Journal Home > Volume 10 , Issue 6

Silver fir (Abies alba Mill.) is a flexible European tree species, mainly vegetating within the mountainous regions of Europe, but its growth responses across its latitudinal and longitudinal range have not yet been satisfactorily verified under changing environmental conditions. This study describes the tree-ring increment of silver fir in research plots across a latitudinal gradient from the northern range in Czechia (CZ), through Croatia (HR) to the southernmost range in Italy (IT). The research aims to analyze in detail the dynamics and cyclicity of the ring-width index (RWI) and how it relates to climatic factors (temperature and precipitation), the North Atlantic Oscillation (NAO), and total solar irradiance (TSI), including the determination of latitude. The results show that the main drivers affecting fir growth are the seasonal NAO index and TSI. Monthly temperatures affect RWI early in the vegetation season, while lack of precipitation during the summer is a limiting factor for fir growth, especially in July. Seasonal temperatures and temperatures in June and July negatively impact, while seasonal precipitation totals in the same months positively influence the RWI in all research plots across meridian. The longest growth cycles in fir RWI were recorded in the northernmost studied plots in CZ. These cyclical fluctuations recede approaching the south. The cyclic increase in RWI is related to the TSI, which decreases its effect from north to south. The TSI's effects vary, positively impacting CZ but negatively influencing HR while remaining relatively neutral in IT. On the other hand, seasonal NAO tends to negatively affect silver fir growth in HR and CZ but has a mildly positive effect in IT. In conclusion, the TSI and the influence of the seasonal NAO index are prevalent in the fir RWI and are accompanied by a greater cyclicity of RWI in Central Europe (temperature optimum) than in the Italian Mediterranean region, where this tree species is limited by climatic conditions, especially lack of precipitation.


menu
Abstract
Full text
Outline
About this article

Silver fir tree-ring fluctuations decrease from north to south latitude—total solar irradiance and NAO are indicated as the main influencing factors

Show Author's information Václav Šimůneka( )Anna ProkůpkováaZdeněk VacekaStanislav VacekaJan Cukora,bJiří RemešaVojtěch HájekaGiuseppe D'AndreaaMartin Šálekb,c,gPaola NoladOsvaldo PericolodŠárka HolzbachováeFrancesco Ripullonef
Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ—165 00, Prague 6, Suchdol, Czech Republic
Forestry and Game Management Research Institute, v.v.i, Strnady 136, 252 02, Jíloviště, Czech Republic
Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 603 65, Brno, Czech Republic
Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, I-27100, Pavia, Italy
Forests of the Czech Republic, SOE, Přemyslova 1106/19, Nový Hradec Králové, 500 08, Hradec Králové, Czech Republic
School of Agricultural, Forestry and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, I-85100, Potenza, Italy
Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ—165 00, Prague, Suchdol, Czech Republic

Abstract

Silver fir (Abies alba Mill.) is a flexible European tree species, mainly vegetating within the mountainous regions of Europe, but its growth responses across its latitudinal and longitudinal range have not yet been satisfactorily verified under changing environmental conditions. This study describes the tree-ring increment of silver fir in research plots across a latitudinal gradient from the northern range in Czechia (CZ), through Croatia (HR) to the southernmost range in Italy (IT). The research aims to analyze in detail the dynamics and cyclicity of the ring-width index (RWI) and how it relates to climatic factors (temperature and precipitation), the North Atlantic Oscillation (NAO), and total solar irradiance (TSI), including the determination of latitude. The results show that the main drivers affecting fir growth are the seasonal NAO index and TSI. Monthly temperatures affect RWI early in the vegetation season, while lack of precipitation during the summer is a limiting factor for fir growth, especially in July. Seasonal temperatures and temperatures in June and July negatively impact, while seasonal precipitation totals in the same months positively influence the RWI in all research plots across meridian. The longest growth cycles in fir RWI were recorded in the northernmost studied plots in CZ. These cyclical fluctuations recede approaching the south. The cyclic increase in RWI is related to the TSI, which decreases its effect from north to south. The TSI's effects vary, positively impacting CZ but negatively influencing HR while remaining relatively neutral in IT. On the other hand, seasonal NAO tends to negatively affect silver fir growth in HR and CZ but has a mildly positive effect in IT. In conclusion, the TSI and the influence of the seasonal NAO index are prevalent in the fir RWI and are accompanied by a greater cyclicity of RWI in Central Europe (temperature optimum) than in the Italian Mediterranean region, where this tree species is limited by climatic conditions, especially lack of precipitation.

Keywords: Temperature, Precipitation, Abies alba ​Mill., Tree-rings, Solar cycle, North Atlantic oscillation

References(136)

Ahmed, F., Adnan, S., Latif, M., 2020. Impact of jet stream and associated mechanisms on winter precipitation in Pakistan. Meteorol. Atmos. Phys. 132, 225-238. https://doi.org/10.1007/s00703-019-00683-8.

Akhmetzyanov, L., Sánchez-Salguero, R., García-González, I., Domínguez-Delmás, M., Sass-Klaassen, U., 2023. Blue is the fashion in Mediterranean pines: new drought signals from tree-ring density in southern Europe. Sci. Total Environ. 856, 1-15. https://doi.org/10.1016/j.scitotenv.2022.159291.

