Journal Home > Volume 10 , Issue 1

Laurel forests are quite relevant for biodiversity conservation and are among the island ecosystems most severely damaged by human activities. In the past, Canary laurel forests have been greatly altered by logging, livestock and agriculture. The remains of laurel forests are currently protected in the Canary Islands (Spain). However, we miss basic information needed for their restoration and adaptive management, such as tree longevity, growth potential and responsiveness to natural and anthropogenic disturbances. Using dendrochronological methods, we studied how forest dynamic is related to land-use change and windstorms in two well-preserved laurel forests on Tenerife Island. Wood cores were collected from over 80 trees per stand at three stands per forest. We used ring-width series to estimate tree ages and calculate annual basal area increments (BAI), cumulative diameter increases, and changes indicative of released and suppressed growth. Twelve tree species were found in all stands, with Laurus novocanariensis, Ilex canariensis and Morella faya being the most common species. Although some individuals were over 100 years old, 61.8%–88.9% of the trees per stand established between 1940 and 1970, coinciding with a post-war period of land abandonment, rural exodus and the onset of a tourism economy. Some trees have shown growth rates larger than 1 ​cm diameter per year and most species have had increasing BAI trends over the past decades. Strong growth releases occurred after windstorms at both sites, but the effects of windstorms were site-dependent, with the 1958 storm affecting mainly the eastern tip of the island (Anaga massif) and the 1991 storm the western tip (Teno massif). Given the great ability of laurel forest trees to establish after land use cessation and to increase growth after local disturbances such as windstorms, passive restoration may be sufficient to regenerate this habitat in currently degraded areas.


menu
Abstract
Full text
Outline
About this article

Land-use change and windstorms legacies drove the recolonization dynamics of laurel forests in Tenerife, Canary islands

Show Author's information Vicente Rozasa( )María A. García-LópezaJosé M. OlanoaGabriel Sangüesa-BarredaaMiguel García-HidalgoaSusana Gómez-Gonzálezb,cRoberto López-RubiodJosé M. Fernández-PalacioseIgnacio García-GonzálezfLaura Lozano-LópezdPaula García-GonzálezdAna I. García-Cervigónd
EiFAB-iuFOR, Universidad de Valladolid, Campus Duques de Soria, 42004, Soria, Spain
Departamento de Biología-IVAGRO, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Spain
Center for Climate and Resilience Research (CR)2, Blanco Encalada 2002, 8370449, Santiago, Chile
Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, c/Tulipán s/n, 28933, Móstoles, Spain
Grupo de Ecología y Biogeografía Insular, Universidad de La Laguna, 38206, La Laguna, Tenerife, Spain
BIOAPLIC, Departamento de Botánica, Escola Politécnica Superior de Enxeñaría, Campus Terra, Universidade de Santiago de Compostela, Lugo, 27002, Spain

Abstract

Laurel forests are quite relevant for biodiversity conservation and are among the island ecosystems most severely damaged by human activities. In the past, Canary laurel forests have been greatly altered by logging, livestock and agriculture. The remains of laurel forests are currently protected in the Canary Islands (Spain). However, we miss basic information needed for their restoration and adaptive management, such as tree longevity, growth potential and responsiveness to natural and anthropogenic disturbances. Using dendrochronological methods, we studied how forest dynamic is related to land-use change and windstorms in two well-preserved laurel forests on Tenerife Island. Wood cores were collected from over 80 trees per stand at three stands per forest. We used ring-width series to estimate tree ages and calculate annual basal area increments (BAI), cumulative diameter increases, and changes indicative of released and suppressed growth. Twelve tree species were found in all stands, with Laurus novocanariensis, Ilex canariensis and Morella faya being the most common species. Although some individuals were over 100 years old, 61.8%–88.9% of the trees per stand established between 1940 and 1970, coinciding with a post-war period of land abandonment, rural exodus and the onset of a tourism economy. Some trees have shown growth rates larger than 1 ​cm diameter per year and most species have had increasing BAI trends over the past decades. Strong growth releases occurred after windstorms at both sites, but the effects of windstorms were site-dependent, with the 1958 storm affecting mainly the eastern tip of the island (Anaga massif) and the 1991 storm the western tip (Teno massif). Given the great ability of laurel forest trees to establish after land use cessation and to increase growth after local disturbances such as windstorms, passive restoration may be sufficient to regenerate this habitat in currently degraded areas.

