhabiting areas featuring lying logs. Conversely, Red-List species mainly inhabit snags, with β diversity being more similar to snags and forest stand space. Notably, both the conservation value (weighted average by conservation status) and beetle biomass are significantly highest in snags, whereas stand space shows the lowest values across all measured saproxylic beetle indices. Furthermore, the use of traps set on the poles in forest stand space resulted in an underestimation of the actual stand richness by 20%–25%. Our results support the conclusion that snags are indispensable features in beech forests, playing a key role in promoting high species diversity, especially among Red-List species, and supporting the biomass of saproxylic beetles. Consequently, it becomes crucial to incorporate a higher percentage of standing deadwood in managed forests or actively create equivalent environments by introducing high stumps.


menu
Abstract
Full text
Outline
About this article

Deadwood position matters: Diversity and biomass of saproxylic beetles in a temperate beech forest

Show Author's information Václav Zumr( )Oto NakládalJosef GalloJiří Remeš
Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 - Suchdol, 165 00, Czech Republic

Abstract

Deadwood plays a key role for biodiversity in forests. A significant number of beetles from this group are currently listed as endangered in the Red List. In addition to other management recommendations, there have been recent efforts to enrich stands with dead wood to promote biodiversity. An important parameter for forestry enterprises is the optimization of these interventions. The study investigated the abundance, species richness, gamma diversity, conservation value and biomass of saproxylic beetles in natural forests using window traps. A total of 89 traps were used for saproxylic beetle monitoring, of which 29 were placed on lying logs, 30 on snags and 30 as controls in forest stand space. A total of 35,011 beetles were recorded in 564 species (61 families). Notably, 20,515 of these belong to saproxylic beetles (59%) in 311 species (55%), with 62 classified as Red-List species (20%). In the group of ‘all saproxylic beetles’, the results indicate that α diversity and γ diversity (q ​= ​0) remain consistent across various deadwood types, while β diversity showed significant differences. Significant differences were found in the Red-List species group, where α diversity and γ diversity differed, with higher values observed in snags. Rarefaction based total species richness of site was estimated to be 391 species, including 74 Red-Listed species. Comparing the sample coverage of the studied stand categories showed that all saproxylic species exhibit a pronounced preference for inhabiting areas featuring lying logs. Conversely, Red-List species mainly inhabit snags, with β diversity being more similar to snags and forest stand space. Notably, both the conservation value (weighted average by conservation status) and beetle biomass are significantly highest in snags, whereas stand space shows the lowest values across all measured saproxylic beetle indices. Furthermore, the use of traps set on the poles in forest stand space resulted in an underestimation of the actual stand richness by 20%–25%. Our results support the conclusion that snags are indispensable features in beech forests, playing a key role in promoting high species diversity, especially among Red-List species, and supporting the biomass of saproxylic beetles. Consequently, it becomes crucial to incorporate a higher percentage of standing deadwood in managed forests or actively create equivalent environments by introducing high stumps.

Keywords: Fagus sylvatica, Coarse woody debris, Coleoptera, Snags, Unmanaged forests, Red-list

References(118)

Alinvi, O., Ball, J.P., Danell, K., Hjältén, J., Pettersson, R.B., 2006. Sampling saproxylic beetle assemblages in dead wood logs: comparing window and eclector traps to traditional bark sieving and a refinement. J. Insect Conserv. 11 (2), 99–112. https://doi.org/10.1007/s10841-006-9012-2.

Ammer, C., 2017. Unraveling the importance of inter- and Intraspecific Competition for the Adaptation of forests to climate change. In: Cánovas, F.M., Lüttge, U., Matyssek, R. (Eds.), Progress in Botany, vol. 78. Springer International Publishing, Switzerland, pp. 345–367. https://doi.org/10.1007/124_2016_14.
DOI

Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46.

Aszalós, R., Thom, D., Aakala, T., Angelstam, P., Brūmelis, G., Gálhidy, L., Gratzer, G., Hlásny, T., Katzensteiner, K., Kovács, B., Knoke, T., Larrieu, L., Motta, R., Müller, J., Ódor, P., Roženbergar, D., Paillet, Y., Pitar, D., Standovár, T., Svoboda, M., Szwagrzyk, J., Toscani, P., Keeton, W.S., 2022. Natural disturbance regimes as a guide for sustainable forest management in Europe. Ecol. Appl. 32 (5), e2596. https://doi.org/10.1002/eap.2596.

Atrena, A., Banelytė, G.G., Læssøe, T., Riis-Hansen, R., Bruun, H.H., Rahbek, C., Heilmann-Clausen, J., 2020. Quality of substrate and forest structure determine macrofungal richness along a gradient of management intensity in beech forests. For. Ecol. Manag. 478, 118512. https://doi.org/10.1016/j.foreco.2020.118512.

Basile, M., Krištín, A., Mikusiński, G., Thorn, S., Żmihorski, M., Pasinelli, G., Brockerhoff, E.G., 2023. Salvage logging strongly affects woodpecker abundance and reproduction: a Meta-analysis. Curr. For. Rep. 9 (1), 1–14. https://doi.org/10.1007/s40725-022-00175-w.