Al-Tameemi, M.A., Chukin, V.V., 2016. Global water cycle and solar activity variations. J. Atmos. Sol. Terr. Phys. 142, 55-59. https://doi.org/10.1016/j.jastp.2016.02.023.

Anić, I., Vukelić, J., Mikać, S., Bakšić, D., Ugarković, D., 2009. Utjecaj globalnih klimatskih promjena na ekološku nišu obične jele (Abies alba Mill.) u hrvatskoj. Sumar List 133, 135-144.

Bert, G.D., 1993. Impact of ecological factors, climatic stresses, and pollution on growth and health of silver fir (Abies alba Mill.) in the Jura Mountains: an ecological and dendrochronological study. Acta Oecol. 14, 229-246.

Bhuyan, U., Zang, C., Menzel, A., 2017. Different responses of multispecies tree ring growth to various drought indices across Europe. Dendrochronologia 44, 1-8. https://doi.org/10.1016/j.dendro.2017.02.002.

Bice, D., Montanari, A., Vučetić, V., Vučetić, M., 2012. The influence of regional and global climatic oscillations on Croatian climate. Int. J. Climatol. 32, 1537-1557. https://doi.org/10.1002/joc.2372.

Biondi, F., Waikul, K., 2004. DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput. Geosci. 30, 303-311. https://doi.org/10.1016/j.cageo.2003.11.004.

Bose, A.K., Gessler, A., Bolte, A., Bottero, A., Buras, A., Cailleret, M., Camarero, J.J., Haeni, M., Heres, A.M., Hevia, A., Lévesque, M., Linares, J.C., Martinez-Vilalta, J., Matías, L., Menzel, A., Sánchez-Salguero, R., Saurer, M., Vennetier, M., Ziche, D., Rigling, A., 2020. Growth and resilience responses of Scots pine to extreme droughts across Europe depend on predrought growth conditions. Glob. Chang. Biol. 26, 4521-4537. https://doi.org/10.1111/gcb.15153.

Bosela, M., Kulla, L., Roessiger, J., Šebeň, V., Dobor, L., Büntgen, U., Lukac, M., 2019. Long-term effects of environmental change and species diversity on tree radial growth in a mixed European forest. For. Ecol. Manag. 446, 293-303. https://doi.org/10.1016/j.foreco.2019.05.033.

Bunn, A.G., 2008. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115-124. https://doi.org/10.1016/j.dendro.2008.01.002.

Bunn, A.G., 2010. Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28, 251-258. https://doi.org/10.1016/j.dendro.2009.12.001.

Bunn, A., Korpela, M., 2018a. An Introduction to dplR. http://cran.nexr.com/web/packages/dplR/vignettes/intro-dplR.pdf. (Accessed 1 October 2023).
Bunn, A., Mikko, K., Biondi, F., Campelo, F., Mérian, P., Qeadan, F., Zang, C., PuchaCofrep, D., Wernicke, J., 2018. Dendrochronology Program Library in R. R Package. Dendrochronologia, version 1.6.8.

Büntgen, U., Frank, D., Neuenschwander, T., Esper, J., 2012. Fading temperature sensitivity of Alpine tree growth at its Mediterranean margin and associated effects on large-scale climate reconstructions. Clim. Chang. 114, 651-666. https://doi.org/10.1007/s10584-012-0450-4.

Büntgen, U., Tegel, W., Kaplan, J.O., Schaub, M., Hagedorn, F., Bürgi, M., Brázdil, R., Helle, G., Carrer, M., Heussner, K.U., Hofmann, J., Kontic, R., Kyncl, T., Kyncl, J., Camarero, J.J., Tinner, W., Esper, J., Liebhold, A., 2014. Placing unprecedented recent fir growth in a European-wide and Holocene-long context. Front. Ecol. Environ. 12, 100-106. https://doi.org/10.1890/130089.

Caudullo, G., Tinner, W., de Rigo, D., 2016. Picea abies in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publication Office of the European Union, Luxembourg, pp. 114–116.

Černý, J., Pokorný, R., Vejpustková, M., Šrámek, V., Bednář, P., 2020. Air temperature is the main driving factor of radiation use efficiency and carbon storage of mature Norway spruce stands under global climate change. Int. J. Biometeorol. 64, 1599-1611. https://doi.org/10.1007/s00484-020-01941-w.

Chen, K., Dorado-Liñán, I., Akhmetzyanov, L., Gea-Izquierdo, G., Zlatanov, T., Menzel, A., 2015. Influence of climate drivers and the North Atlantic oscillation on beech growth at marginal sites across the mediterranean. Clim. Res. 66, 229-242. https://doi.org/10.3354/cr01345.

ČHMÚ, 2022. Czech Hydrometeorological Institute. http://portal.chmi.cz/historicka-data/pocasi/uzemni-srazky. (Accessed 1 October 2022).

Conte, E., Lombardi, F., Battipaglia, G., Palombo, C., Altieri, S., La Porta, N., Marchetti, M., Tognetti, R., 2018. Growth dynamics, climate sensitivity and water use efficiency in pure vs. mixed pine and beech stands in Trentino (Italy). For. Ecol. Manag. 409, 707-718. https://doi.org/10.1016/j.foreco.2017.12.011.