Keywords: Disturbance, Forest structure, Dendroecology, Tree rings, Canary islands, Macaronesia, Management cessation

References(79)

Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H., González, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J. -H., Allard, G., Running, S.W., Semerci, A., Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259(4), 660–684. https://doi.org/10.1016/j.foreco.2009.09.001.

Arévalo, J.R., Férnandez-Palacios, J.M., 1998. Treefall gap characteristics and its influence on regeneration in the laurel forest of Tenerife. J. Veg. Sci. 9(3), 297–306. https://doi.org/10.2307/3237094.

Arévalo, J.R., Delgado, J.D., Fernández-Palacios, J.M., 2007. Variation in fleshy fruit fall composition in an island laurel forest of the Canary Islands. Acta Oecol. 32, 152–160. https://doi.org/10.1016/j.actao.2007.03.014.

Arévalo, J.R., Fernández-Palacios, J.M., 2007. Treefall gaps and regeneration composition in the laurel forest of Anaga (Tenerife): a matter of size?. Plant Ecol. 188, 133–143. https://doi.org/10.1007/s11258-006-9152-1.

Arozena, M.E., Panareda, J.M., 2013. Forest transition and biogeographic meaning of the current laurel forest landscape in Canary Islands, Spain. Phys. Geogr. 34(3), 211–235. https://doi.org/10.1080/02723646.2013.817181.

Arozena, M.A., Dorta, P., Panareda, J.M., Beltrán, E., 2008. El efecto de los temporales de viento en la laurisilva de Anaga (Tenerife, I. Canarias). La tormenta Delta de noviembre de 2005. Scr. Nova XII 267. https://www.ub.edu/geocrit/sn/sn-267.htm (Accessed Feb 11, 2023)

Arozena, M.E., Panareda, J.M., Figueiredo, A., 2019. The footprint of land use on the Macaronesian laurel forest landscape: an underestimated driving factor in protected areas. Bosque 40(3), 299–313. https://revistabosque.org/index.php/bosque/article/view/292.

Arteaga, M.A., González, G., Delgado, J.D., Arévalo, J.R., Fernández-Palacios, J.M., 2006. Offspring spatial patterns in Picconia excelsa (Oleaceae) in the Canarian laurel forest. Flora 201(8), 642–651. https://doi.org/10.1016/j.flora.2006.01.001.

Ayres, M., Lombardero, M., 2000. Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci. Total Environ. 262(3), 263–286. https://doi.org/10.1016/S0048-9697(00)00528-3.

Becknell, J.M., Desai, A.R., Dietze, M.C., Schultz, C.A., Starr, G., Duffy, P.A., Franklin, J.F., Pourmokhtarian, A., Hall, J., Stoy, P.C., Binford, M.W., Boring, L.R., Staudhammer, C.L., 2015. Assessing interactions among changing climate, management, and disturbance in forests: a macrosystems approach. Bioscience 65(3), 263–274. https://doi.org/10.1093/biosci/biu234.

Boletín Oficial de Canarias, 1987. Ley 12/1987, de 19 de junio, de declaración de Espacios Naturales de Canarias, 85. BOC, pp. 2319–2391. https://www.boe.es/buscar/doc.php?id=BOE-A-1987-25183. (Accessed 13 January 2023).

Bocherens, H., Michaux, J., García Talavera, F., Johannes Van der Plicht, J., 2006. Extinction of endemic vertebrates on islands: The case of the giant rat (Mammalia, Rodentia) on Tenerife (Canary Islands, Spain). Comptes Rendus Palevol 5(7), 885–891. https://doi.org/10.1016/j.crpv.2006.04.001.

