Journal Home > Volume 10 , Issue 5
Background

Ongoing climate change is anticipated to increase the frequency and intensity of drought events, thereby affecting forest recovery dynamics and elevating tree mortality. The drought of 2018, with its exceptional intensity and duration, had a significant adverse impact on tree species throughout Central Europe. However, our understanding of the resistance to and recovery of young trees from drought stress remains limited. Here, we examined the recovery patterns of native deciduous tree sapling species following the 2018 drought, and explored the impact of soil depth, understory vegetation, and litter cover on this recovery.

Methods

A total of 1,149 saplings of seven deciduous tree species were monitored in the understory of old-growth forests in Northern Bavaria, Central Germany. The vitality of the saplings was recorded from 2018 to 2021 on 170 plots.

Results

Fagus sylvatica was the most drought-resistant species, followed by Betula pendula, Acer pseudoplatanus, Quercus spp., Corylus avellana, Carpinus betulus, and Sorbus aucuparia. Although the drought conditions persisted one year later, all species recovered significantly from the 2018 drought, albeit with a slight decrease in vitality by 2021. In 2018, the drought exhibited a more pronounced adverse effect on saplings in deciduous forests compared to mixed and coniferous forests. Conversely, sapling recovery in coniferous and mixed forests exceeded that observed in deciduous forests in 2019. The pivotal factors influencing sapling resilience to drought were forest types, soil depth, and understory vegetation, whereas litter and forest canopy cover had a negative impact.

Conclusion

Long-term responses of tree species to drought can be best discerned through continuous health monitoring. These findings demonstrate the natural regeneration potential of deciduous species in the context of climate change. Selective tree species planting, soil management practices, and promoting understory diversity should be considered when implementing adaptive management strategies to enhance forest resilience to drought events.


menu
Abstract
Full text
Outline
About this article

Tree sapling vitality and recovery following the unprecedented 2018 drought in central Europe

Show Author's information Mirela Beloiu Schwenkea,1( )Valeska Schönlaub,1( )Carl Beierkuhnleinb,c,d
Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
Department of Biogeography, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
GIB Geographical Institute Bayreuth, University of Bayreuth, 95447, Bayreuth, Germany
BayCEER Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, 95448, Bayreuth, Germany

1 Considered dual first authors.

Abstract

Background

Ongoing climate change is anticipated to increase the frequency and intensity of drought events, thereby affecting forest recovery dynamics and elevating tree mortality. The drought of 2018, with its exceptional intensity and duration, had a significant adverse impact on tree species throughout Central Europe. However, our understanding of the resistance to and recovery of young trees from drought stress remains limited. Here, we examined the recovery patterns of native deciduous tree sapling species following the 2018 drought, and explored the impact of soil depth, understory vegetation, and litter cover on this recovery.

Methods

A total of 1,149 saplings of seven deciduous tree species were monitored in the understory of old-growth forests in Northern Bavaria, Central Germany. The vitality of the saplings was recorded from 2018 to 2021 on 170 plots.

Results

Fagus sylvatica was the most drought-resistant species, followed by Betula pendula, Acer pseudoplatanus, Quercus spp., Corylus avellana, Carpinus betulus, and Sorbus aucuparia. Although the drought conditions persisted one year later, all species recovered significantly from the 2018 drought, albeit with a slight decrease in vitality by 2021. In 2018, the drought exhibited a more pronounced adverse effect on saplings in deciduous forests compared to mixed and coniferous forests. Conversely, sapling recovery in coniferous and mixed forests exceeded that observed in deciduous forests in 2019. The pivotal factors influencing sapling resilience to drought were forest types, soil depth, and understory vegetation, whereas litter and forest canopy cover had a negative impact.

Conclusion

Long-term responses of tree species to drought can be best discerned through continuous health monitoring. These findings demonstrate the natural regeneration potential of deciduous species in the context of climate change. Selective tree species planting, soil management practices, and promoting understory diversity should be considered when implementing adaptive management strategies to enhance forest resilience to drought events.

