Journal Home > Volume 10 , Issue 3

Moso bamboo (Phyllostachys Pubescens) expansion into adjacent forests has been widely reported to affect plant diversity and its association with mycorrhizal fungi in subtropical China, which will likely have significant impacts on soil respiration. However, there is still limited information on how Moso bamboo expansion changes soil respiration components and their linkage with microbial community composition and activity. Based on a mesh exclusion method, soil respirations derived from roots, arbuscular mycorrhizal (AM) mycelium, and free-living microbes were investigated in a pure Moso bamboo forest (expanded), an adjacent broadleaved forest (non-expanded), and a mixed bamboo-broadleaved forest (expanding). Our results showed that bamboo expansion decreased the cumulative CO2 effluxes from total soil respiration, root respiration and soil heterotrophic respiration (by 19.01%, 30.34%, and 29.92% on average), whereas increased those from AM mycelium (by 78.67% in comparison with the broadleaved forests). Bamboo expansion significantly decreased soil organic carbon (C) content, bacterial and fungal abundances, and enzyme activities involved in C, N and P cycling whereas enhanced the interactive relationships among bacterial communities. In contrast, the ingrowth of AM mycelium increased the activities of β-glucosidase and N-acetyl-β-glucosaminidase and decreased the interactive relationships among bacterial communities. Changes in soil heterotrophic respiration and AM mycelium respiration had positive correlations with soil enzyme activities and fungal abundances. In summary, our findings suggest that bamboo expansion decreased soil heterotrophic respiration by decreasing soil microbial activity but increased the contribution of AM mycelial respiration to soil C efflux, which may potentially increase soil C loss from AM mycelial pathway.


menu
Abstract
Full text
Outline
About this article

Moso bamboo expansion decreased soil heterotrophic respiration but increased arbuscular mycorrhizal mycelial respiration in a subtropical broadleaved forest

Show Author's information Wenhao Jina,bJiaying Tua,bQifeng WucLiyuan Penga,bJiajia Xinga,bChenfei Lianga,bShuai Shaoa,bJunhui Chena,b( )Qiufang Xua,bHua Qina,b( )
The State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Hangzhou, 311300, China
College of Environmental and Resource Sciences, Zhejiang A & F University, Lin'an, Hangzhou, 311300, China
Agricultural Technology Extension Centre, Lin'an Municipal Bureau of Agriculture, Lin'an, Hangzhou, 311300, China

Abstract

Moso bamboo (Phyllostachys Pubescens) expansion into adjacent forests has been widely reported to affect plant diversity and its association with mycorrhizal fungi in subtropical China, which will likely have significant impacts on soil respiration. However, there is still limited information on how Moso bamboo expansion changes soil respiration components and their linkage with microbial community composition and activity. Based on a mesh exclusion method, soil respirations derived from roots, arbuscular mycorrhizal (AM) mycelium, and free-living microbes were investigated in a pure Moso bamboo forest (expanded), an adjacent broadleaved forest (non-expanded), and a mixed bamboo-broadleaved forest (expanding). Our results showed that bamboo expansion decreased the cumulative CO2 effluxes from total soil respiration, root respiration and soil heterotrophic respiration (by 19.01%, 30.34%, and 29.92% on average), whereas increased those from AM mycelium (by 78.67% in comparison with the broadleaved forests). Bamboo expansion significantly decreased soil organic carbon (C) content, bacterial and fungal abundances, and enzyme activities involved in C, N and P cycling whereas enhanced the interactive relationships among bacterial communities. In contrast, the ingrowth of AM mycelium increased the activities of β-glucosidase and N-acetyl-β-glucosaminidase and decreased the interactive relationships among bacterial communities. Changes in soil heterotrophic respiration and AM mycelium respiration had positive correlations with soil enzyme activities and fungal abundances. In summary, our findings suggest that bamboo expansion decreased soil heterotrophic respiration by decreasing soil microbial activity but increased the contribution of AM mycelial respiration to soil C efflux, which may potentially increase soil C loss from AM mycelial pathway.