Boucher, Y., Grondin, P., Auger, I., 2014. Land use history (1840–2005) and physiography as determinants of southern boreal forests. Landsc. Ecol. 29, 437–450. https://doi.org/10.1007/s10980-013-9974-x.

Bowman, D.M., Balch, J.K., Artaxo, P., Bond, W.J., Carlson, J.M., Cochrane, M.A., D'Antonio, C.M., DeFries, R.S., Doyle, J.C., Harrison, S.P., Johnston, F.H., 2009. Fire in the earth system. Science 324, 481–484. https://doi.org/10.1126/science.1163886.

Broughton, R.K., Bullock, J.M., George, C., Hill, R.A., Hinsley, S.A., Maziarz, M., Melin, M., Mountford, J.O., Sparks, T.H., Pywell, R.F., 2021. Long-term woodland restoration on lowland farmland through passive rewilding. PLoS One 16(6), e0252466. https://doi.org/10.1371/journal.pone.0252466.

Bunn, A., Korpela, M., Biondi, F., Campelo, F., Mérian, P., Qeadan, F., Zang, C., 2020.dplR: Dendrochronology Program Library in R. R package version 1.7.1. . https://CRAN.R-project.org/package=dplR. (Accessed 13 January 2023).

Chazdon, R.L., Lindenmayer, D., Guariguata, M.R., Crouzeilles, R., Rey Benayas, J.M., Lazos Chavero, E., 2020. Fostering natural forest regeneration on former agricultural land through economic and policy interventions. Environ. Res. Lett. 15, 043002. https://doi.org/10.1088/1748-9326/ab79e6.

Chesson, P., 2000. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Systemat. 31, 343–366. https://doi.org/10.1146/annurev.ecolsys.31.1.343.

Cowie, R.H., Holland, B.S., 2006. Dispersal is fundamental to biogeography and the evolution of biodiversity on oceanic islands. J. Biogeogr. 33(2), 193–198. https://doi.org/10.1111/j.1365-2699.2005.01383.x.

Danneyrolles, V., Dupuis, S., Fortin, G., Leroyer, M., de Römer, A., Terrail, R., Vellend, M., Boucher, Y., Laflamme, J., Bergeron, Y., Arseneault, D., 2019. Stronger influence of anthropogenic disturbance than climate change on century-scale compositional changes in northern forests. Nat. Commun. 10, 1265. https://doi.org/10.1038/s41467-019-09265-z.

del Arco, M., Pérez-de-Paz, P.L., Acebes, J.R., González-Mancebo, J.M., Reyes-Betancort, J.A., Bermejo, J.A., de Armas, S., González-González, R., 2006. Bioclimatology and climatophilous vegetation of Tenerife (canary islands). Ann. Bot. Fenn. 43(3), 167–192. https://www.jstor.org/stable/23727207. (Accessed Feb 11, 2023).

Delgado, J.D., Riera, R., Rodríguez, R.A., González-Moreno, P., Fernández-Palacios, J.M., 2017. A reappraisal of the role of humans in the biotic disturbance of islands. Environ. Conserv. 44(4), 371–380. https://doi.org/10.1017/S0376892917000236.

Dueñas, M., Hernández, T., Estrella, I., Rabanal, R., 2003. Phenolic composition and antioxidant activity of mocán seeds (Visnea mocanera L. f). Food Chem. 82, 373–379. https://doi.org/10.1016/S0308-8146(02)00557-5.

Enquist, B.J., Leffler, J., 2001. Long-term tree ring chronologies from sympatric tropical dry-forest trees: individualistic responses to climatic variation. J. Trop. Ecol. 17(1), 41–60. https://doi.org/10.1017/S0266467401001031.

Escobar-Camacho, D., Rosero, P., Castrejón, M., Mena, C.F., Cuesta, F., 2021. Oceanic islands and climate: using a multi-criteria model of drivers of change to select key conservation areas in Galapagos. Reg. Environ. Change 21, 47. https://doi.org/10.1007/s10113-021-01768-0.

