Journal Home > Volume 10 , Issue 2
Background

The Iberian Peninsula comprises one of the largest boundaries between Mediterranean and Eurosiberian vegetation, known as sub-Mediterranean zone. This ecotone hosts many unique plant species and communities and constitutes the low-latitude (warm) margin of numerous central European species which co-occur with Mediterranean vegetation. Two of the main species found in this region are the Eurosiberian European beech (Fagus sylvatica L.) and the Mediterranean Pyrenean oak (Quercus pyrenaica Willd.). It remains unclear how the different physiological and adaptive strategies of these two species reflect their niche partitioning within a sub-Mediterranean community and to what extent phenotypic variation (intraspecific variability) is driving niche partitioning across Eurosiberian and Mediterranean species.

Methods

We quantified functional niche partitioning, based on the n-dimensional hypervolume to nine traits related to resource acquisition strategies (leaf, stem and root) plus relative growth rate as an additional whole-plant trait, and the environmental niche similarity between Pyrenean oak and European beech. Further, we analyzed the degree of phenotypic variation of both target species and its relationship with relative growth rates (RGR) and environmental conditions. Plant recruitment was measured for both target species as a proxy for the average fitness.

Results

Species' functional space was highly segregated (13.09% overlap), mainly due to differences in niche breadth (59.7%) rather than niche replacement (25.6%), and beech showed higher trait variability, i.e., had larger functional space. However, both species shared the environmental space, i.e., environmental niches were overlapped. Most plant traits were not related to abiotic variables or RGR, neither did RGR to plant traits.

Conclusions

Both target species share similar environmental space, however, show notably different functional resource-use strategies, promoting a high complementarity that contributes to maintaining a high functionality in sub-Mediterranean ecosystems. Therefore, we propose that conservation efforts be oriented to preserve both species in these habitats to maximize ecosystem functionality and resilience.


menu
Abstract
Full text
Outline
About this article

Fagus sylvatica and Quercus pyrenaica: Two neighbors with few things in common

Show Author's information Sergio de Tomás Marína( )Jesús Rodríguez-CalcerradabSalvador Arenas-CastrocIván PrietodGuillermo GonzálezbLuis GilbEnrique G. de la Rivaa,d
Department of Ecology, Brandenburgische Technische Universität Cottbus-Senftenberg, Konrad-Wachsmann-Allee 6, 03046, Cottbus, Germany
Forest Genetics and Ecophysiology Research Group, School of Forestry Engineering, Universidad Politécnica de Madrid, Madrid, Spain
Area of Ecology, Botany Department, Ecology and Plant Physiology, Faculty of Sciences, Universidad de Córdoba, Córdoba, Spain
Ecology Department, Faculty of Biology and Environmental Sciences, Universidad de León, León, Spain

Abstract

Background

The Iberian Peninsula comprises one of the largest boundaries between Mediterranean and Eurosiberian vegetation, known as sub-Mediterranean zone. This ecotone hosts many unique plant species and communities and constitutes the low-latitude (warm) margin of numerous central European species which co-occur with Mediterranean vegetation. Two of the main species found in this region are the Eurosiberian European beech (Fagus sylvatica L.) and the Mediterranean Pyrenean oak (Quercus pyrenaica Willd.). It remains unclear how the different physiological and adaptive strategies of these two species reflect their niche partitioning within a sub-Mediterranean community and to what extent phenotypic variation (intraspecific variability) is driving niche partitioning across Eurosiberian and Mediterranean species.

Methods

We quantified functional niche partitioning, based on the n-dimensional hypervolume to nine traits related to resource acquisition strategies (leaf, stem and root) plus relative growth rate as an additional whole-plant trait, and the environmental niche similarity between Pyrenean oak and European beech. Further, we analyzed the degree of phenotypic variation of both target species and its relationship with relative growth rates (RGR) and environmental conditions. Plant recruitment was measured for both target species as a proxy for the average fitness.