Bilek, L., Remes, J., Zahradnik, D., 2011. Managed vs. unmanaged. Structure of beech forest stands (Fagus sylvatica L.) after 50 years of development, Central Bohemia. For. Syst. 20 (1), 122–138. https://doi.org/10.5424/fs/2011201-10243.

Błońska, E., Prażuch, W., Lasota, J., 2023. Deadwood affects the soil organic matter fractions and enzyme activity of soils in altitude gradient of temperate forests. For. Ecosyst. 10, 100115. https://doi.org/10.1016/j.fecs.2023.100115.

Bouget, C., Nusillard, B., Pineau, X., Ricou, C., 2012. Effect of deadwood position on saproxylic beetles in temperate forests and conservation interest of oak snags. Insect Conserv. Divers. 5 (4), 264–278. https://doi.org/10.1111/j.1752-4598.2011.00160.x.

Brin, A., Valladares, L., Ladet, S., Bouget, C., 2016. Effects of forest continuity on flying saproxylic beetle assemblages in small woodlots embedded in agricultural landscapes. Biodivers. Conserv. 25 (3), 587–602. https://doi.org/10.1007/s10531-016-1076-z.

Brockerhoff, E.G., Jactel, H., Parrotta, J.A., Quine, C.P., Sayer, J., 2008. Plantation forests and biodiversity: oxymoron or opportunity? Biodivers. Conserv. 17 (5), 925–951. https://doi.org/10.1007/s10531-008-9380-x.

Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., Skaug, H.J., M€achler, M., Bolker, B.M., 2017. GlmmTMB balances speed and flexibility among packages for Zero-inflated generalized linear mixed modeling. R J. 9 (2), 378–400. https://doi.org/10.32614/RJ-2017-066.

Brunet, J., Isacsson, G., 2009. Restoration of beech forest for saproxylic beetles—effects of habitat fragmentation and substrate density on species diversity and distribution. Biodivers. Conserv. 18 (9), 2387–2404. https://doi.org/10.1007/s10531-009-9595-5.

Brunet, J., Fritz, O., Richnau, G., 2010. Biodiversity in European beech forests – a review with recommendations for sustainable forest management. Ecol. Bull. 53, 77–94.

Burner, R.C., Drag, L., Stephan, J.G., Birkemoe, T., Wetherbee, R., Muller, J., Siitonen, J., Snäll, T., Skarpaas, O., Potterf, M., Doerfler, I., Gossner, M.M., Schall, P., Weisser, W.W., Sverdrup-Thygeson, A., 2022. Functional structure of European forest beetle communities is enhanced by rare species. Biol. Conserv. 267, 109491. https://doi.org/10.1016/j.biocon.2022.109491.

Cálix, M., Alexander, K.N.A., Nieto, A., Dodelin, B., Soldati, F., Telnov, D., Vazquez Albalate, X., Aleksandrowicz, O., Audisio, P., Istrate, P., Jansson, N., Legakis, A., Liberto, A., Makris, C., Merkl, O., Mugerwa Pettersson, R., Schlaghamersky, J., Bologna, M.A., Brustel, H., Buse, J., Novak, V., Purchart, L., 2018. European Red List of Saproxylic Beetles. IUCN, Brussels, Belgium. http://www.iucnredlist.org/initiatives/europe/publications. (Accessed 4 October 2023).
Care plan, 2023. Care Plan for the Nature Reserve Voděradské Bučiny for the Period 2021-2030 https://drusop.nature.cz/ost/chrobjekty/zchru/index.php?SHOW_ONE=1&ID=512 (číslo jednací: MZP/2020/620/1451) (Accessed4 October 2023).

Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K., Ellison, A.M., 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84 (1), 45–67. https://doi.org/10.1890/13-0133.1.

Chao, A., Jost, L., 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547. https://doi.org/10.1890/11-1952.1.

Chao, A., Ma, K.H., Hsieh, T.C., 2016. iNEXT (iNterpolation and EXTrapolation) online: software for Interpolation and extrapolation of species diversity. Program and User’s Guide.

Christensen, M., Hahn, K., Mountford, E.P., Ódor, P., Standovár, T., Rozenbergar, D., Diaci, J., Wijdeven, S., Meyer, P., Winter, S., Vrska, T., 2005. Dead wood in European beech (Fagus sylvatica) forest reserves. For. Ecol. Manag. 210 (1–3), 267–282. https://doi.org/10.1016/j.foreco.2005.02.032.

Chytrý, M., Hájek, M., Kočí, M., Pešout, P., Roleček, J., Sádlo, J., Šumberová, K., Sychra, J., Boublík, K., Douda, J., Grulich, V., Härtel, H., Hédl, R., Lustyk, P., Navrátilová, J., Novák, P., Peterka, T., Vydrová, A., Chobot, K., 2019. Red list of habitats of the Czech Republic. Ecol. Indic. 106, 105446. https://doi.org/10.1016/j.ecolind.2019.105446.

De Cáceres, M., Legendre, P., 2009. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574. https://doi.org/10.1890/08-1823.1.