Fang, K., Bai, M., Azorin-Molina, C., Dong, Z., Camarero, J.J., Zhang, P., Zheng, Z., Zhao, Z., Chen, D., 2022. Wind speed reconstruction from a tree-ring difference index in northeastern Inner Mongolia. Dendrochronologia 72, 125938. https://doi.org/10.1016/j.dendro.2022.125938.

Fernández-Palacios, J.M., Arévalo, J.R., 1998. Regeneration strategies of tree species in the laurel forest of Tenerife (The Canary Islands). Plant Ecol. 137, 21–29. https://doi.org/10.1023/A:1008000330184.

Fernández-Palacios, J.M., Arévalo, J.R., Balguerías, E., Barone, R., De Nascimento, L., Delgado, J.D., Elías, R.B., Fernández-Lugo, S., Méndez, J., Menezes de Sequeira, M., Naranjo-Cigala, A., Otto, R., 2017. La Laurisilva. Canarias, Madeira y Azores. Macaronesia Editorial, ISBN 978-84-697-5454-2.

Fernández-Palacios, J.M., de Nicolás, J.P., 1995. Altitudinal pattern of vegetation variation on Tenerife. J. Veg. Sci. 6(2), 183–190. https://doi.org/10.2307/3236213.

Fernández-Palacios, J.M., Kreft, H., Irl, S.D.H., Norder, S., Ah-Peng, C., Borges, P.A.V., Burns, K.C., de Nascimento, L., Meyer, J. -Y., Montes, E., Drake, D.R., 2021. Scientists' warning – the outstanding biodiversity of islands is in peril. Glob. Ecol. Conserv. 31, e01847. https://doi.org/10.1016/j.gecco.2021.e01847.

Foster, D., Swanson, F., Aber, J., Burke, I., Brokaw, N., Tilman, D., Knapp, A., 2003. The importance of land-use legacies to ecology and conservation. Bioscience 53(1), 77–88. https://doi.org/10.1641/0006-3568(2003)053[0077:TIOLUL]2.0.CO;2.

Fukui, S., Araki, K.S., 2014. Spatial niche facilitates clonal reproduction in seed plants under temporal disturbance. PLoS One 9(12), e116111. https://doi.org/10.1371/journal.pone.0116111.

Ganivet, E., Flores, O., Balguerías, E., de Nascimento, L., Arévalo, J.R., Fernández-Lugo, S., Fernández-Palacios, J.M., 2019. Ecological strategies of tree species in the laurel forest of Tenerife (Canary Islands): an insight into cloud forest natural dynamics using long-term monitoring data. Eur. J. For. Res. 138, 93–110. https://doi.org/10.1007/s10342-018-1156-6.

García, C.A., Savilaakso, S., Verburg, R., Gutiérrez, V., Wilson, S.J., Krug, C.B., Robinson, B.E., Moersberger, H., Naimi, B., Rhemtulla, J.M., Dessard, H., Gond, V., Vermeulen, C., Trolliet, F., Oszwald, J., Quétier, F., Pietsch, S., Bastin, J. -F., Dray, A., Araújo, M.B., Ghazoul, J., Waeber, P.O., 2020. The global forest transition as a human affair. One Earth 2(5), 417–428. https://doi.org/10.1016/j.oneear.2020.05.002.

García-Cervigón, A.I., Camarero, J.J., Cueva, E., Espinosa, C.I., Escudero, A., 2020. Climate seasonality and tree growth strategies in a tropical dry forest. J. Veg. Sci. 31(3), 266–280. https://doi.org/10.1111/jvs.12840.

García-Hidalgo, M., García-Pedrero, A., Colón, D., Sangüesa-Barreda, G., García-Cervigón, A.I., López-Molina, J., Hernández-Alonso, H., Rozas, V., Olano, J.M., Alonso-Gómez, V., 2022. CaptuRING: a do-it-yourself tool for wood sample digitization. Methods Ecol. Evol. 13(6), 1185–1191. https://doi.org/10.1111/2041-210X.13847.