Cook, E.R., Shiyatov, S.G., Mazepa, V.S., 1990. Estimation of the mean chronology. In: Cook, E.R., Kairiukstis, L.A. (Eds.), Methods of Dendrochronology Applications. Columbia University, New York.
CRU-UEA, 2022. North Atlantic Oscillation (NAO) Data. Climatic Research Unit, University of East Anglia. https://crudata.uea.ac.uk/cru/data/nao/index.htm. (Accessed 10 November 2022).

Cuny, H.E., Rathgeber, C.B.K., Kiessé, T.S., Hartmann, F.P., Barbeito, I., Fournier, M., 2013. Generalized additive models reveal the intrinsic complexity of wood formation dynamics. J. Exp. Bot. 64, 1983-1994. https://doi.org/10.1093/jxb/ert057.

Dewitte, S., Nevens, S., 2016. The total solar irradiance climate data record. Astrophys. J. 830, 25. https://doi.org/10.3847/0004-637x/830/1/25.

Dewitte, S., Cornelis, J., Meftah, M., 2022. Centennial total solar irradiance variation. Rem. Sens. 14, 1-12. https://doi.org/10.3390/rs14051072.

DHMZ, 2022. Croatian Meteorological and Hydrological Service. https://meteo.hr/index_en.php. (Accessed 10 November 2022).

Di Filippo, A., Biondi, F., Čufar, K., De Luis, M., Grabner, M., Maugeri, M., Saba, E.P., Schirone, B., Piovesan, G., 2007. Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. J. Biogeogr. 34, 1873-1892. https://doi.org/10.1111/j.1365-2699.2007.01747.x.

Diao, Y., Xie, S.P., Luo, D., 2015. Asymmetry of winter European surface air temperature extremes and the North Atlantic Oscillation. J. Clim. 28, 517-530. https://doi.org/10.1175/JCLI-D-13-00642.1.

Dobrowolska, D., Bončina, A., Klumpp, R., 2017. Ecology and silviculture of silver fir (Abies alba Mill.): a review. J. For. Res. 22, 326-335. https://doi.org/10.1080/13416979.2017.1386021.

Dorotovič, I., Louzada, J.L., Rodrigues, J.C., Karlovský, V., 2014. Impact of solar activity on the growth of pine trees (Pinus cembra: 1610–1970; Pinus pinaster: 1910–1989). Eur. J. For. Res. 133, 639-648. https://doi.org/10.1007/s10342-014-0792-8.

D'Arrigo, R., Wilson, R., Liepert, B., Cherubini, P., 2008. On the "Divergence Problem" in Northern Forests: a review of the tree-ring evidence and possible causes. Glob. Planet. Chang. 60, 289-305. https://doi.org/10.1016/j.gloplacha.2007.03.004.

Elling, W., Dittmar, C., Pfaffelmoser, K., Rötzer, T., 2009. Dendroecological assessment of the complex causes of decline and recovery of the growth of silver fir (Abies alba Mill.) in Southern Germany. For. Ecol. Manag. 257, 1175-1187. https://doi.org/10.1016/j.foreco.2008.10.014.

Esper, J., Cook, E.R., Schweingruber, F.H., 2002. Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295, 2250-2253. https://doi.org/10.1126/science.1066208.

Fritts, H.C., 1976. Tree Rings and Climate. Academic Press Inc., Tucson, Arizona, U.S.A.

DOI

Gazol, A., Camarero, J.J., Gutiérrez, E., Popa, I., Andreu-Hayles, L., Motta, R., Nola, P., Ribas, M., Sangüesa-Barreda, G., Urbinati, C., Carrer, M., 2015. Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. J. Biogeogr. 42, 1150-1162. https://doi.org/10.1111/jbi.12512.

Gazol, A., Camarero, J.J., Colangelo, M., de Luis, M., del Castillo, E.M., Serra-Maluquer, X., 2019. Summer drought and spring frost, but not their interaction, constrain European beech and Silver fir growth in their southern distribution limits. Agric. For. Meteorol. 278, 107695. https://doi.org/10.1016/j.agrformet.2019.107695.

Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G.A., Shindell, D., Van Geel, B., White, W., 2010. Solar influences on climate. Rev. Geophys. 48, 2009RG000282. https://doi.org/10.1029/2009RG000282.

Gray, L.J., Woollings, T.J., Andrews, M., Knight, J., 2016. Eleven-year solar cycle signal in the NAO and Atlantic/European blocking. Q. J. R. Meteorol. Soc. 142, 1890-1903. https://doi.org/10.1002/qj.2782.

Hall, R., Erdélyi, R., Hanna, E., Jones, J.M., Scaife, A.A., 2015. Drivers of North Atlantic polar front jet stream variability. Int. J. Climatol. 35, 1697-1720. https://doi.org/10.1002/joc.4121.

Hathaway, D.H., 2015. The solar cycle. Living Rev. Sol. Phys. 12, 4. https://doi.org/10.1007/lrsp-2015-4.

Haywood, J., Boucher, O., 2000. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev. Geophys. 38, 513-543. https://doi.org/10.1029/1999RG000078.

Heinimann, H.R., 2010. A concept in adaptive ecosystem management-An engineering perspective. For. Ecol. Manag. 259, 848-856. https://doi.org/10.1016/j.foreco.2009.09.032.