Keywords: Climate change, Drought stress, Temperate forest, Deciduous trees, Extreme events, Soil depth

References(92)

Aas, G., 1991. Kreuzungsversuche mit Stiel- und Traubeneichen (Quercus robur L. und Quercus petraea Matt. Liebl.). Allg. Forst. Jagdztg. 162, 141–145.

Albrich, K., Rammer, W., Seidl, R., 2020. Climate change causes critical transitions and irreversible alterations of mountain forests. Global Change Biol. 26, 4013–4027.

Anderegg, W.R.L., Schwalm, C., Biondi, F., Camarero, J.J., Koch, G., Litvak, M., Ogle, K., Shaw, J.D., Shevliakova, E., Williams, A.P., Wolf, A., Ziaco, E., Pacala, S., 2015. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532.

Barba, J., Lloret, F., Yuste, J.C., 2016. Effects of drought-induced forest die-off on litter decomposition. Plant Soil 402, 91–101.

Bayern, LfU., 2021. Entwicklung der Grundwassersituation in Bayern. https://www.lfu.bayern.de/wasser/grundwassersituation_bayern/index.htm. (Accessed 15 July 2023).
Beierkuhnlein, C., 2007. Biogeographie: Die räumliche Organisation des Lebens in einer sich verändernden Welt. Ulmer, Stuttgart.
DOI

Beierkuhnlein, C., 2021. Nature-based solutions must be realized - not just proclaimed - in face of climatic extremes. Erdkunde 75, 225–244.

Beloiu, M., 2022. Forest Response to Climate Warming and Drought in Europe. Doctoral thesis, University of Bayreuth, Bayreuth. https://doi.org/10.15495/EPub_UBT_00006085. (Accessed 15 July 2023).

Beloiu, M., Stahlmann, R., Beierkuhnlein, C., 2020. High recovery of saplings after severe drought in temperate deciduous forests. Forests 11, 546.

Beloiu, M., Poursanidis, D., Tsakirakis, A., Chrysoulakis, N., Hoffmann, S., Lymberakis, P., Barnias, A., Kienle, D., Beierkuhnlein, C., 2022. No treeline shift despite climate change over the last 70 years. For. Ecosyst. 9, 100002. https://doi.org/10.1016/j.fecs.2022.100002.

Beloiu, M., Stahlmann, R., Beierkuhnlein, C., 2022b. Drought impacts in forest canopy and deciduous tree saplings in Central European forests. For. Ecol. Manag. 509, 120075.

Beloiu, M., Heinzmann, L., Rehush, N., Gessler, A., Griess, V.C., 2023. Individual tree-crown detection and species identification in heterogeneous forests using aerial RGB imagery and Deep Learning. Rem. Sens. 15, 1463.

BKG, 2019. Federal agency for cartography and geodesy. Digitales Landschaftsmodell 1, 250.

BMEL, 2012. Ergebnisse der Bundeswaldinventur 2012. Bundesministeriums für Ernährung und Landwirtschaft.

Brinkmann, N., Seeger, S., Weiler, M., Buchmann, N., Eugster, W., Kahmen, A., 2018. Employing stable isotopes to determine the residence times of soil water and the temporal origin of water taken up by Fagus sylvatica and Picea abies in a temperate forest. New Phytol. 219, 1300–1313.

Brinkmann, N., Eugster, W., Buchmann, N., Kahmen, A., 2019. Species-specific differences in water uptake depth of mature temperate trees vary with water availability in the soil. Plant Biol. 21, 71–81.

Brun, P., Psomas, A., Ginzler, C., Thuiller, W., Zappa, M., Zimmermann, N.E., 2020. Large-scale early-wilting response of Central European forests to the 2018 extreme drought. Global Change Biol. 26, 7021–7035.

Buhk, C., Kämmer, M., Beierkuhnlein, C., Jentsch, A., Kreyling, J., Jungkunst, H.F., 2016. On the influence of provenance to soil quality enhanced stress reaction of young beech trees to summer drought. Ecol. Evol. 6, 8276–8290.