García-López, M.A., Rozas, V., Olano, J.M., Sangüesa-Barreda, G., García-Hidalgo, M., Gómez-González, S., López-Rubio, R., Fernández-Palacios, J.M., García-González, I., García-Cervigón, A.I., 2022. Tree-ring distinctness, dating potential and climatic sensitivity of laurel forest tree species in Tenerife Island. Dendrochronologia 76, 126011. https://doi.org/10.1016/j.dendro.2022.126011.

Gomes, E.P.C., de Nascimento, L., Domínguez, A., Balguerías, E., Méndez, J., Fernández-Lugo, S., Arévalo, J.R., Fernández-Palacios, J.M., 2020. Seedling bank demography over 11 years in an island laurel forest, Tenerife, Canary Islands. For. Ecol. Manag. 462, 118010. https://doi.org/10.1016/j.foreco.2020.118001.

Harter, D.E.V., Irl, S.D.H., Seo, B., Steinbauer, M.J., Gillespie, R., Triantis, K.A., Fernández-Palacios, J.M., Beierkuhnlein, C., 2015. Impacts of global climate change on the floras of oceanic islands – projections, implications and current knowledge. Perspect. Plant Ecol. Evol. Systemat. 17(2), 160–183. https://doi.org/10.1016/j.ppees.2015.01.003.

Heartsill-Scalley, T., López-Marrero, T., 2021. Beyond tropical storms: understanding disturbance and forest dynamics. Front. For. Glob. Change 4, 698733. https://doi.org/10.3389/ffgc.2021.698733.

Holmes, R.L., 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43, 69–78.

Knight, C.A., Anderson, L., Bunting, M.J., Champagne, M., Clayburn, R., Crawford, J., Klimaszewski-Patterson, A., Knapp, E.E., Lake, F.K., Mensing, S.A., Wahl, D., Wanket, J., Watts-Tobin, A., Potts, M.D., Battles, J.J., 2022. Land management explains major trends in forest structure and composition over the last millennium in California's Klamath Mountains. Proc. Natl. Acad. Sci. USA 119(12), e2116264119. https://doi.org/10.1073/pnas.2116264119.

Kondraskov, P., Schütz, N., Schüßler, C., de Sequeira, M.M., Guerra, A.S., Caujapé-Castells, J., Jaén-Molina, R., Marrero-Rodríguez, A., Koch, M.A., Linder, P., Kovar-Eder, J., Thiv, M., 2015. Biogeography of mediterranean hotspot biodiversity: Re-evaluating the 'tertiary relict' hypothesis of macaronesian laurel forests. PLoS One 10(7), e0132091. https://doi.org/10.1371/journal.pone.0132091.

Lafon, C.W., Speer, J.H., 2002. Using dendrochronology to identify major ice storm events in oak forests of southwestern Virginia. Clim. Res. 20(1), 41–54. https://www.jstor.org/stable/24866792 (Accessed Feb 11, 2023).

Lasanta-Martínez, T., Vicente-Serrano, S.M., Cuadrat-Prats, J.M., 2005. Mountain Mediterranean landscape evolution caused by the abandonment of traditional primary activities: a study of the Spanish Central Pyrenees. Appl. Geogr. 25(1), 47–65. https://doi.org/10.1016/j.apgeog.2004.11.001.

Liao, J., Ying, Z., Woolnough, D.A., Miller, A.D., Li, Z., Nijs, I., 2016. Coexistence of species with different dispersal across landscapes: a critical role of spatial correlation in disturbance. Proc. R. Soc. B 283, 20160537. https://doi.org/10.1098/rspb.2016.0537.

Mai, D.H., 1991. Palaeofloristic changes in Europe and the confirmation of the Arctotertiary-Palaeotropical geofloral concept. Rev. Palaeobot. Palynol. 68(1–2), 29–36. https://doi.org/10.1016/0034-6667(91)90055-8.