Results

Species' functional space was highly segregated (13.09% overlap), mainly due to differences in niche breadth (59.7%) rather than niche replacement (25.6%), and beech showed higher trait variability, i.e., had larger functional space. However, both species shared the environmental space, i.e., environmental niches were overlapped. Most plant traits were not related to abiotic variables or RGR, neither did RGR to plant traits.

Conclusions

Both target species share similar environmental space, however, show notably different functional resource-use strategies, promoting a high complementarity that contributes to maintaining a high functionality in sub-Mediterranean ecosystems. Therefore, we propose that conservation efforts be oriented to preserve both species in these habitats to maximize ecosystem functionality and resilience.

Keywords: Forest dynamics, European beech, Species coexistence, Environmental niche, Functional niche, Hypervolume, Pyrenean oak, Sub-Mediterranean community

References(174)

Albert, R.E.I.F., Xystrakis, F., Gaertner, S., Sayer, U., 2017. Floristic change at the drought limit of European beech (Fagus sylvatica L.) to downy oak (Quercus pubescens) forest in the temperate climate of central Europe. Not. Bot. Horti. Agrobo. 45 (2), 646-654. https://doi.org/10.15835/nbha45210971.

Améztegui, A., Brotons, L., Coll, L., 2010. Land-use changes as major drivers of mountain pine (Pinus uncinata Ram.) expansion in the Pyrenees. Global Ecol. Biogeogr. 19 (5), 632-641. https://doi.org/10.1111/j.1466-8238.2010.00550.

Aranda, I., 1998. Comportamiento ecofisiológico de F. sylvatica L. y Q. petraea (Matt) Liebl. en el «Hayedo de Montejo de la Sierra» (CAM). Doctoral dissertation, Universidad Politécnica de Madrid, Madrid.

Aranda, I., Gil, L., Pardos, J., 1996. Seasonal water relations of three broadleaved species (Fagus sylvatica L., Quercus petraea (Mattuschka) Liebl. and Quercus pyrenaica Willd.) in a mixed stand in the centre of the Iberian Peninsula. For. Ecol. Manag. 84 (1–3), 219-229. https://doi.org/10.1016/0378-1127(96)03729-2.

Aranda, I., Gil, L., Pardos, J.A., 2000. Water relations and gas exchange in Fagus sylvatica L. and Quercus petraea (Mattuschka) Liebl. in a mixed stand at their southern limit of distribution in Europe. Trees (Berl.) 14 (6), 344-352. https://doi.org/10.1007/s004680050229.

Aranda, I., Bergasa, L.F., Gil, L., Pardos, J.A., 2001. Effects of relative irradiance on the leaf structure of Fagus sylvatica L. seedlings planted in the understory of a Pinus sylvestris L. stand after thinning. Ann. For. Sci. 58 (6), 673-680. https://doi.org/10.1051/forest:2001154.

Aranda, I., Gil, L., Pardos, J.A., 2002. Physiological responses of Fagus sylvatica L. seedlings under Pinus sylvestris L. and Quercus pyrenaica Willd. overstories. For. Ecol. Manag. 162 (2–3), 153-164. https://doi.org/10.1016/S0378-1127(01)00502-3.

Aranda, I., Gil, L., Pardos, J.A., 2005. Seasonal changes in apparent hydraulic conductance and their implications for water use of European beech (Fagus sylvatica L.) and sessile oak [Quercus petraea (Matt.) Liebl] in South Europe. Plant Ecol. 179 (2), 155-167. https://doi.org/10.1007/s11258-004-7007-1.

Aranda, I., Rodríguez Calcerrada, J., Robson, T.M., Cano, F.J., Sánchez Gómez, D., 2013. Revisión de los aspectos funcionales de la respuesta a la sequía en Fagus sylvatica. Sociedad Española de Ciencias Forestales, 6℃ongreso Forestal Español, ISBN 978-84-937964-9-5.

Aranda, I., Cadahía, E., de Simón, B.F., 2020. Leaf ecophysiological and metabolic response in Quercus pyrenaica Willd seedlings to moderate drought under enriched CO2 atmosphere. J. Plant Physiol. 244, 153083. https://doi.org/10.1016/j.jplph.2019.153083.