Büntgen, U., Urban, O., Krusic, P.J., Rybníček, M., Kolář, T., Kyncl, T., Ač, A., Koňasová, E., Čáslavský, J., Esper, J., Wagner, S., Saurer, M., Tegel, W., Dobrovolný, P., Cherubini, P., Reinig, F., Trnka, M., 2021. Recent European drought extremes beyond Common Era background variability. Nat. Geosci. 14, 190–196. https://doi.org/10.1038/s41561-021-00698-0.

Buras, A., Schunk, C., Zeiträg, C., Herrmann, C., Kaiser, L., Lemme, H., Straub, C., Taeger, S., Gößwein, S., Klemmt, H.-J., Menzel, A., 2018. Are Scots pine forest edges particularly prone to drought-induced mortality? Environ. Res. Lett. 13, 025001.

Chen, C.R., Xu, Z.H., Mathers, N.J., 2004. Soil carbon pools in adjacent natural and plantation forests of subtropical Australia. Soil Sci. Soc. Am. J. 68, 282–291.

Choat, B., Brodribb, T.J., Brodersen, C.R., Duursma, R.A., López, R., Medlyn, B.E., 2018. Triggers of tree mortality under drought. Nature 558, 531–539.

Ciais, Ph, Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, Chr, Carrara, A., Chevallier, F., De Noblet, N., Friend, A.D., Friedlingstein, P., Grünwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J.M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J.F., Sanz, M.J., Schulze, E.D., Vesala, T., Valentini, R., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533.

Cole, E., Newton, M., Bailey, J.D., 2017. Understory vegetation dynamics 15 years post-thinning in 50-year-old Douglas-fir and Douglas-fir/western hemlock stands in western Oregon, USA. For. Ecol. Manag. 384, 358–370.

Dahmer, J., 1997. Wurzelentwicklung von Laubholzpflanzen auf Sturmkahlflächen. In: Bayerische Landesanstalt für Wald und Forstwirtschaft (Hrsg.), Pflanzverfahren und Wurzelentwicklung. LWF-Bericht Nr. 15. Freising.

Deutsch, E.S., Bork, E.W., Willms, W.D., 2010. Soil moisture and plant growth responses to litter and defoliation impacts in Parkland grasslands. Agric. Ecosyst. Environ. 135, 1–9.

Dölle, M., Petritan, A.M., Biris, I.A., Petritan, I.C., 2017. Relations between tree canopy composition and understorey vegetation in a European beech-sessile oak old growth forest in Western Romania. Biologia 72, 1422–1430.

Doppler, G., Fiebig, M., Freudenberger, W., Glaser, S., Meyer, R., Pürner, T., Rohrmuller, J., Schwerd, K., 2004. Sonderband GeoBavaria - 600 Millionen Jahre Bayern. Bayerisches Geologisches Landesamt, Munchen.

Dubbert, M., Piayda, A., Cuntz, M., Correia, A.C., Costa e Silva, F., Pereira, J.S., Werner, C., 2014. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange. Front. Plant Sci. 5, 530.

Dubbert, M., Piayda, A., Costa e Silva, F., Correia, A.C., Pereira, J.S., Cuntz, M., Werner, C., 2015. Impact of herbaceous understory vegetation to ecosystem water cycle, productivity and infiltration in a semi arid oak woodland assessed by stable oxygen isotopes. EGU General Assembly Conference Abstracts. EGU General Assembly, 12–17.

Durrant, T.H., de Rigo, D., Caudullo, G., 2016. Fagus sylvatica in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg e012b90+.
DWD, 2021a. Climate Data Center (CDC): Annual Grids of Monthly Averaged Daily Air Temperature (2m) over Germany version v1.0.
DWD, 2021b. Climate Data Center (CDC): Annual Sum of Monthly Precipitation Grids over Germany version v1.0.
Fisher, R.A., 1934. Statistical methods for research workers. In: Kotz, S., Johnson, N.L. (Eds.), Breakthroughs in Statistics. Springer Series in Statistics. Springer, New York, https://doi.org/10.1007/978-1-4612-4380-9_6.
DOI

Frei, E.R., Gossner, M.M., Vitasse, Y., Queloz, V., Dubach, V., Gessler, A., Ginzler, C., Hagedorn, F., Meusburger, K., Moor, M., Samblás Vives, E., Rigling, A., Uitentuis, I., von Arx, G., Wohlgemuth, T., 2022. European beech dieback after premature leaf senescence during the 2018 drought in northern Switzerland. Plant Biol. 24, 1132–1145.