Martín Ruiz, J.F., 1984. Desarrollo demográfico y crecimiento espacial de las áreas turísticas de la isla de Tenerife. Anu. Estud. Atl. 30, 317–340. https://mdc.ulpgc.es/utils/getfile/collection/aea/id/1734/filename/1735.pdf. (Accessed 13 January 2023).

Mather, A., 1992. The forest transition. Area 24(4), 367–379.

Matos, B., Borges Silva, L., Camarinho, R., Rodrigues, A.S., Rego, R., Câmara, M., Silva, L., 2019. Linking dendrometry and dendrochronology in the dominant Azorean tree Laurus azorica (Seub.) Franco. Forests 10(7), 538. https://doi.org/10.3390/f10070538.

Maxwell, R.S., Larsson, L.A., 2021. Measuring tree-ring widths using the CooRecorder software application. Dendrochronologia 67, 125841. https://doi.org/10.1016/j.dendro.2021.125841.

Mitchell, S.J., 2013. Wind as a natural disturbance agent in forests: a synthesis. Forestry 86(2), 147–157. https://doi.org/10.1093/forestry/cps058.

Nowacki, G.J., Abrams, M.D., 1997. Radial-growth averaging criteria for reconstructing disturbance histories from presettlement-origin oaks. Ecol. Monogr. 67(2), 225–249. https://doi.org/10.1890/0012-9615(1997)067[0225:RGACFR]2.0.CO;2.

Parada-Díaz, J., Kluge, J., Bello-Rodríguez, V., Del Arco Aguilar, M.J., González-Mancebo, J.M., 2021. To what extent does the species composition of Macaronesian laurel forests depend on their human disturbance history and environmental drivers?. For. Ecol. Manag. 497, 119468. https://doi.org/10.1016/j.foreco.2021.119468.

Parsons, J.J., 1981. Human influences on the pine and laurel forests of the Canary Islands. Geogr. Rev. 71(3), 253–271. https://doi.org/10.2307/214699.

Pavão, D.C., Jevšenak, J., Engblom, J., Borges Silva, L., Elias, R.B., Silva, L., 2023. Tree growth-climate relationship in the Azorean holly in a temperate humid forest with low thermal amplitude. Dendrochronologia 77, 126050. https://doi.org/10.1016/j.dendro.2022.126050.

Pavão, D.C., Jevšenak, J., Borges Silva, L., Elias, R.B., Silva, L., 2023. Climate-growth relationships in Laurus azorica – a dominant tree in the Azorean laurel forest. Forests 14, 166. https://doi.org/10.3390/f14020166.

Pomeda-Gutiérrez, F., Medina, F.M., Nogales, M., Vargas, P., 2021. Diet of the black rat (Rattus rattus) in a Canary laurel forest: species identification based on morphological markers and DNA sequences. J. Nat. Hist. 55(9–10), 629–648. https://doi.org/10.1080/00222933.2021.1915400.