Hernández-Almeida, I., Grosjean, M., Przybylak, R., Tylmann, W., 2015. A chrysophyte-based quantitative reconstruction of winter severity from varved lake sediments in NE Poland during the past millennium and its relationship to natural climate variability. Quat. Sci. Rev. 122, 74-88. https://doi.org/10.1016/j.quascirev.2015.05.029.

Hurrell, J.W., 1995. Decadal trends in the North atlantic oscillation: regional temperatures and precipitation. Science 269, 676-679. https://doi.org/10.1126/science.269.5224.676.

Iles, C., Hegerl, G., 2017. Role of the North atlantic oscillation in decadal temperature trends. Environ. Res. Lett. 12, 114010. https://doi.org/10.1088/1748-9326/aa9152.

Jarzyna, K., 2021. Climatic hazards for native tree species in Poland with special regards to silver fir (Abies alba Mill.) and European beech (Fagus sylvatica L.). Theor. Appl. Climatol. 144, 581-591. https://doi.org/10.1007/s00704-021-03550-y.

Jayaraman, A., Lubin, D., Ramachandran, S., Ramanathan, V., Woodbridge, E., Collins, W.D., Zalpuris, K.S., 1998. Direct observations of aerosol radiative forcing over the tropical Indian Ocean during the January-February 1996 pre-INDOEX cruise. J. Geophys. Res. 103, 13827-13836.

Johnson, J.T., Howitt, R., Cajete, G., Berkes, F., Louis, R.P., Kliskey, A., 2016. Weaving Indigenous and sustainability sciences to diversify our methods. Sustain. Sci. 11, 1-11. https://doi.org/10.1007/s11625-015-0349-x.

Jones, P.D., Jonsson, T., Wheeler, D., 1997. Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol. 17, 1433-1450. https://doi.org/10.1002/(sici)1097-0088(19971115)17:13<1433::aid-joc203>3.3.co;2-g.

Kasatkina, E.A., Shumilov, O.I., Timonen, M., 2019. Solar activity imprints in tree ring-data from northwestern Russia. J. Atmos. Sol. Terr. Phys. 193, 105075. https://doi.org/10.1016/j.jastp.2019.105075.

Kelebek, M.B., Batibeniz, F., Önol, B., 2021. Exposure assessment of climate extremes over the Europe–Mediterranean region. Atmosphere 12, 633. https://doi.org/10.3390/atmos12050633.

Kjellström, E., Thejll, P., Rummukainen, M., Christensen, J.H., Boberg, F., Christensen, O.B., Maule, C.F., 2013. Emerging regional climate change signals for Europe under varying large-scale circulation conditions. Clim. Res. 56, 103-119. https://doi.org/10.3354/cr01146.

Klopčič, M., Mina, M., Bugmann, H., Bončina, A., 2017. The prospects of silver fir (Abies alba Mill.) and Norway spruce (Picea abies (L.) Karst) in mixed mountain forests under various management strategies, climate change and high browsing pressure. Eur. J. For. Res. 136, 1071-1090. https://doi.org/10.1007/s10342-017-1052-5.

Kolář, T., Čermák, P., Oulehle, F., Trnka, M., Štěpánek, P., Cudlín, P., Hruška, J., Büntgen, U., Rybníček, M., 2015. Pollution control enhanced spruce growth in the "Black Triangle" near the Czech-Polish border. Sci. Total Environ. 538, 703-711. https://doi.org/10.1016/j.scitotenv.2015.08.105.

Komitov, B., 2021. The European beech annual tree ring widths time series, solar–climatic relationships and solar dynamo regime changes. Atmosphere 12, 829. https://doi.org/10.3390/atmos12070829.

Konnert, M., Bergmann, F., 1995. The geographical distribution of genetic variation of silver fir (Abies alba, Pinaceae) in relation to its migration history. Plant Syst. Evol. 196, 19-30. https://doi.org/10.1007/BF00985333.

Kopp, G., 2021. Greg Kopp's TSI Page. TSI Clim. Data Rec. https://spot.colorado.edu/%7ekoppg/TSI/. (Accessed 4 February 2021).

Kopp, G., Krivova, N., Wu, C.J., Lean, J., 2016. The impact of the revised sunspot record on solar irradiance reconstructions. Sol. Phys. 291, 2951-2965. https://doi.org/10.1007/s11207-016-0853-x.

Köppen, W., 1936. Das Geographische System der Klimate, Handbuch der Klimatologie. Gebrüder Borntraeger, Berlin.

Kraft, G., 1884. Beiträge zur lehre von den durchforstungen, schlagstellungen und lichtungshieben. Klindworth, Hannover, Germany.

Kučeravá, B., Dobrovolný, L., Remeš, J., 2013. Responses of Abies alba seedlings to different site conditions in Picea abies plantations. Dendrobiology 69, 49-58. https://doi.org/10.12657/denbio.069.006.

Larsson, L.A., 2013. Cybis Elektronik & Data AB. https://www.cybis.se/. (Accessed 20 June 2019).

Laurenz, L., Lüdecke, H.J., Lüning, S., 2019. Influence of solar activity changes on European rainfall. J. Atmos. Sol. Terr. Phys. 185, 29-42. https://doi.org/10.1016/j.jastp.2019.01.012.

Lean, J., Beer, J., Bradley, R., 1995. Reconstruction of solar irradiance since 1610: implications for climate change. Geophys. Res. Lett. 22, 3195-3198. https://doi.org/10.1029/95GL03093.