Gessler, A., Bottero, A., Marshall, J., Arend, M., 2020. The way back: recovery of trees from drought and its implication for acclimation. New Phytol. 228, 1704–1709.

Gessler, A., Bächli, L., Rouholahnejad Freund, E., Treydte, K., Schaub, M., Haeni, M., Weiler, M., Seeger, S., Marshall, J., Hug, C., Zweifel, R., Hagedorn, F., Rigling, A., Saurer, M., Meusburger, K., 2022. Drought reduces water uptake in beech from the drying topsoil, but no compensatory uptake occurs from deeper soil layers. New Phytol. 233, 194–206.

Gimbel, K.F., Felsmann, K., Baudis, M., Puhlmann, H., Gessler, A., Bruelheide, H., Kayler, Z., Ellerbrock, R.H., Ulrich, A., Welk, E., Weiler, M., 2015. Drought in forest understory ecosystems – a novel rainfall reduction experiment. Biogeosciences 12, 961–975.

Gulder, H.-J., 1996. Das wurzelwerk der Hainbuche. LWF-Wissen 12, 26–32.

Hacket-Pain, A.J., Cavin, L., Friend, A.D., Jump, A.S., 2016. Consistent limitation of growth by high temperature and low precipitation from range core to southern edge of European beech indicates widespread vulnerability to changing climate. Eur. J. For. Res. 135, 897–909.

Hammond, W.M., Williams, A.P., Abatzoglou, J.T., Adams, H.D., Klein, T., López, R., Sáenz-Romero, C., Hartmann, H., Breshears, D.D., Allen, C.D., 2022. Global field observations of tree die-off reveal hotter-drought fingerprint for Earth's forests. Nat. Commun. 13, 1761.

Härdtle, W., Niemeyer, T., Assmann, T., Aulinger, A., Fichtner, A., Lang, A., Leuschner, C., Neuwirth, B., Pfister, L., Quante, M., Ries, C., Schuldt, A., von Oheimb, G., 2013. Climatic responses of tree-ring width and δ13C signatures of sessile oak (Quercus petraea Liebl.) on soils with contrasting water supply. Plant Ecol. 214, 1147–1156.

Hari, V., Rakovec, O., Markonis, Y., Hanel, M., Kumar, R., 2020. Increased future occurrences of the exceptional 2018–2019 Central European drought under global warming. Sci. Rep. 10, 12207.

Herve, M., 2023. fisher.multcomp: Pairwise Comparisons Using Fisher's Exact Test. RVAideMemoire: Testing and Plotting Procedures for Biostatistics.

Hlásny, T., König, L., Krokene, P., Lindner, M., Montagné-Huck, C., Müller, J., Qin, H., Raffa, K.F., Schelhaas, M.-J., Svoboda, M., Viiri, H., Seidl, R., 2021. Bark beetle outbreaks in Europe: state of knowledge and ways forward for management. Curr. For. Rep. 7, 138–165. https://doi.org/10.1007/s40725-021-00142-x.

Hoegh-Guldberg, O., Jacob, D., Taylor, M., Bindi, M., Brown, S., Camilloni, I., Diedhiou, A., Djalante, R., Ebi, K.L., Engelbrecht, F., Guiot, J., Hijioka, Y., Mehrotra, S., Payne, A., Seneviratne, S.I., Thomas, A., Warren, R., Zhou, G., 2018. Impacts of 1.5℃ of global warming on natural and human systems. In: MassonDelmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J.B.R., Chen, Y., Zhou, X., Gomis, M.I., Lonnoy, E., Maycock, T., Tignor, M., Waterfield, T. (Eds.), Global Warming of 1.5℃. An IPCC Special Report on the Impacts of Global Warming of 1.5℃ above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change. World Meteorological Organization Technical Document, Geneva, Switzerland.