Keywords: Soil organic carbon, Soil respiration, Bamboo expansion, Plant C allocation, Arbuscular mycorrhizal fungi

References(60)

Berlemont, R., Martiny, A.C., 2013. Phylogenetic distribution of potential cellulases in bacteria. Appl. Environ. Microbiol. 79(5), 1545-1554. https://doi.org/10.1128/AEM.03305-12

Bilyera, N., Zhang, X., Duddek, P., Fan, L., Banfield, C.C., Schlüter, S., Carminati, A., Kaestner, A., Ahmed, M.A., Kuzyakov, Y., Dippold, M.A., Spielvogel, S., Razavi, B.S., 2021. Maize genotype-specific exudation strategies: An adaptive mechanism to increase microbial activity in the rhizosphere. Soil Biol. Biochem. 162, 108426. https://doi.org/10.1016/j.soilbio.2021.108426

Bond-Lamberty, B., Thomson, A., 2010. Temperature-associated increases in the global soil respiration record. Nature 464, 579-582. https://doi.org/10.1038/s41467-020-20616-z

Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodriguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L., Kaehler, B.D., Kang, K.B., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson, M.S., 2nd, Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft, J.J.J., Vargas, F., Vazquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y., Zhu, Q., Knight, R., Caporaso, J.G., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852-857. https://doi.org/10.1038/s41587-019-0209-9

Brzostek, E.R., Dragoni, D., Brown, Z.A., Phillips, R.P., 2015. Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest. New Phytol. 206, 1274-1282. https://doi.org/10.1111/nph.13303

Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581-583. https://doi.org/10.1038/nmeth.3869

Chen, J., Chen, D., Xu, Q., Fuhrmann, J.J., Li, L., Pan, G., Li, Y., Qin, H., Liang, C., Sun, X., 2019a. Organic carbon quality, composition of main microbial groups, enzyme activities, and temperature sensitivity of soil respiration of an acid paddy soil treated with biochar. Biol. Fert. Soils 55(2), 185-197. https://doi.org/10.1007/s00374-018-1333-2

Chen, J., Wu, Q., Li, S., Ge, J., Liang, C., Qin, H., Xu, Q., Fuhrmann, J.J., 2019b. Diversity and function of soil bacterial communities in response to long-term intensive management in a subtropical bamboo forest. Geoderma 354, 113894. https://doi.org/10.1016/j.geoderma.2019.113894

Chen, L., Jiang, Y., Liang, C., Luo, Y., Xu, Q., Han, C., Zhao, Q., Sun, B., 2019c. Competitive interaction with keystone taxa induced negative priming under biochar amendments. Microbiome 7, 77.

Clarke, K.R., Green, R.H., 1988. Statistical design and analysis for a 'biological effects' study. Mar. Ecol. Prog. Ser. 46, 213-226. https://doi.org/10.3354/meps046213

Dong, H., Ge, J., Sun, K., Wang, B., Xue, J., Wakelin, S.A., Wu, J., Sheng, W., Liang, C., Xu, Q., Jiang, P., Chen, J., Qin, H., 2021. Change in root-associated fungal communities affects soil enzymatic activities during Pinus massoniana forest development in subtropical China. For. Ecol. Manag. 482, 118817. https://doi.org/10.1016/j.foreco.2020.118817

Drigo, B., Pijl, A.S., Duyts, H., Kielak, A.M., Gamper, H.A., Houtekamer, M.J., Boschker, H.T., Bodelier, P.L., Whiteley, A.S., van Veen, J.A., Kowalchuk, G.A., 2010. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc. Natl. Acad. Sci. USA. 107, 10938-10942. https://doi.org/10.1073/pnas.0912421107

Friese, C.F., Allen, M.F., 1991. The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia 83, 409-418. https://doi.org/10.1016/S0944-5013(11)80037-6

Fu, X., Song, Q., Li, S., Shen, Y., Yue, S., 2022. Dynamic changes in bacterial community structure are associated with distinct priming effect patterns. Soil Biol. Biochem. 169, 108671. https://doi.org/10.1016/j.soilbio.2022.108671

Gong, J., Liu, X., Sun, G., Zhou, J., 2020. Evaluating the retest reproducibility of intrinsic connectivity network using multivariate correlation coefficient. Neural Comput. Appl. 32, 14623-14638. https://doi.org/10.1007/s00521-020-04816-8

Gorka, S., Dietrich, M., Mayerhofer, W., Gabriel, R., Wiesenbauer, J., Martin, V., Zheng, Q., Imai, B., Prommer, J., Weidinger, M., Schweiger, P., Eichorst, S.A., Wagner, M., Richter, A., Schintlmeister, A., Woebken, D., Kaiser, C., 2019. Rapid transfer of plant photosynthates to soil bacteria via ectomycorrhizal hyphae and its interaction with nitrogen availability. Front. Microbiol. 10, 168. https://doi.org/10.3389/fmicb.2019.00168