Lean, J., Rottman, G., Harder, J., Kopp, G., 2005. Change and solar variability. Sol. Phys. 230, 27-53.

Li, W., Yue, F., Wang, C., Liao, J., Zhang, X., 2022. Climatic influences on intra-annual stem variation of Larix principis-rupprechtii in a semi-arid region. Front. For. Glob. Chang. 5, 948022. https://doi.org/10.3389/ffgc.2022.948022.

Lebourgeois, F., Rathgeber, C.B.K., Ulrich, E., 2010. Sensitivity of French temperate coniferous forests to climate variability and extreme events (Abies alba, Picea abies and Pinus sylvestris). J. Veg. Sci. 21, 364-376. https://doi.org/10.1111/j.1654-1103.2009.01148.x.

Li, T., Liu, Y., Cai, Q., Duan, X., Li, P., Ren, M., Ye, Y., 2023. Water stress-induced divergence growth of Picea schrenkiana in the western Tianshan and its forcing mechanisms. Forests 14, 354. https://doi.org/10.3390/f14020354.

Ligges, U., Short, T., Kienzle, P., Schnackenberg, S., Billinghurst, D., Borchers, H. -W., Carezia, A., Dupuis, P., Eaton, J.W., Frahi, W., Habel, K., Hornik, K., Krey, S., Lash, B., Leisch, F., Mersmann, O., Neis, P., Ruohio, J., Smith, J.O., Stewart, D., Weingessel, A., 2015. Signal Processing. R Package Signal. https://cran.r-project.org/web/packages/signal/. (Accessed 10 November 2022).

Lüdecke, H.J., Cina, R., Dammschneider, H.J., Lüning, S., 2020. Decadal and multidecadal natural variability in European temperature. J. Atmos. Sol. Terr. Phys. 205, 105294. https://doi.org/10.1016/j.jastp.2020.105294.

Łuszczyńska, K., Wistuba, M., Malik, I., 2018. Reductions in tree-ring widths of silver fir (Abies alba Mill.) as an indicator of air pollution in southern Poland. Environ. Soc. Econ. Stud. 6, 44-51. https://doi.org/10.2478/environ-2018-0022.

Ma, H., Chen, H., Gray, L., Zhou, L., Li, X., Wang, R., Zhu, S., 2018. Changing response of the North Atlantic/European winter climate to the 11 year solar cycle. Environ. Res. 13, 034007. https://doi.org/10.1088/1748-9326/aa9e94.

Maghrabi, A., Kudela, K., 2019. Relationship between time series cosmic ray data and aerosol optical properties: 1999–2015. J. Atmos. Sol. Terr. Phys. 190, 36-44. https://doi.org/10.1016/j.jastp.2019.04.014.

Magri, D., 2008. Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J. Biogeogr. 35, 450-463. https://doi.org/10.1111/j.1365-2699.2007.01803.x.

Matveev, S.M., Chendev, Y.G., Lupo, A.R., Hubbart, J.A., Timashchuk, D.A., 2017. Climatic changes in the East-European forest-steppe and effects on Scots Pine productivity. Pure Appl. Geophys. 174, 427-443. https://doi.org/10.1007/s00024-016-1420-y.

Mauri, A., de Rigo, D., Caudullo, G., 2016. Abies alba in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Durrant, T.H., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publications Office of the European Union, Luxembourg, p. 1493.

Maxime, C., Hendrik, D., 2011. Effects of climate on diameter growth of co-occurring Fagus sylvatica and Abies alba along an altitudinal gradient. Trees (Berl.) 25, 265-276. https://doi.org/10.1007/s00468-010-0503-0.

Mihai, G., Alexandru, A.M., Stoica, E., Birsan, M.V., 2021. Intraspecific growth response to drought of Abies alba in the southeastern Carpathians. Forests 12, 387. https://doi.org/10.3390/f12040387.

Mikulenka, P., Prokůpková, A., Vacek, Z., Vacek, S., Bulušek, D., Simon, J., Šimůnek, V., Hájek, V., 2020. Effect of climate and air pollution on radial growth of mixed forests: Abies alba Mill. vs. Picea abies (L.) Karst. Cent. Eur. For. J. 66, 23-36. https://doi.org/10.2478/forj-2019-0026.

Milad, M., Schaich, H., Bürgi, M., Konold, W., 2011. Climate change and nature conservation in Central European forests: a review of consequences, concepts and challenges. For. Ecol. Manag. 261, 829-843. https://doi.org/10.1016/j.foreco.2010.10.038.

Muraki, Y., Masuda, K., Nagaya, K., Wada, K., Miyahara, H., 2011. Solar variability and width of tree ring. Astrophys. Space Sci. Trans. 7, 395-401. https://doi.org/10.5194/astra-7-395-2011.

Naumann, G., Cammalleri, C., Mentaschi, L., Feyen, L., 2021. Increased economic drought impacts in Europe with anthropogenic warming. Nat. Clim. Chang. 11, 485-491. https://doi.org/10.1038/s41558-021-01044-3.

Nussbaumer, A., Meusburger, K., Schmitt, M., Waldner, P., Gehrig, R., Haeni, M., Rigling, A., Brunner, I., Thimonier, A., 2020. Extreme summer heat and drought lead to early fruit abortion in European beech. Sci. Rep. 10, 5334. https://doi.org/10.1038/s41598-020-62073-0.