Holling, C.S., 1973. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23.

Holzwarth, S., Thonfeld, F., Abdullahi, S., Asam, S., Da Ponte Canova, E., Gessner, U., Huth, J., Kraus, T., Leutner, B., Kuenzer, C., 2020. Earth observation based monitoring of forests in Germany: a review. Rem. Sens. 12, 3570.

Ingrisch, J., Bahn, M., 2018. Towards a comparable quantification of resilience. Trends Ecol. Evol. 33, 251–259.

Ionita, M., Dima, M., Nagavciuc, V., Scholz, P., Lohmann, G., 2021. Past megadroughts in central Europe were longer, more severe and less warm than modern droughts. Commun. Earth Environ. 2, 61.

Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, 2019. Cambridge University Press, Cambridge, UK and New York. https://doi.org/10.1017/9781009157988.
DOI

Jacob, M., Weland, N., Platner, C., Schaefer, M., Leuschner, C., Thomas, F.M., 2009. Nutrient release from decomposing leaf litter of temperate deciduous forest trees along a gradient of increasing tree species diversity. Soil Biol. Biochem. 41, 2122–2130.

Jensen, J.K., Rasmussen, L.H., Raulund-Rasmussen, K., Borggaard, O.K., 2008. Influence of soil properties on the growth of sycamore (Acer pseudoplatanus L.) in Denmark. Eur. J. For. Res. 127, 263–274.

Jiang, P., Liu, H., Piao, S., Ciais, P., Wu, X., Yin, Y., Wang, H., 2019. Enhanced growth after extreme wetness compensates for post-drought carbon loss in dry forests. Nat. Commun. 10, 195.

Kälin, U., Lang, N., Hug, C., Gessler, A., Wegner, J.D., 2019. Defoliation estimation of forest trees from ground-level images. Remote Sens. Environ. 223, 143–153.

Knapp, A.K., Seastedt, T.R., 1986. Detritus accumulation limits productivity of tallgrass prairie: the effects of its plant litter on ecosystem function make the tallgrass prairie unique among North American biomes. Bioscience 36, 662–668.

Köstler, J.N., Brückner, E., Bibelriether, H., 1968. Die Wurzeln der Waldbäume. Verlag Paul Parey, Hamburg, Berlin.

Kunz, J., Räder, A., Bauhus, J., 2016. Effects of drought and rewetting on growth and gas exchange of minor European broadleaved tree species. Forests 7, 239.

Kutschera, L., Lichtenegger, E., 2002. Wurzelatlas mitteleuropäischer Waldbäume und Str€ aucher. Leopold Stocker Verlag, Graz.

Langer, G.J., Bußkamp, J., 2023. Vitality loss of beech: a serious threat to Fagus sylvatica in Germany in the context of global warming. J. Plant Dis. Prot. 130, 1101–1115. https://doi.org/0.1007/s41348-023-00743-7.

Leuschner, C., 2020. Drought response of European beech (Fagus sylvatica L.)—a review. Perspect. Plant Ecol. Evol. Syst. 47, 125576.

Leuschner, C., Backes, K., Hertel, D., Schipka, F., Schmitt, U., Terborg, O., Runge, M., 2001. Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. For. Ecol. Manag. 149, 33–46.

Leuschner, C., Förster, A., Diers, M., Culmsee, H., 2022. Are northern German Scots pine plantations climate smart? The impact of large-scale conifer planting on climate, soil and the water cycle. For. Ecol. Manag. 507, 120013.

Lloret, F., Keeling, E.G., Sala, A., 2011. Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120, 1909–1920.

Lübbe, T., Schuldt, B., Leuschner, C., 2017. Acclimation of leaf water status and stem hydraulics to drought and tree neighbourhood: alternative strategies among the saplings of five temperate deciduous tree species. Tree Physiol. 37, 456–468.