Doerfler, I., Cadotte, M.W., Weisser, W.W., Müller, J., Gossner, M.M., Heibl, C., Bässler, C., Thorn, S., Seibold, S., 2020. Restoration-oriented forest management affects community assembly patterns of deadwood-dependent organisms. J. Appl. Ecol. 57 (12), 2429–2440. https://doi.org/10.1111/1365-2664.13741.

Doerfler, I., Gossner, M.M., Müller, J., Seibold, S., Weisser, W.W., 2018. Deadwood enrichment combining integrative and segregative conservation elements enhances biodiversity of multiple taxa in managed forests. Biol. Conserv. 228, 70–78. https://doi.org/10.1016/j.biocon.2018.10.013.

Doerfler, I., Müller, J., Gossner, M.M., Hofner, B., Weisser, W.W., 2017. Success of a deadwood enrichment strategy in production forests depends on stand type and management intensity. For. Ecol. Manag. 400, 607–620. https://doi.org/10.1016/j.foreco.2017.06.013.

Duflot, R., Fahrig, L., Mönkkönen, M., 2022. Management diversity begets biodiversity in production forest landscapes. Biol. Conserv. 268, 109514. https://doi.org/10.1016/j.biocon.2022.109514.

Dufrêne, M., Legendre, P., 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67 (3), 345–366. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2.

Eckelt, A., Müller, J., Bense, U., Brustel, H., Bußler, H., Chittaro, Y., Cizek, L., Frei, A., Holzer, E., Kadej, M., Kahlen, M., Köhler, F., Möller, G., Mühle, H., Sanchez, A., Schaffrath, U., Schmidl, J., Smolis, A., Szallies, A., Németh, T., Wurst, C., Thorn, S., Christensen, R.H.B., Seibold, S., 2018. “Primeval forest relict beetles” of Central Europe: a set of 168 umbrella species for the protection of primeval forest remnants. J. Insect Conserv. 22 (1), 15–28. https://doi.org/10.1007/s10841-017-0028-6.

Edelmann, P., Ambarli, D., Gossner, M.M., Schall, P., Ammer, Ch, Wende, B., Schulze, E.D., Weisser, W.W., Seibold, S., 2022. Forest management affects saproxylic beetles through tree species composition and canopy cover. For. Ecol. Manag. 524, 120532.

Edelmann, P., Weisser, W.W., Ambarli, D., Bässler, C., Buscot, F., Hofrichter, M., Hoppe, B., Kellner, H., Minnich, C., Moll, J., Persoh, D., Deibold, S., Seilwinder, C., Schulze, E.D., Wöllauer, S., Borken, W., 2023. Regional variation in deadwood decay of 13 tree species: effects of climate, soil and forest structure. For. Ecol. Manag. 541, 121094.

Franc, N., 2007. Standing or downed dead trees — does it matter for saproxylic beetles in temperate oak-rich forest? Can. J. For. Res. 37 (12), 2494–2507. https://doi.org/10.1139/x07-096.

Friess, N., Müller, J.C., Aramendi, P., Bässler, C., Brändle, M., Bouget, C., Brin, A., Bussler, H., Georgiev, K.B., Gil, R., Gossner, M.M., Heilmann-Clausen, J., Isacsson, G., Krištín, A., Lachat, T., Larrieu, L., Magnanou, E., Maringer, A., Mergner, U., Mikolás, M., Opgenoorth, L., Schmidl, J., Svoboda, M., Thorn, S., Vandekerkhove, K., Vrezec, A., Wagner, T., Winter, M.B., Zapponi, L., Brandl, R., Seibold, S., 2019. Arthropod communities in fungal fruitbodies are weakly structured by climate and biogeography across European beech forests. Divers. Distrib. 25 (5), 783–796. https://doi.org/10.1111/ddi.12882.

Gossner, M.M., Wende, B., Levick, S., Schall, P., Floren, A., Linsenmair, K.E., Steffan-Dewenter, I., Schulze, E.-D., Weisser, W.W., 2016. Deadwood enrichment in European forests – which tree species should be used to promote saproxylic beetle diversity? Biol. Conserv. 201, 92–102. https://doi.org/10.1016/j.biocon.2016.06.032.

Gossner, M., Lachat, T., Brunet, J., Isacsson, G., Bouget, C., Brustel, H., Brandl, R., Weisser, W.W., Müller, J., 2013. Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conserv. Biol. 27 (3), 605–614. https://doi.org/10.1111/cobi.12023.

Gouix, N., Sebek, P., Valladares, L., Brustel, H., Brin, A., 2015. Habitat requirements of the violet click beetle (Limoniscus violaceus), an endangered umbrella species of basal hollow trees. Insect Conserv. Diver. 8 (5), 418–427. https://doi.org/10.1111/icad.12119.

Graf, M., Lettenmaier, L., Müller, J., Hagge, J., 2022b. Saproxylic beetles trace deadwood and differentiate between deadwood niches before their arrival on potential hosts. Insect Conserv. Divers. 15 (1), 48–60. https://doi.org/10.1111/icad.12534.