Guimerà, R., Nunes Amaral, L.A., 2005. Functional cartography of complex metabolic networks. Nature 433, 895-900. https://doi.org/10.1038/nature03288

Han, M., Feng, J., Chen, Y., Sun, L., Fu, L., Zhu, B., 2021. Mycorrhizal mycelial respiration: a substantial component of soil respired CO2. Soil Biol. Biochem. 163, 108454. https://doi.org/10.1016/j.soilbio.2021.108454

Högberg, P., Nordgren, A., Buchmann, N., Taylor, A.F.S., Ekblad, A., Högberg, M.N., Nyberg, G., Ottosson-Lofvenius, M., Read, D.J., 2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411, 789-792. https://doi.org/10.1038/35081058

Hu, S., Li, Y., Chang, S.X., Li, Y., Yang, W., Fu, W., Liu, J., Jiang, P., Lin, Z., 2018. Soil autotrophic and heterotrophic respiration respond differently to land-use change and variations in environmental factors. Agric. For. Meteorol. 250-251, 290-298. https://doi.org/10.1016/j.agrformet.2018.01.003

Ju, F., Xia, Y., Guo, F., Wang, Z., Zhang, T., 2014. Taxonomic relatedness shapes bacterial assembly in activated sludge of globally distributed wastewater treatment plants. Environ. Microbiol. 16, 2421-2432. https://doi.org/10.1111/1462-2920.12355

Jian, J., Steele, M.K., Day, S.D., Quinn Thomas, R., Hodges, S.C., 2018. Measurement strategies to account for soil respiration temporal heterogeneity across diverse regions. Soil Biol. Biochem. 125, 167-177. https://doi.org/10.1016/j.soilbio.2018.07.003

Jin W., Ge J., Shao S, Peng L., Xing J., Liang C., Chen J., Xu., Qin H. 2022. Intensive management increases enhances mycorrhizal respiration but decreases free-living microbial respiration through its effect on microbial abundance and community in Moso bamboo forests. Pedosphere 32 https://doi.org/10.1016/j.pedsph.2022.10.002

Kuzyakov, Y., Blagodatskaya, E., 2015. Microbial hotspots and hot moments in soil: Concept & review. Soil Biol. Biochem. 83, 184-199. https://doi.org/10.1016/j.soilbio.2015.01.025

Lal, R., 2008. Sequestration of atmospheric CO2 in global carbon pools. Energy Environ. Sci. https://doi.org/10.1039/B809492F

Li, S., Cui, Y., Xia, Z., Zhang, X., Zhu, M., Gao, Y., An, S., Yu, W., Ma, Q., 2022. The mechanism of the dose effect of straw on soil respiration: Evidence from enzymatic stoichiometry and functional genes. Soil Biol. Biochem. 168, 108636. https://doi.org/10.1016/j.soilbio.2022.108636

Liu, C., Zhou, Y., Qin, H., Liang, C., Shao, S., Fuhrmann, J.J., Chen, J., Xu, Q., 2021a. Moso bamboo invasion has contrasting effects on soil bacterial and fungal abundances, co-occurrence networks and their associations with enzyme activities in three broadleaved forests across subtropical China. For. Ecol. Manag. 498, 119549. https://doi.org/10.1016/j.foreco.2021.119549

Liu, R., He, Y., Zhou, G., Shao, J., Zhou, L., Zhou, H., Li, N., Song, B., Liang, C., Yan, E., Chen, X., Wang, X., Wang, M., Bai, S.H., Zhou, X., Phillips, R.P., 2021b. Mycorrhizal effects on decomposition and soil CO2 flux depend on changes in nitrogen availability during forest succession. J. Ecol. 109, 3929-3943. https://doi.org/10.1111/1365-2745.13770

Lu, R., 2000. Analytical Methods for Soils and Agricultural Chemistry. China Agricultural Science and Technology Press, Beijing.