Poorter, L., Craven, D., Jakovac, C.C., van der Sande, M.T., Amissah, L., Bongers, F., Chazdon, R.L., Farrior, C.E., Kambach, S., Meave, J.A., Muñoz, R., Norden, N., Ruger, N., van Breugel, M., Zambrano, A.M.A., Amani, B., Andrade, J.L., Brancalion, P.H.S., Broadbent, E.N., de Foresta, H., Dent, D.H., Derroire, G., DeWalt, S.J., Dupuy, J.M., Duran, S.M., Fantini, A.C., Finegan, B., Hernandez-Jaramillo, A., Hernandez-Stefanoni, J.L., Hietz, P., Junqueira, A.B., N'dja, J.K., Letcher, S.G., Lohbeck, M., Lopez-Camacho, R., Martinez-Ramos, M., Melo, F.P.L., Mora, F., Muller, S.C., N'Guessan, A.E., Oberleitner, F., Ortiz-Malavassi, E., Perez-Garcia, E.A., Pinho, B.X., Piotto, D., Powers, J.S., Rodriguez-Buritica, S., Rozendaal, D.M.A., Ruiz, J., Tabarelli, M., Teixeira, H.M., Sampaio, E.V.D.B., van der Wal, H., Villa, P.M., Fernandes, G.W., Santos, B.A., Aguilar-Cano, J., de Almeida-Cortez, J.S., Alvarez-Davila, E., Arreola-Villa, F., Balvanera, P., Becknell, J.M., Cabral, G.A.L., Castellanos-Castro, C., de Jong, B.H.J., Nieto, J.E., Espirito-Santo, M.M., Fandino, M.C., Garcia, H., Garcia-Villalobos, D., Hall, J.S., Idarraga, A., Jimenez-Montoya, J., Kennard, D., Marin-Spiotta, E., Mesquita, R., Nunes, Y.R.F., Ochoa-Gaona, S., Pena-Claros, M., Perez-Cardenas, N., Rodriguez-Velazquez, J., Villanueva, L.S., Schwartz, N.B., Steininger, M.K., Veloso, M.D.M., Vester, H.F.M., Vieira, I.C.G., Williamson, G.B., Zanini, K., Herault, B., 2021. Multidimensional tropical forest recovery. Science 374, 1370–1376. https://doi.org/10.1126/science.abh3629.

Pupo-Correia, A., 2016. Evolution of the Landscape of Madeira Island. Long-term vegetation dynamics. PhD thesis. Universidad de Madeira, Funchal. 324 pp. http://hdl.handle.net/10400.13/1187.
R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/.

Rau, E.P., Gardiner, B.A., Fischer, F.J., Maréchaux, I., Joetzjer, E., Sun, I.-F., Chave, J., 2022. Wind speed controls forest structure in a subtropical forest exposed to cyclones: a case study using an individual-based model. Front. For. Glob. Change 5, 753100. https://doi.org/10.3389/ffgc.2022.753100.

Richards, M., 2002. From war culture to civil society: francoism, social change and memories of the Spanish Civil War. Hist. Mem. 14(1–2), 93–120. https://www.jstor.org/stable/10.2979/his.2002.14.1-2.93 (Accessed Feb 11, 2023).
DOI

Ritter, A., Regalado, C.M., Aschan, G., 2008. Fog water collection in a subtropical elfin laurel forest of the Garajonay National Park (Canary Islands): a combined approach using artificial fog catchers and a physically-based impaction model. J. Hydrometeorol. 9, 920–935. https://doi.org/10.1175/2008JHM992.1.

Rodríguez Delgado, O., Naranjo Cigala, A., Salas, M., Cáceres, M.T., 2005. Evolución y aprovechamientos de la vegetación canaria, derivados del cultivo de la caña de azúcar. In: Vieira, A. (Ed. ), O açúcar e o quotidiano. Actas do Ⅲ Seminário Internaciónal sobre a historia do açúcar. Centro de Estudios de Historias del Atlántico, Funchal, pp. 283–302. https://www.academia.edu/9962169/Evoluci%C3%B3n_y_aprovechamiento_de_la_vegetaci%C3%B3n_canaria_Derivados_del_cultivo_de_la_ca%C3%B1a_de_az%C3%BAcar. (Accessed 13 January 2023).

Rozas, V., 2004. A dendroecological reconstruction of age structure and past management in an old-growth pollarded parkland in northern Spain. For. Ecol. Manag. 195(1–2), 205–219. https://doi.org/10.1016/j.foreco.2004.02.058.

Rudel, T.K., Coomes, O.T., Moran, E., Achar, F., Angelsen, A., Xu, J., Lambin, E., 2005. Forest transitions: towards a global understanding of land use change. Global Environ. Change 15(1), 23–31. https://doi.org/10.1016/j.gloenvcha.2004.11.001.