Graf, M., Seibold, S., Gossner, M.M., Hagge, J., Weiß, I., Bässler, C., Müller, J., 2022. Coverage based diversity estimates of facultative saproxylic species highlight the importance of deadwood for biodiversity. For. Ecol. Manag. 517, 120275. https://doi.org/10.1016/j.foreco.2022.120275.

Graves, S., Piepho, H., Selzer, L., 2023. multcompView: Visualizations of Paired comparisons R package version 0.1-9. https://CRAN.R-project.org/package=multcompView. (Accessed 4 October 2023).

Hallmann, C.A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A., Sumser, H., Hörren, T., Goulson, D., de Kroon, H., 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12 (10), e0185809. https://doi.org/10.1371/journal.pone.0185809.

Hejda, R., Farkač, J., Chobot, K., 2017. Red List of Threatened Species of the Czech Republic. Agentura Ochrany Přírody a Krajiny České Republiky, Praha, Czech Republic. ISBN 978-80-88076-53-7.

Hilmers, T., Friess, N., Bässler, C., Heurich, M., Brandl, R., Pretzsch, H., Seidl, R., Müller, J., Butt, N., 2018. Biodiversity along temperate forest succession. J. Appl. Ecol. 55 (6), 2756–2766. https://doi.org/10.1111/1365-2664.13238.

Horák, J., Kout, J., Vodka, Š., Donato, D.C., 2016. Dead wood dependent organisms in one of the oldest protected forests of Europe: Investigating the contrasting effects of within-stand variation in a highly diversified environment. For. Ecol. Manag. 363, 229–236. https://doi.org/10.1016/j.foreco.2015.12.041.

Horák, J., Rébl, K., 2013. The species richness of click beetles in ancient pasture woodland benefits from a high level of sun exposure. J. Insect Conserv. 17 (2), 307–318. https://doi.org/10.1007/s10841-012-9511-2.

Hothorn, T., Hornik, K., van de Wiel, M.A., Zeileis, A., 2008. Implementing a class of permutation tests: the coin package. J. Stat. Software 28 (8), 1–23. https://doi.org/10.18637/jss.v028.i08.

Jabin, M., Mohr, D., Kappes, H., Topp, W., 2004. Influence of deadwood on density of soil macro-arthropods in a managed oak–beech forest. For. Ecol. Manag. 194 (1–3), 61–69. https://doi.org/10.1016/j.foreco.2004.01.053.

Jonsell, M., Nittérus, K., Stighäll, K., 2004. Saproxylic beetles in natural and man-made deciduous high stumps retained for conservation. Biol. Conserv. 118 (2), 163–173. https://doi.org/10.1016/j.biocon.2003.08.017.

Jonsell, M., Widenfalk, L.A., Hellqvist, S., 2020. Substrate specificity among Diptera in decaying bioenergy wood: can they be conserved by the same measures as are currently applied to beetles? Biodivers. Conserv. 29 (8), 2623–2662. https://doi.org/10.1007/s10531-020-01992-w.

Kappes, H., Topp, W., 2004. Emergence of Coleoptera from deadwood in a managed broadleaved forest in central Europe. Biodivers. Conserv. 13 (10), 1905–1924. https://doi.org/10.1023/B:BIOC.0000035873.56001.7d.

Klamerus-Iwan, A., Lasota, J., Błońska, E., 2020. Interspecific variability of water storage capacity and absorbability of deadwood. Forests 11 (5), 575. https://doi.org/10.3390/f11050575.

Kostanjsek, F., Sebek, P., Baranova, B., Seric Jelaska, L., Riedl, V., Cizek, L., Didham, R., Müller, J., 2018. Size matters! Habitat preferences of the wrinkled bark beetle, Rhysodes sulcatus, the relict species of European primeval forests. Insect Conserv. Divers. 11 (6), 545–553. https://doi.org/10.1111/icad.12295.

Laibner, S., 2000. Elateridae of the Czech and Slovak Republics. Nakladatelství Kabourek, Sokolská.

Lachat, T., Chumak, M., Chumak, V., Jakoby, O., Müller, J., Tanadini, M., Wermelinger, B., Didham, R., Jonsell, M., 2016. Influence of canopy gaps on saproxylic beetles in primeval beech forests: a case study from the Uholka-Shyrokyi Luh forest, Ukraine. Insect Conserv. Divers. 9 (6), 559–573. https://doi.org/10.1111/icad.12188.

Lenth, R., 2023. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. R package version 1.8.8. https://CRAN.R-project.org/package¼emmeans. (Accessed 2 October 2023).

Lettenmaier, L., Seibold, S., Bässler, C., Brandl, R., Gruppe, A., Müller, J., Hagge, J., 2022. Beetle diversity is higher in sunny forests due to higher microclimatic heterogeneity in deadwood. Oecologia 198 (3), 825–834. https://doi.org/10.1007/s00442-022-05141-8.

Lindhe, A., Lindelöw, Å., 2004. Cut high stumps of spruce, birch, aspen and oak as breeding substrates for saproxylic beetles. For. Ecol. Manag. 203 (1–3), 1–20. https://doi.org/10.1016/j.foreco.2004.07.047.