Mangiafico, S., 2019. rcompanion: Functions to Support Extension Education Program Evaluation. R package version 2.3.25. https://CRAN.R-project.org/package=rcompanion (Accessed 15 July 2023).

Martinez del Castillo, E., Zang, C.S., Buras, A., Hacket-Pain, A., Esper, J., Serrano-Notivoli, R., Hartl, C., Weigel, R., Klesse, S., Resco de Dios, V., Scharnweber, T., Dorado-Liñán, I., van der Maaten-Theunissen, M., van der Maaten, E., Jump, A., Mikac, S., Banzragch, B.-E., Beck, W., Cavin, L., Claessens, H., Čada, V., Čufar, K., Dulamsuren, C., Gričar, J., Gil-Pelegrín, E., Janda, P., Kazimirovic, M., Kreyling, J., Latte, N., Leuschner, C., Longares, L.A., Menzel, A., Merela, M., Motta, R., Muffler, L., Nola, P., Petritan, A.M., Petritan, I.C., Prislan, P., Rubio-Cuadrado, Á., Rydval, M., Stajić, B., Svoboda, M., Toromani, E., Trotsiuk, V., Wilmking, M., Zlatanov, T., de Luis, M., 2022. Climate-change-driven growth decline of European beech forests. Commun. Biol. 5, 163.

Maseda, P.H., Fernandez, R.J., 2006. Stay wet or else: three ways in which plants can adjust hydraulically to their environment. J. Exp. Bot. 57, 3963–3977.

McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D.G., Yepez, E.A., 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739.

Mette, T., Dolos, K., Meinardus, C., Bräuning, A., Reineking, B., Blaschke, M., Pretzsch, H., Beierkuhnlein, C., Gohlke, A., Wellstein, C., 2013. Climatic turning point for beech and oak under climate change in Central Europe. Ecosphere 4, 1–19.

Miller, P.C., Poole, D.K., 1983. The influence of annual precipitation, topography, and vegetative cover on soil moisture and summer drought in southern California. Oecologia 56, 385–391.

Nordmann, B., 2009. Wurzelwachstum des Bergahorns. LWF-Wissen 62, 30–32.

Petritan, I.C., Mihăilă, V.-V., Bragă, C.I., Boura, M., Vasile, D., Petritan, A.M., 2020. Litterfall production and leaf area index in a virgin European beech (Fagus sylvatica L.) – silver fir (Abies alba Mill.) forest. Dendrobiology 83, 75–84.

Prescott, C.E., Zabek, L.M., Staley, C.L., Kabzems, R., 2000. Decomposition of broadleaf and needle litter in forests of British Columbia: influences of litter type, forest type, and litter mixtures. Can. J. For. Res. 30, 1742–1750.

Pretzsch, H., Dieler, J., Seifert, T., Rötzer, T., 2012. Climate effects on productivity and resource-use efficiency of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in stands with different spatial mixing patterns. Trees Struct. Funct. 26, 1343–1360.

Pretzsch, H., Schütze, G., Uhl, E., 2013. Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol. 15, 483–495.

Ripley, B., 2023. Support Functions and Datasets for Venables and Ripley's MASS. https://cran.wustl.edu/web/packages/MASS/MASS.pdf. (Accessed 15 July 2023).

Sandric, I., Irimia, R., Petropoulos, G.P., Anand, A., Srivastava, P.K., Pleșoianu, A., Faraslis, I., Stateras, D., Kalivas, D., 2022. Tree's detection & health's assessment from ultra-high resolution UAV imagery and deep learning. Geocarto Int. 37, 10459–10479. https://doi.org/10.1080/10106049.2022.2036824.

Schall, P., Lödige, C., Beck, M., Ammer, C., 2012. Biomass allocation to roots and shoots is more sensitive to shade and drought in European beech than in Norway spruce seedlings. For. Ecol. Manag. 266, 246–253.