Sangüesa-Barreda, G., Esper, J., Büntgen, U., Camarero, J.J., Di Filippo, A., Baliva, M., Piovesan, G., 2020. Climate-human interactions contributed to historical forest recruitment dynamics in Mediterranean subalpine ecosystems. Global Change Biol. 26(9), 4988–4997. https://doi.org/10.1111/gcb.15246.

Schwinning, S., Kelly, C.K., 2013. Plant competition, temporal niches and implications for productivity and adaptability to climate change in water-limited environments. Funct. Ecol. 27(4), 886–897. https://doi.org/10.1111/1365-2435.12115.

Shiels, A.B., González, G., 2014. Understanding the key mechanisms of tropical forest responses to canopy loss and biomass deposition from experimental hurricane effects. For. Ecol. Manag. 332, 1–10. https://doi.org/10.1016/j.foreco.2014.04.024.

Shiels, A.B., González, G., Lodge, D.J., Willig, M.R., Zimmerman, J.K., 2015. Cascading effects of canopy opening and debris deposition from a large-scale hurricane experiment in a tropical rain forest. Bioscience 65(9), 871–881. https://doi.org/10.1093/biosci/biv111.

Speer, J.H., 2010. Fundamentals of Tree Ring Research. The University of Arizona Press, Tucson. https://uapress.arizona.edu/book/fundamentals-of-tree-ring-research. (Accessed 13 January 2023).

Steinbauer, M.J., Otto, R., Naranjo-Cigala, A., Beierkuhnlein, C., Fernández-Palacios, J.M., 2012. Increase of island endemism with altitude - speciation processes on oceanic islands. Ecography 35(1), 23–32. https://doi.org/10.1111/j.1600-0587.2011.07064.x.

Stritih, A., Senf, C., Seidl, R., Grêt-Regamey, A., Bebi, P., 2021. The impact of land-use legacies and recent management on natural disturbance susceptibility in mountain forests. For. Ecol. Manag. 484, 118950. https://doi.org/10.1016/j.foreco.2021.118950.

Sturtevant, B.R., Fortin, M.-J., 2021. Understanding and modeling forest disturbance interactions at the landscape level. Front. Ecol. Evol. 9, 653647. https://doi.org/10.3389/fevo.2021.653647.

Thompson, J., Brokaw, N., Zimmerman, J.K., Waide, R.B., Everham, E.M., Lodge, D.J., Taylor, C.M., García-Montiel, D.C., Fluet, M., 2002. Land use history, environment, and tree composition in a tropical forest. Ecol. Appl. 12(5), 1344–1363. https://doi.org/10.2307/3099976.

Yu, M., Gao, Q., 2020. Topography, drainage capability, and legacy of drought differentiate tropical ecosystem response to and recovery from major hurricanes. Environ. Res. Lett. 15, 104046. https://doi.org/10.1088/1748-9326/abae2c.

Zielonka, T., Holeksa, J., Fleischer, P., Kapusta, P., 2010. A tree-ring reconstruction of wind disturbances in a forest of the Slovakian Tatra Mountains, Western Carpathians. J. Veg. Sci. 21(1), 31–42. https://doi.org/10.1111/j.1654-1103.2009.01121.x.

Zimmerman, J.K., Hogan, J.A., Shiels, A.B., Bithorn, J.E., Matta Carmona, S., Brokaw, N., 2014. Seven-year responses of trees to experimental hurricane effects in a tropical rainforest, Puerto Rico. For. Ecol. Manag. 332, 64–74. https://doi.org/10.1016/j.foreco.2014.02.029.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 09 February 2023
Accepted: 11 February 2023
Published: 18 February 2023
Issue date: February 2023

Copyright

© 2023 The Authors.

Acknowledgements

Acknowledgements

We thank the Cabildo de Tenerife and the Rural Parks of Anaga and Teno for authorization to collect tree-ring samples and for field assistance. We thank Lara del Valle, Jon Díez, Daniel López, Diego Muñoz and Javier Muñoz for assistance with fieldwork, and Juan Carlos Rubio and Alfonso Martínez for assistance with sample preparation.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return