Lira Dyson, B., Herpel, R., Karasch, P., Müller, J., Thom, D., Bässler, C., 2024. Effects of forest management on the key fungal decomposer Fomes fomentarius in European beech forests – lessons from a large-scale experiment. For. Ecol. Manag. 552, 121580. https://doi.org/10.1016/j.foreco.2023.121580.

López-Bedoya, P.A., Magura, T., Edwards, F.A., Edwards, D.P., Rey-Benayas, J.M., Lövei, G.L., Noriega, J.A., 2021. What level of native beetle diversity can be supported by forestry plantations? A global synthesis. Insect Conserv. Divers. 14 (6), 736–747. https://doi.org/10.1111/icad.12518.

Macagno, A.L.M., Hardersen, S., Nardi, G., Lo Giudice, G., Mason, F., 2015. Measuring saproxylic beetle diversity in small and medium diameter dead wood: the “grab-and-go” method. Eur. J. Entomol. 112 (3), 510–519. https://doi.org/10.14411/eje.2015.049.

Máliš, F., Ujházy, K., Hederová, L., Ujházyová, M., Csölleová, L., Coomes, D.A., Zellweger, F., 2023. Microclimate variation and recovery time in managed and old-growth temperate forests. Agric. For. Meteorol. 342, 109722. https://doi.org/10.1016/j.agrformet.2023.109722.

Marhoul, P., 2008. Význam červených seznamů a červených knih pro ochranu ohrožených druhů. In: Horák, J. (Ed.), Brouci Vázaní Na Dřeviny = Beetles Associated with Trees. Česká lesnická společnost, Praha, pp. 58–62

Martikainen, P., Kaila, L., 2004. Sampling saproxylic beetles: lessons from a 10-year monitoring study. Biol. Conserv. 120 (2), 171–181. https://doi.org/10.1016/j.biocon.2004.02.009.

Mason, W.L., Diaci, J., Carvalho, J., Valkonen, S., 2022. Continuous cover forestry in Europe: usage and the knowledge gaps and challenges to wider adoption. Forestry 95 (1), 1–12. https://doi.org/10.1093/forestry/cpab038.

Micó, E., Martínez-Pérez, S., Jordán-Núñez, J., Galante, E., Micó-Vicent, B., 2022. On how the abandonment of traditional forest management practices could reduce saproxylic diversity in the Mediterranean Region. For. Ecol. Manag. 520, 120402. https://doi.org/10.1016/j.foreco.2022.120402.

Mollier, S., Kunstler, G., Dupouey, J.-L., Bergès, L., 2022. Historical landscape matters for threatened species in French mountain forests. Biol. Conserv. 269, 109544. https://doi.org/10.1016/j.biocon.2022.109544.

Müller, J., Brunet, J., Brin, A., Bouget, C., Brustel, H., Bussler, H., Förster, B., Isacsson, G., Köhler, F., Lachat, T., Gossner, M.M., 2013. Implications from large-scale spatial diversity patterns of saproxylic beetles for the conservation of European Beech forests. Insect Conserv. Divers. 6 (2), 162–169. https://doi.org/10.1111/j.1752-4598.2012.00200.x.

Müller, J., Brustel, H., Brin, A., Bussler, H., Bouget, C., Obermaier, E., Heidinger, I.M.M., Lachat, T., Förster, B., Horak, J., Procházka, J., Köhler, F., Larrieu, L., Bense, U., Isacsson, G., Zapponi, L., Gossner, M.M., 2015. Increasing temperature may compensate for lower amounts of dead wood in driving richness of saproxylic beetles. Ecography 38 (5), 499–509. https://doi.org/10.1111/ecog.00908.

Müller, J., Bußler, H., Kneib, T., 2008. Saproxylic beetle assemblages related to silvicultural management intensity and stand structures in a beech forest in Southern Germany. J. Insect Conserv. 12 (2), 107–124. https://doi.org/10.1007/s10841-006-9065-2.

Müller, J., Bütler, R., 2010. A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests. Eur. J. For. Res. 129 (6), 981–992. https://doi.org/10.1007/s10342-010-0400-5.

Müller, J., Engel, H., Blaschke, M., 2007. Assemblages of wood-inhabiting fungi related to silvicultural management intensity in beech forests in southern Germany. Eur. J. For. Res. 126 (4), 513–527. https://doi.org/10.1007/s10342-007-0173-7.

Nakládal, O., Synek, J., Zumr, V., 2023. Diurnal and sex ratio flight activity of rare cavity-dweller Eucnemis capucina Ahrens, 1812 (Coleoptera: Eucnemidae) in lowland deciduous forest. Forests 14 (4), 720. https://doi.org/10.3390/f14040720.

NCA CR, 2024. Species occurrence Database. Nature Conservation Agency of the Czech Republic. https://portal.nature.cz. (Accessed 2 October 2023).
Nieto, A., Alexander, K.N.A., 2010. European Red List of Saproxylic Beetles. Publications Office of the European Union, Luxembourg.