Ols, C., Trouet, V., Girardin, M.P., Hofgaard, A., Bergeron, Y., Drobyshev, I., 2018. Post-1980 shifts in the sensitivity of boreal tree growth to North Atlantic Ocean dynamics and seasonal climate. Glob. Planet. Chang. 165, 1-12. https://doi.org/10.1016/j.gloplacha.2018.03.006.

Ormes, J.F., 2018. Cosmic rays and climate. Adv. Space Res. 62, 2880-2891. https://doi.org/10.1016/j.asr.2017.07.028.

Ossó, A., Allan, R.P., Hawkins, E., Shaffrey, L., Maraun, D., 2022. Emerging new climate extremes over Europe. Clim. Dynam. 58, 487-501. https://doi.org/10.1007/s00382-021-05917-3.

PCRB, 2022. Protezione Civile – Regione Basilicata. http://www.centrofunzionalebasilicata.it/it/. (Accessed 10 November 2022).

Pinto, P.E., Gégout, J.C., Hervé, J.C., Dhôte, J.F., 2008. Respective importance of ecological conditions and stand composition on Abies alba Mill. Dominant height growth. For. Ecol. Manag. 255, 619-629. https://doi.org/10.1016/j.foreco.2007.09.031.

Piovesan, G., Biondi, F., Di Filippo, A., Alessandrini, A., Maugeri, M., 2008. Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines, Italy. Glob. Chang. Biol. 14, 1265-1281. https://doi.org/10.1111/j.1365-2486.2008.01570.x.

Podrázský, V., Vacek, Z., Kupka, I., Vacek, S., Třeštík, M., Cukor, J., 2018. Effects of silver fir (Abies alba Mill.) on the humus forms in Norway spruce (Picea abies (L.) H. Karst.) stands. J. For. Sci. 64, 245-250. https://doi.org/10.17221/19/2018-JFS.

Ponocná, T., Chuman, T., Rydval, M., Urban, G., Migaɬa, K., Treml, V., 2018. Deviations of treeline Norway spruce radial growth from summer temperatures in East-Central Europe. Agric. For. Meteorol. 253–254, 62-70. https://doi.org/10.1016/j.agrformet.2018.02.001.

Putalová, T., Vacek, Z., Vacek, S., Štefančík, I., Bulušek, D., Král, J., 2019. Tree-ring widths as an indicator of air pollution stress and climate conditions in different Norway spruce forest stands in the Krkonoše Mts. Cent. Eur. For. J. 65, 21-33. https://doi.org/10.2478/forj-2019-0004.

Remeš, J., Bílek, L., Novák, J., Vacek, Z., Vacek, S., Putalová, T., Koubek, L., 2015. Diameter increment of beech in relation to social position of trees, climate characteristics and thinning intensity. J. For. Sci. 61, 456-464. https://doi.org/10.17221/75/2015-JFS.

Rinntech, 2010. TSAP-WIN: Time series analysis and presentation for dendrochronology and related applications. Heidelberg, Germany.

Royal Observatory of Belgium, 2023. Total Solar Irradiance -Royal Observatory of Belgium, Solar Influences Data Analysis Center. https://www.sidc.be/observations/space-based-timelines/tsi. (Accessed 7 November 2023).

Ruosch, M., Spahni, R., Joos, F., Henne, P.D., van der Knaap, W.O., Tinner, W., 2016. Past and future evolution of Abies alba forests in Europe–comparison of a dynamic vegetation model with palaeo data and observations. Glob. Chang. Biol. 22, 727-740. https://doi.org/10.1111/gcb.13075.

Saffioti, C., Fischer, E.M., Scherrer, S.C., Knutti, R., 2016. Reconciling observed and modeled temperature and precipitation trends over Europe by adjusting for circulation variability. Geophys. Res. Lett. 43, 8189-8198. https://doi.org/10.1002/2016GL069802.

Shumilov, O.I., Kasatkina, E.A., Mielikainen, K., Timonen, M., Kanatjev, A.G., 2011. Palaeovolcanos, Solar activity and pine tree-rings from the Kola Peninsula (northwestern Russia) over the last 560 years. Int. J. Environ. Res. 5, 855-864.

Šimůnek, V., Vacek, Z., Vacek, S., Králíček, I., Vančura, K., 2019. Growth variability of European beech (Fagus sylvatica L.) natural forests: dendroclimatic study from Krkonoše National Park. Cent. Eur. For. J. 65, 92-102. https://doi.org/10.2478/forj-2019-0010.

Šimůnek, V., Sharma, R.P., Vacek, Z., Vacek, S., Hůnová, I., 2020a. Sunspot area as unexplored trend inside radial growth of European beech in Krkonoše Mountains : a forest science from different perspective. Eur. J. For. Res. 139, 999-1013. https://doi.org/10.1007/s10342-020-01302-7.

Šimůnek, V., Vacek, Z., Vacek, S., 2020b. Solar cycles in salvage logging: national data from the Czech Republic confirm significant correlation. Forests 11, 973. https://doi.org/10.3390/f11090973.