Ma, X., Zhu, B., Nie, Y., Liu, Y., Kuzyakov, Y., 2021a. Root and mycorrhizal strategies for nutrient acquisition in forests under nitrogen deposition: a meta-analysis. Soil Biol Biochem. 163, 108418. https://doi.org/10.1016/j.soilbio.2021.108418

Ma, X., Li, X., Ludewig, U., 2021b. Arbuscular mycorrhizal colonization outcompetes root hairs in maize under low phosphorus availability. Ann. Bot. 127, 155-166. https://doi.org/10.1093/aob/mcaa159

Ma, B., Lv, X., Cai, Y., Chang, S.X., Dyck, M.F., 2018. Liming does not counteract the influence of long-term fertilization on soil bacterial community structure and its co-occurrence pattern. Soil Biol. Biochem. 123, 45-53. https://doi.org/10.1016/j.soilbio.2018.05.003

May, L. A., Smiley, B., Schmidt M. G., 2001. Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage. Can. J. Microbiol. 47(9): 829-841. https://doi.org/10.1139/w01-086

Metcalfe, D.B., Rocha, W., Balch, J.K., Brando, P.M., Doughty, C.E., Malhi, Y., 2018. Impacts of fire on sources of soil CO2 efflux in a dry Amazon rain forest. Glob. Change Biol. 24, 3629-3641. https://doi.org/10.1111/gcb.14305

Nottingham, A.T., Turner, B.L., Winter, K., Chamberlain, P.M., Stott, A., Tanner, E.V.J., 2013. Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest. FEMS Microbiol. Ecol. 85, 37-50. https://doi.org/10.1111/1574-6941.12096

Nottingham, A.T., Turner, B.L., Winter, K., van der Heijden, M.G.A., Tanner, E.V.J., 2010. Arbuscular mycorrhizal mycelial respiration in a moist tropical forest. New Phytol. 186, 957-967. https://doi.org/10.1111/j.1469-8137.2010.03226.x

Pan, S., Wang, Y., Qiu, Y., Chen, D., Zhang, L., Ye, C., Guo, H., Zhu, W., Chen, A., Xu, G., Zhang, Y., Bai, Y., Hu, S., 2020. Nitrogen-induced acidification, not N-nutrient, dominates suppressive N effects on arbuscular mycorrhizal fungi. Glob. Change Biol. 26, 6568-6580. https://doi.org/10.1111/gcb.15311

Qin, H., Niu, L., Wu, Q., Chen, J., Li, Y., Liang, C., Xu, Q., Fuhrmann, J.J., Shen, Y., 2017. Bamboo forest expansion increases soil organic carbon through its effect on soil arbuscular mycorrhizal fungal community and abundance. Plant Soil 420, 407-421. https://doi.org/10.1007/s11104-017-3415-6

Riutta, T., Kho, L.K., Teh, Y.A., Ewers, R., Majalap, N., Malhi, Y., 2021. Major and persistent shifts in below-ground carbon dynamics and soil respiration following logging in tropical forests. Glob. Change Biol. 27(10), 2225-2240. https://doi.org/10.1111/gcb.15522

Saiya-Cork, K.R., Sinsabaugh, R.L., Zak, D.R., 2002. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem. 34, 1309-1315. https://doi.org/10.1016/S0038-0717(02)00074-3

Sinsabaugh, R.L., Manzoni, S., Moorhead, D.L., Richter, A., 2013. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol. Lett. 16(7), 930-939. https://doi.org/10.1111/ele.12113

Song, Q.N., Ouyang, M., Yang, Q.P., Lu, H., Yang, G.Y., Chen, F.S., Shi, J.M., 2016. Degradation of litter quality and decline of soil nitrogen mineralization after Moso bamboo (Phyllostachys pubscens) expansion to neighboring broadleaved forest in subtropical China. Plant Soil 404, 113-124. https://doi.org/10.1007/s11104-016-2835-z

Soudzilovskaia, N.A., Heijden, M.G.A., Cornelissen, J.H.C., Makarov, M.I., Onipchenko, V.G., Maslov, M.N., Akhmetzhanova, A.A., Bodegom, P.M., 2015. Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling. New Phytol. 208(1), 280-293. https://doi.org/10.1111/nph.13447

Van der Heijden, M.G.A., Martin, F.M., Selosse, M.-A., Sanders, I.R., 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406-1423. https://doi.org/10.1111/nph.13288

Vance, E., 1987. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19(6), 703-707. https://doi.org/10.1016/0038-0717(87)90052-6

Vilo, C, Dong Q., 2012. Evaluation of the RDP Classifier accuracy using 16S rRNA gene variable regions. Metagenomics 1, 1-5. https://doi.org/10.4303/mg/235551

Wang, X., Liu, L., Piao, S., Janssens, I.A., Tang, J., Liu, W., Chi, Y., Wang, J., Xu, S., 2014. Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration. Glob. Change Biol. 20, 3229-3237. https://doi.org/10.1111/gcb.12620

Wickham, H., 2016. ggplot2: Elegant graphics for data analysis. Springer
DOI
World Reference Base for Soil Resources (WRB), 2006. A framework for international classification, correlation and communication. FAO, Rome.