Schuldt, B., Buras, A., Arend, M., Vitasse, Y., Beierkuhnlein, C., Damm, A., Gharun, M., Grams, T.E.E., Hauck, M., Hajek, P., Hartmann, H., Hiltbrunner, E., Hoch, G., Holloway-Phillips, M., Körner, C., Larysch, E., Lübbe, T., Nelson, D.B., Rammig, A., Rigling, A., Rose, L., Ruehr, N.K., Schumann, K., Weiser, F., Werner, C., Wohlgemuth, T., Zang, C.S., Kahmen, A., 2020. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 45, 86–103.

Seidl, R., Müller, J., Hothorn, T., Bässler, C., Heurich, M., Kautz, M., 2016. Small beetle, large-scale drivers: how regional and landscape factors affect outbreaks of the European spruce bark beetle. J. Appl. Ecol. 53, 530–540.

Seim, A., Marquer, L., Bisson, U., Hofmann, J., Herzig, F., Kontic, R., Lechterbeck, J., Muigg, B., Neyses-Eiden, M., Rzepecki, A., Rösch, M., Walder, F., Weidemüller, J., Tegel, W., 2022. Historical spruce abundance in Central Europe: a combined dendrochronological and palynological approach. Front. Ecol. Evol. 10, 909453. https://doi.org/10.3389/fevo.2022.909453.

Senf, C., Pflugmacher, D., Zhiqiang, Y., Sebald, J., Knorn, J., Neumann, M., Hostert, P., Seidl, R., 2018. Canopy mortality has doubled in Europe's temperate forests over the last three decades. Nat. Commun. 9, 4978. https://doi.org/10.1038/s41467-018-07539-6.

Senf, C., Sebald, J., Seidl, R., 2021. Increasing canopy mortality affects the future demographic structure of Europe's forests. One Earth 4, 749–755.

StMELF, 2020. Waldbericht 2020. Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten.

Turner, M.G., 2010. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849.

Vitasse, Y., Bottero, A., Cailleret, M., Bigler, C., Fonti, P., Gessler, A., Lévesque, M., Rohner, B., Weber, P., Rigling, A., Wohlgemuth, T., 2019. Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Global Change Biol. 25, 3781–3792.

Volkmann, T.H.M., Haberer, K., Gessler, A., Weiler, M., 2016. High-resolution isotope measurements resolve rapid ecohydrological dynamics at the soil–plant interface. New Phytol. 210, 839–849.

Walsh, R.P.D., Voigt, P.J., 1977. Vegetation litter: an underestimated variable in hydrology and geomorphology. J. Biogeogr. 4, 253–274.

Warda, H.-D., 1998. Das große Buch der Garten- und Landschaftsgehölze. Bruns Pflanzen Export GmbH, Oldenburg.

Zweifel, R., Pappas, C., Peters, R.L., Babst, F., Balanzategui, D., Basler, D., Bastos, A., Beloiu, M., Buchmann, N., Bose, A.K., Braun, S., Damm, A., D'Odorico, P., Eitel, J.U.H., Etzold, S., Fonti, P., Rouholahnejad Freund, E., Gessler, A., Haeni, M., Hoch, G., Kahmen, A., Körner, C., Krejza, J., Krumm, F., Leuchner, M., Leuschner, C., Lukovic, M., Martínez-Vilalta, J., Matula, R., Meesenburg, H., Meir, P., Plichta, R., Poyatos, R., Rohner, B., Ruehr, N., Salomón, R.L., Scharnweber, T., Schaub, M., Steger, D.N., Steppe, K., Still, C., Stojanović, M., Trotsiuk, V., Vitasse, Y., von Arx, G., Wilmking, M., Zahnd, C., Sterck, F., 2023. Networking the forest infrastructure towards near real-time monitoring – a white paper. Sci. Total Environ. 872, 162167.

San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Durrant, T.H., Mauri, A., 2016. European Atlas of Forest Tree Species. Publication Office of the European Union, Luxembourg.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 23 April 2023
Revised: 31 July 2023
Accepted: 11 September 2023
Published: 28 September 2023
Issue date: October 2023

Copyright

© 2023 The Authors.

Acknowledgements

The authors would like to thank Reinhold Stahlmann and Sophy Kley for their support during the field measurements.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return