Oettel, J., Zolles, A., Gschwantner, T., Lapin, K., Kindermann, G., Schweinzer, K.-M., Gossner, M.M., Essl, F., 2023. Dynamics of standing deadwood in Austrian forests under varying forest management and climatic conditions. J. Appl. Ecol. 60 (4), 696–713. https://doi.org/10.1111/1365-2664.14359.

Okland, B., 1996. A comparison of three methods of trapping saproxylic beetles. Eur. J. Entomol. 93, 195–209.

Oksanen, J., Simpson, G.L., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P., O’Hara, R.B., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M., Lahti, L., McGlinn, D., Ouellette, M., Ribeiro Cunha, E., Smith, T., Stier, A., Ter Braak, C., Weedon, J., 2022. Vegan: community Ecology package R package version 2.6-2. https://CRAN.R-project.org/package¼vegan. (Accessed 2 October 2023).

Paillet, Y., Archaux, F., Boulanger, V., Debaive, N., Fuhr, M., Gilg, O., Gosselin, F., Guilbert, E., 2017. Snags and large trees drive higher tree microhabitat densities in strict forest reserves. For. Ecol. Manag. 389, 176–186. https://doi.org/10.1016/j.foreco.2016.12.014.

Paillet, Y., Bergès, L., Hjältén, J., Odor, P., Avon, C., Bernhardt-Römermann, M., Bijlsma, R.J., De Bruyn, L., Fuhr, M., Grandin, U., Kanka, R., Lundin, L., Luque, S., Magura, T., Matesanz, S., Mészáros, I., Sebastià, M.T., Schmidt, W., Standovár, T., Tóthmérész, B., Uotila, A., Valladares, F., Vellak, K., Virtanen, R., 2010. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv. Biol. 24 (1), 101–112. https://doi.org/10.1111/j.1523-1739.2009.01399.x.

Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., McGuire, A.D., Piao, S., Rautiainen, A., Sitch, S., Hayes, D., 2011. A large and persistent carbon sink in the world's forests. Science 333 (6045), 988–993. https://doi.org/10.1126/science.1201609.

Parajuli, R., Markwith, S.H., 2023. Quantity is foremost but quality matters: a global meta-analysis of correlations of dead wood volume and biodiversity in forest ecosystems. Biol. Conserv. 283, 110100. https://doi.org/10.1016/j.biocon.2023.110100.

Parmain, G., Bouget, C., Müller, J., Horak, J., Gossner, M.M., Lachat, T., Isacsson, G., 2015. Can rove beetles (Staphylinidae) be excluded in studies focusing on saproxylic beetles in central European beech forests? Bull. Entomol. Res. 105 (1), 101–109. https://doi.org/10.1017/S0007485314000741.

Procházka, J., Schlaghamerský, J., 2019. Does dead wood volume affect saproxylic beetles in montane beech-fir forests of Central Europe? J. Insect Conserv. 23 (1), 157–173. https://doi.org/10.1007/s10841-019-00130-4.

Puletti, N., Canullo, R., Mattioli, W., Gawryś, R., Corona, P., Czerepko, J., 2019. A dataset of forest volume deadwood estimates for Europe. Ann. For. Sci. 76 (3), 68. https://doi.org/10.1007/s13595-019-0832-0.

R Core Team, 2023. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (Accessed 2 October 2023).

Ranius, T., 2006. Measuring the dispersal of saproxylic insects: a key characteristic for their conservation. Popul. Ecol. 48 (3), 177–188. https://doi.org/10.1007/s10144-006-0262-3.

Rappa, N.J., Staab, M., Frey, J., Winiger, N., Klein, A.M., 2022. Multiple forest structural elements are needed to promote beetle biomass, diversity and abundance. For. Ecosyst. 9, 100056. https://doi.org/10.1016/j.fecs.2022.100056.

Roth, N., Doerfler, I., Bässler, C., Blaschke, M., Bussler, H., Gossner, M.M., Heideroth, A., Thorn, S., Weisser, W.W., Müller, J., 2018. Decadal effects of landscape-wide enrichment of dead wood on saproxylic organisms in beech forests of different historic management intensity. Divers. Distrib. 25 (3), 430–441. https://doi.org/10.1111/ddi.12870.

Rothacher, J., Hagge, J., Bässler, C., Brandl, R., Gruppe, A., Müller, J., 2023. Logging operations creating snags, logs, and stumps under open and closed canopies promote stand-scale beetle diversity. For. Ecol. Manag. 540, 121022. https://doi.org/10.1016/j.foreco.2023.121022.

Sandström, J., Bernes, C., Junninen, K., Lõhmus, A., Macdonald, E., Müller, J., Jonsson, B.G., Mukul, S., 2019. Impacts of dead wood manipulation on the biodiversity of temperate and boreal forests. A systematic review. J. Appl. Ecol. 56 (7), 1770–1781. https://doi.org/10.1111/1365-2664.13395.