Šimůnek, V., Vacek, S., Vacek, Z., Andrea, G.D., 2021a. Vztahy těžby listnatých a jehličnatých dřevin dle slunečních cyklů (enl: harvesting fluctuations of deciduous and coniferous tree species according to solar cycles). In: Houšková, K., Jan, D. (Eds.), Proceedings of Central European Silviculture–21st International Conference. Mendel University in Brno, The Czeck Republic, pp. 101–108.

Šimůnek, V., Vacek, Z., Vacek, S., Ripullone, F., Hájek, V., D'Andrea, G., 2021b. Tree rings of european beech (Fagus sylvatica l.) indicate the relationship with solar cycles during climate change in central and southern europe. Forests 12, 259. https://doi.org/10.3390/f12030259.

Singh, A.K., Bhargawa, A., 2020. Delineation of possible influence of solar variability and galactic cosmic rays on terrestrial climate parameters. Adv. Space Res. 65, 1831-1842. https://doi.org/10.1016/j.asr.2020.01.006.

Slanař, J., Vacek, Z., Vacek, S., Bulušek, D., Cukor, J., Štefančík, I., Bílek, L., Král, J., 2017. Long-term transformation of submontane spruce-beech forests in the Jizerské hory Mts. : dynamics of natural regeneration. Cent. Eur. For. J. 63, 212-224. https://doi.org/10.1515/forj-2017-0023.

Šmilauer, P., Lepš, J., 2014. Multivariate Analysis of Ecological Data Using CANOCO 5. Cambridge University Press, New York.

DOI

Smith, D.M., Eade, R., Scaife, A.A., Caron, L. -P., Danabasoglu, G., DelSole, T.M., Delworth, T., Doblas-Reyes, F.J., Dunstone, N.J., Hermanson, L., Kharin, V., Kimoto, M., Merryfield, W.J., Mochizuki, T., Müller, W.A., Pohlmann, H., Yeager, S., Yang, X., 2019. Robust skill of decadal climate predictions. npj Clim. Atmos. Sci. 2, 13. https://doi.org/10.1038/s41612-019-0071-y.

Smith, D.M., Scaife, A.A., Eade, R., Athanasiadis, P., Bellucci, A., Bethke, I., Bilbao, R., Borchert, L.F., Caron, L. -P., Counillon, F., Danabasoglu, G., Delworth, T., Doblas-Reyes, F.J., Dunstone, N.J., Estella-Perez, V., Flavoni, S., Hermanson, L., Keenlyside, N., Kharin, V., Kimoto, M., Merryfield, W.J., Mignot, J., Mochizuki, T., Modali, K., Monerie, P. -A., Müller, W.A., Nicolí, D., Ortega, P., Pankatz, K., Pohlmann, H., Robson, J., Ruggieri, P., Sospedra-Alfonso, R., Swingedouw, D., Wang, Y., Wild, S., Yeager, S., Yang, X., Zhang, L., 2020. North Atlantic climate far more predictable than models imply. Nature 583, 796-800.

Speer, J.H., 2010. Fundamentals of Tree-Ring Research. University of Arizona Press, Tuscon.

St George, S., 2014. An overview of tree-ring width records across the Northern Hemisphere. Quat. Sci. Rev. 95, 132-150. https://doi.org/10.1016/j.quascirev.2014.04.029.

Stagge, J.H., Kingston, D.G., Tallaksen, L.M., Hannah, D.M., 2017. Observed drought indices show increasing divergence across Europe. Sci. Rep. 7, 1-10. https://doi.org/10.1038/s41598-017-14283-2.

StatSoft, 2013. Statistica Electronic Manual. https://www.scribd.com/document/321061529/STATISTICA-Electronic-Manual. (Accessed 7 November 2023).

Štefančík, I., Bošela, M., Petráš, R., 2018. Effect of different management on quality and value production of pure beech stands in Slovakia. Cent. Eur. For. J. 64, 24-32. https://doi.org/10.1515/forj-2017-0012.

Steirou, E., Gerlitz, L., Apel, H., Merz, B., 2017. Links between large-scale circulation patterns and streamflow in Central Europe: a review. J. Hydrol. 549, 484-500. https://doi.org/10.1016/j.jhydrol.2017.04.003.

Surový, P., Ribeiro, N.A., Pereira, J.S., Dorotovič, I., 2008. Influence of solar activity cycles on cork growth – a hypothesis. In: Dorotovič, I. (Ed.), Proc. Of the 19th National Solar Physics Meeting. Hurbanovo, SÚH, Papradno, pp. 67–72.

Tatli, H., Menteş, Ş. S., 2019. Detrended cross-correlation patterns between North Atlantic oscillation and precipitation. Theor. Appl. Climatol. 138, 387-397. https://doi.org/10.1007/s00704-019-02827-7.

Team R Core, 2022. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Teodosiu, M., Mihai, G., Fussi, B., Ciocîrlan, E., 2019. Genetic diversity and structure of silver fir (Abies alba Mill.) at the south-eastern limit of its distribution range. Ann. For. Res. 62, 139-156. https://doi.org/10.15287/afr.2019.1436.

Tinner, W., Lotter, A.F., 2006. Holocene expansions of Fagus silvatica and Abies alba in Central Europe: where are we after eight decades of debate? Quat. Sci. Rev. 25, 526-549. https://doi.org/10.1016/j.quascirev.2005.03.017.