Wu, Q., Lian, R., Bai, M., Bao, J., Liu, Y., Li, S., Liang, C., Qin, H., Chen, J., Xu, Q., 2021. Biochar co-application mitigated the stimulation of organic amendments on soil respiration by decreasing microbial activities in an infertile soil. Biol. Fert. Soils 57(6), 793-807. https://doi.org/10.1007/s00374-021-01574-0

Wurzburger, N., Brookshire, E.N.J., 2017. Experimental evidence that mycorrhizal nitrogen strategies affect soil carbon. Ecology 98(6), 1491-1497. https://doi.org/10.1002/ecy.1827

Xu, Q.-F., Liang, C.-F., Chen, J.-H., Li, Y.-C., Qin, H., Fuhrmann, J.J., 2020. Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes +. Glob. Ecol. Conserv. 21, e00787. https://doi.org/10.1016/j.gecco.2019.e00787

Ye, G., Fan, J., Hu, H.-W., Chen, J., Zhong, X., Chen, J., Wang, D., Wei, X., Lin, Y., 2022. Short-term cellulose addition decreases microbial diversity and network complexity in an Ultisol following 32-year fertilization. Agr. Ecosyst. Environ. 325, 107744. https://doi.org/10.1016/j.agee.2021.107744

Yue, P., Cui, X., Zuo, X., Li, K., Wang, S., Jia, Y., Misselbrook, T., Liu, X., 2020. The contribution of arbuscular mycorrhizal fungi to ecosystem respiration and methane flux in an ephemeral plants-dominated desert. Land Degrad. Dev. 32, 1844-1853. https://doi.org/10.1002/ldr.3838

Zheng, X., An, Z., Cao, M., Wu, F., Guan, X., Chang, S.X., Liu, S., Jiang, J., 2022. Arbuscular mycorrhizal hyphal respiration makes a large contribution to soil respiration in a subtropical forest under various N input rates. Sci. Total Environ. 852, 158309. https://doi.org/10.1016/j.scitotenv.2022.158309

Zhao, Y., Liang, C., Shao, S., Chen, J., Qin, H., Xu, Q., 2021. Linkages of litter and soil C: N: P stoichiometry with soil microbial resource limitation and community structure in a subtropical broadleaf forest invaded by Moso bamboo. Plant Soil 465, 473-490. https://doi.org/10.1007/s11104-021-05028-2

Zhou, L., Liu, Y., Zhang, Y., Sha, L., Song, Q., Zhou, W., Balasubramanian, D., Palingamoorthy, G., Gao, J., Lin, Y., Li, J., Zhou, R., Zar Myo, S.T., Tang, X., Zhang, J., Zhang, P., Wang, S., Grace, J., 2019. Soil respiration after six years of continuous drought stress in the tropical rainforest in Southwest China. Soil Biol. Biochem. 138, 107564. https://doi.org/10.1016/j.soilbio.2019.107564

Zhou, J., Zhang, L., Feng, G., George, T.S., 2022. Arbuscular mycorrhizal fungi have a greater role than root hairs of maize for priming the rhizosphere microbial community and enhancing rhizosphere organic P mineralization. Soil Biol. Biochem. 171, 108713. https://doi.org/10.1016/j.soilbio.2022.108713

Zhu, Y.G., Miller, R.M., 2003. Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. Trends Plant Sci. 8, 407-409. https://doi.org/10.1016/S1360-1385(03)00184-5

Zhu, Z., Fang, Y., Liang, Y., Li, Y., Liu, S., Li, Y., Li, B., Gao, W., Yuan, H., Kuzyakov, Y., Wu, J., Richter, A., Ge, T., 2022. Stoichiometric regulation of priming effects and soil carbon balance by microbial life strategies. Soil Biol. Biochem. 169, 108669. https://doi.org/10.1016/j.soilbio.2022.108669

Publication history
Copyright
Rights and permissions

Publication history

Received: 17 November 2022
Revised: 23 April 2023
Accepted: 24 April 2023
Published: 06 May 2023
Issue date: June 2023

Copyright

© 2023 The Authors.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return