Schall, P., Gossner, M.M., Heinrichs, S., Fischer, M., Boch, S., Prati, D., Jung, K., Baumgartner, V., Blaser, S., Böhm, S., Buscot, F., Daniel, R., Goldmann, K., Kaiser, K., Kahl, T., Lange, M., Müller, J., Overmann, J., Renner, S.C., Schulze, E.D., Sikorski, J., Tschapka, M., Türke, M., Weisser, W.W., Wemheuer, B., Wubet, T., Ammer, C., 2018. The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests. J. Appl. Ecol. 55 (1), 267–278. https://doi.org/10.1111/1365-2664.12950.

Schall, P., Heinrichs, S., Ammer, C., Ayasse, M., Boch, S., Buscot, F., Fischer, M., Goldmann, K., Overmann, J., Schulze, E.-D., Sikorski, J., Weisser, W.W., Wubet, T., Gossner, M.M., Mori, A., 2020. Can multi-taxa diversity in European beech forest landscapes be increased by combining different management systems? J. Appl. Ecol. 57 (7), 1363–1375. https://doi.org/10.1111/1365-2664.13635.

Schiegg, K., 2000a. Effects of dead wood volume and connectivity on saproxylic insect species diversity. Ecoscience 7 (3), 290–298. https://doi.org/10.1080/11956860.2000.11682598.

Schiegg, K., 2000b. Are there saproxylic beetle species characteristic of high dead wood connectivity? Ecography 23, 579–587.

Schiegg, K., 2001. Saproxylic insect diversity of beech: limbs are richer than trunks. For. Ecol. Manag. 149, 295–304.

Schmidl, J., Bußler, H., 2004. Okologische Gilden xylobionter kafer deutschlands. Naturschutz Landschaftsplan. 36, 202–218.

Schneider, A., Blick, T., Köhler, F., Pauls, S.U., Römbke, J., Zub, P., Dorow, W.H.O., 2021. Animal diversity in beech forests – an analysis of 30 years of intense faunistic research in Hessian strict forest reserves. For. Ecol. Manag. 499, 119564. https://doi.org/10.1016/j.foreco.2021.119564.

Sebek, P., Vodka, S., Bogusch, P., Pech, P., Tropek, R., Weiss, M., Zimova, K., Cizek, L., 2016. Open-grown trees as key habitats for arthropods in temperate woodlands: the diversity, composition, and conservation value of associated communities. For. Ecol. Manag. 380, 172–181. https://doi.org/10.1016/j.foreco.2016.08.052.

Seibold, S., Bässler, C., Baldrian, P., Reinhard, L., Thorn, S., Ulyshen, M.D., Weiß, I., Müller, J., 2016. Dead-wood addition promotes non-saproxylic epigeal arthropods but effects are mediated by canopy openness. Biol. Conserv. 204, 181–188. https://doi.org/10.1016/j.biocon.2016.09.031.

Seibold, S., Bässler, C., Brandl, R., Gossner, M.M., Thorn, S., Ulyshen, M.D., Müller, J., 2015b. Experimental studies of dead-wood biodiversity – a review identifying global gaps in knowledge. Biol. Conserv. 191, 139–149. https://doi.org/10.1016/j.biocon.2015.06.006.

Seibold, S., Brandl, R., Buse, J., Hothorn, T., Schmidl, J., Thorn, S., Müller, J., 2015a. Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe. Conserv. Biol. 29 (2), 382–390. https://doi.org/10.1111/cobi.12427.

Seibold, S., Gossner, M.M., Simons, N.K., Blüthgen, N., Müller, J., Ambarlı, D., Ammer, C., Bauhus, J., Fischer, M., Habel, J.C., Linsenmair, K.E., Nauss, T., Penone, C., Prati, D., Schall, P., Schulze, E.-D., Vogt, J., Wöllauer, S., Weisser, W.W., 2019. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574 (7780), 671–674. https://doi.org/10.1038/s41586-019-1684-3.

Seibold, S., Weisser, W.W., Ambarlı, D., Gossner, M.M., Mori, A.S., Cadotte, M.W., Hagge, J., Bässler, C., Thorn, S., 2023. Drivers of community assembly change during succession in wood-decomposing beetle communities. J. Anim. Ecol. 92 (5), 965–978. https://doi.org/10.1111/1365-2656.13843.

Šrámek, O., 1982. Vývoj lesů na území státní přírodní rezervace Voděradské bučiny. VŠZ Praha, ŠLP Kostelec nad Černými lesy. Ms., dep. in rezervační kniha AOPK ČR, P. 31.

Šrámek, O., 1983a. SPR Voděradské bučiny I. Část. Působení člověka a škodlivých přírodních činitelů na vývoj lesa. Pamatky a Prir. 8, 166–171.

Šrámek, O., 1983b. SPR Voděradské bučiny Ⅱ. Část. Vývoj lesů. Pamatky a Prir. 8, 241–248.

Thom, D., Sommerfeld, A., Sebald, J., Hagge, J., Müller, J., Seidl, R., 2020. Effects of disturbance patterns and deadwood on the microclimate in European beech forests. Agric. For. Meteorol. 291, 108066. https://doi.org/10.1016/j.agrformet.2020.108066.