Tsanis, I., Tapoglou, E., 2019. Winter North Atlantic Oscillation impact on European precipitation and drought under climate change. Theor. Appl. Climatol. 135, 323-330. https://doi.org/10.1007/s00704-018-2379-7.

Tsiropoula, G., 2003. Signatures of solar activity variability in meteorological parameters. J. Atmos. Sol. Terr. Phys. 65, 469-482. https://doi.org/10.1016/S1364-6826(02)00295-X.

Tumajer, J., Altman, J., Štěpánek, P., Treml, V., Doležal, J., Cienciala, E., 2017. Increasing moisture limitation of Norway spruce in Central Europe revealed by forward modelling of tree growth in tree-ring network. Agric. For. Meteorol. 247, 56-64. https://doi.org/10.1016/j.agrformet.2017.07.015.

Vacek, Z., 2017. Structure and dynamics of spruce-beech-fir forests in Nature Reserves of the Orlické hory Mts. in relation to ungulate game. Cent. Eur. For. J. 63, 23-34. https://doi.org/10.1515/forj-2017-0006.

Vacek, Z., Vacek, S., Cukor, J., 2023. European forests under global climate change: review of tree growth processes, crises and management strategies. J. Environ. Manag. 332, 117353. https://doi.org/10.1016/j.jenvman.2023.117353.

Vicente-Serrano, S.M., López-Moreno, J.I., Lorenzo-Lacruz, J., Kenawy, A.E., Azorin-Molina, C., Morán-Tejeda, E., Pasho, E., Zabalza, J., Beguería, S., Angulo-Martínez, M., 2011. The NAO impact on droughts in the mediterranean region. In: Vicente-Serrano, S.M., Trigo, R.M. (Eds.), Hydrological, Socioeconomic and Ecological Impacts of the North Atlantic Oscillation in the Mediterranean Region. Springer Netherlands, Dordrecht, pp. 23–40.
DOI

Vicente-Serrano, S.M., García-Herrera, R., Barriopedro, D., Azorin-Molina, C., López-Moreno, J.I., Martín-Hernández, N., Tomás-Burguera, M., Gimeno, L., Nieto, R., 2016. The Westerly Index as complementary indicator of the North Atlantic oscillation in explaining drought variability across Europe. Clim. Dynam. 47, 845-863. https://doi.org/10.1007/s00382-015-2875-8.

Vitali, V., Büntgen, U., Bauhus, J., 2017. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Glob. Chang. Biol. 23, 5108-5119. https://doi.org/10.1111/gcb.13774.

Vitasse, Y., Bottero, A., Rebetez, M., Conedera, M., Augustin, S., Brang, P., Tinner, W., 2019. What is the potential of silver fir to thrive under warmer and drier climate? Eur. J. For. Res. 138, 547-560. https://doi.org/10.1007/s10342-019-01192-4.

Volařík, D., Hédl, R., 2013. Expansion to abandoned agricultural land forms an integral part of silver fir dynamics. For. Ecol. Manag. 292, 39-48. https://doi.org/10.1016/j.foreco.2012.12.016.

Walder, D., Krebs, P., Bugmann, H., Manetti, M.C., Pollastrini, M., Anzillotti, S., Conedera, M., 2021. Silver fir (Abies alba Mill.) is able to thrive and prosper under meso-Mediterranean conditions. For. Ecol. Manag. 498, 119537. https://doi.org/10.1016/j.foreco.2021.119537.

Wang, Y. -M., Lean, J.L., 2005. Modeling the Sun's magnetic field and irradiance since 1713. Astrophys. J. 625, 522-538. https://doi.org/10.1086/429689.

Wigley, T.M.L., Briffa, K.R., Jones, P.D., 1984. On the average value of correlated time series with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 23, 201-213.

DOI

Woods, T.N., Harder, J.W., Kopp, G., Snow, M., 2022. Solar-cycle variability results from the solar radiation and climate experiment (SORCE) mission. Sol. Phys. 297, 43. https://doi.org/10.1007/s11207-022-01980-z.

Yao, Y., Luo, D.H., 2014. Relationship between zonal position of the North Atlantic Oscillation and Euro-Atlantic blocking events and its possible effect on the weather over Europe. Sci. China Earth Sci. 57, 2628-2636. https://doi.org/10.1007/s11430-014-4949-6.

Zhang, Y., Guo, M., Wang, X., Gu, F., Liu, S., 2018. Divergent tree growth response to recent climate warming of Abies faxoniana at alpine treelines in east edge of Tibetan Plateau. Ecol. Res. 33, 303-311. https://doi.org/10.1007/s11284-017-1538-0.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 24 July 2023
Revised: 15 November 2023
Accepted: 15 November 2023
Published: 22 November 2023
Issue date: December 2023

Copyright

© 2023 The Authors.

Acknowledgements

Acknowledgements

We would like to thank Richard Lee Manore, a native speaker, and Jitka Šišáková, an expert in the field, for checking English. We are also grateful to the Czech Hydrometeorological Institute of the Czech Republic, to Croatian Meteorological and Hydrological Service, and to Italian Civil Protection Authority, Region Basilicata for providing the data for monthly precipitation and temperature; to the Royal Observatory of Belgium, Solar Influences Data Analysis Center for providing the TSI data, to the Climatic Research Unit, University of East Anglia for providing data of monthly NAO index.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return