Thorn, S., Bässler, C., Brandl, R., Burton, P.J., Cahall, R., Campbell, J.L., Castro, J., Choi, C.-Y., Cobb, T., Donato, D.C., Durska, E., Fontaine, J.B., Gauthier, S., Hebert, C., Hothorn, T., Hutto, R.L., Lee, E.-J., Leverkus, A.B., Lindenmayer, D.B., Obrist, M.K., Rost, J., Seibold, S., Seidl, R., Thom, D., Waldron, K., Wermelinger, B., Winter, M.B., Zmihorski, M., Müller, J., 2018. Impacts of salvage logging on biodiversity: a meta-analysis. J. Appl. Ecol. 55 (1), 279–289. https://doi.org/10.1111/1365-2664.12945.

Tillon, L., Bouget, C., Paillet, Y., Aulagnier, S., 2016. How does deadwood structure temperate forest bat assemblages? Eur. J. For. Res. 135 (3), 433–449.

Uhl, B., Krah, F.-S., Baldrian, P., Brandl, R., Hagge, J., Müller, J., Thorn, S., Vojtech, T., Bässler, C., 2022. Snags, logs, stumps, and microclimate as tools optimizing deadwood enrichment for forest biodiversity. Biol. Conserv. 270, 109569. https://doi.org/10.1016/j.biocon.2022.109569.

Verkerk, P.J., Lindner, M., Zanchi, G., Zudin, S., 2011. Assessing impacts of intensified biomass removal on deadwood in European forests. Ecol. Indicat. 11 (1), 27–35. https://doi.org/10.1016/j.ecolind.2009.04.004.

Wambsganss, J., Stutz, K.P., Lang, F., 2017. European beech deadwood can increase soil organic carbon sequestration in forest topsoils. For. Ecol. Manag. 405, 200–209. https://doi.org/10.1016/j.foreco.2017.08.053.

Welti, E.A.R., Zajicek, P., Frenzel, M., Ayasse, M., Bornholdt, T., Buse, J., Classen, A., Dziock, F., Engelmann, R.A., Englmeier, J., Fellendorf, M., Förschler, M.I., Fricke, U., Ganuza, C., Hippke, M., Hoenselaar, G., Kaus-Thiel, A., Kerner, J., Kilian, D., Mandery, K., Marten, A., Monaghan, M.T., Morkel, C., Muller, J., Puffpaff, S., Redlich, S., Richter, R., Rojas-Botero, S., Scharnweber, T., Scheiffarth, G., Yanez, P.S., Schumann, R., Seibold, S., Steffan-Dewenter, I., Stoll, S., Tobisch, C., Twietmeyer, S., Uhler, J., Vogt, J., Weis, D., Weisser, W.W., Wilmking, M., Haase, P., 2022. Temperature drives variation in flying insect biomass across a German malaise trap network. Insect Conserv. Divers. 15 (2), 168–180. https://doi.org/10.1111/icad.12555.

Zumr, V., Nakládal, O., Bílek, L., Remeš, J., 2023. The diameter of beech snags is an important factor for saproxylic beetle richness: implications for forest management and conservation. For. Ecosyst. 10, 100143. https://doi.org/10.1016/j.fecs.2023.100143.

Zumr, V., Nakládal, O., Remeš, J., Brestovanská, T., Zumr, V., 2022a. Diversity of click beetles in managed nonnative coniferous and native beech stands: consequences of changes in the structural and species composition of tree stands in Central Europe. For. Ecosyst. 9, 100057. https://doi.org/10.1016/j.fecs.2022.100057.

Zumr, V., Remeš, J., Pulkrab, K., 2021. How to increase biodiversity of saproxylic beetles in commercial stands through integrated forest management in central Europe. Forests 12 (6), 814. https://doi.org/10.3390/f12060814.

Zumr, V., Remeš, J., Nakládal, O., 2022b. Small-scale spontaneous dynamics in temperate beech stands as an importance driver for beetle species richness. Sci. Rep. 12 (1), 11974. https://doi.org/10.1038/s41598-022-16352-7.

Zumr, V., Remeš, J., 2020. Saproxylic beetles as an indicator of forest biodiversity and the influence of forest management on their crucial life attributes: review. Rep. For. Res. 65, 242–257.

Zuo, J., Muys, B., Berg, M.P., Hefting, M.M., van Logtestijn, R.S.P., van Hal, J., Cornelissen, J.H.C., 2023. Earthworms are not just “earth” worms: multiple drivers to large diversity in deadwood. For. Ecol. Manag. 530, 120746. https://doi.org/10.1016/j.foreco.2022.120746.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 04 December 2023
Revised: 07 February 2024
Accepted: 07 February 2024
Published: 09 February 2024
Issue date: February 2024

Copyright

© 2024 The Authors.

Acknowledgements

Acknowledgements

We are grateful to the following experts for help in the identification of some beetle families: Jan Horak (Praha): Scraptiidae, Mordelidae; Pavel Průdek (Brno): Cerylonidae, Ciidae, Corylophagidae, Cryptophagidae, Latridiidae, Monotomidae; Josef Jelínek (Praha): Nitidulidae. We are grateful to Markéta Macháčová, who proofread this manuscript. We thank three anonymous reviewers for very valuable comments that led to an improvement in the quality of the manuscript.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return