Barton, K., Barton, M.K., 2015. Package 'MuMIn'; version 1.43.17. https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf. (Accessed 5 January 2022).

Benito Garzón, M., Sánchez de Dios, R., Sainz Ollero, H., 2008. Effects of climate change on the distribution of Iberian tree species. Appl. Veg. Sci. 11 (2), 169-178. https://doi.org/10.3170/2008-7-18348.

Bensharada, M., Telford, R., Stern, B., Gaffney, V., 2022. Loss on ignition vs. thermogravimetric analysis: a comparative study to determine organic matter and carbonate content in sediments. J. Paleolimnol. 67 (2), 191-197. https://doi.org/10.1007/s10933-021-00209-6.

Bittebiere, A.K., Saiz, H., Mony, C., 2019. New insights from multidimensional trait space responses to competition in two clonal plant species. Funct. Ecol. 33 (2), 297-307. https://doi.org/10.1111/1365-2435.13220.

Blonder, B., 2018. Hypervolume concepts in niche- and trait-based ecology. Ecography 41 (9), 1441-1455. https://doi.org/10.1111/ecog.03187.

Blonder, B., Lamanna, C., Violle, C., Enquist, B.J., 2014. The n-dimensional hypervolume. Global Ecol. Biogeogr. 23 (5), 595-609. https://doi.org/10.1111/geb.12146.

Blonder, B., Kapas, R.E., Dalton, R.M., Graae, B.J., Heiling, J.M., Opedal, Ø. H., 2018a. Microenvironment and functional-trait context dependence predict alpine plant community dynamics. J. Ecol. 106 (4), 1323-1337. https://doi.org/10.1111/1365-2745.12973.

Blonder, B., Morrow, C.B., Maitner, B., Harris, D.J., Lamanna, C., Violle, C., Enquist, B.J., Kerkhoff, A.J., 2018b. New approaches for delineating n-dimensional hypervolumes. Methods Ecol. Evol. 9 (2), 305-319. https://doi.org/10.1111/2041-210X.12865.

Bohn, U., Welß, W., 2003. Die potenzielle natürliche Vegetation. Klima, Pflanzen-und Tierwelt. In: LEIBNITZ-INSTITUT FÜR LÄN-DERKUNDE [Hrsg.]: Nationalatlas Bundesrepublik Deutschland 3, 84-87.

Bongers, F.J., Schmid, B., Bruelheide, H., Bongers, F., Li, S., von Oheimb, G., Li, Y., Cheng, A., Ma, K., Liu, X., 2021. Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nat. Ecol. Evol. 5 (12), 1594-1603. https://doi.org/10.1038/s41559-021-01564-3.

Bresson, C.C., Vitasse, Y., Kremer, A., Delzon, S., 2011. To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech? Tree Physiol. 31 (11), 1164-1174. https://doi.org/10.1093/treephys/tpr084.

Brockerhoff, E.G., Barbaro, L., Castagneyrol, B., Forrester, D.I., Gardiner, B., González-Olabarria, J.R., Lyver, P. O'B., Meurisse, N., Oxbrough, A., Taki, H., Thompson, I.D., van der Plas, F., Jactel, H., 2017. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 26 (13), 3005-3035. https://doi.org/10.1007/s10531-017-1453-2.

Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., Petitpierre, B., Pellissier, L., Yoccoz, N.G., Thuiller, W., Fortin, M.J., Randin, C., Zimmermann, N.E., Graham, C.H., Guisan, A., 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecol. Biogeogr. 21 (4), 481-497. https://doi.org/10.1111/j.1466-8238.2011.00698.x.

Brown, M.J., Holland, B.R., Jordan, G.J., 2020. HYPEROVERLAP: detecting biological overlap in n-dimensional space. Methods Ecol. Evol. 11 (4), 513-523. https://doi.org/10.1111/2041-210X.13363.

Calvo, L., Santalla, S., Marcos, E., Valbuena, L., Tárrega, R., Luis, E., 2003. Regeneration after wildfire in communities dominated by Pinus pinaster, an obligate seeder, and in others dominated by Quercus pyrenaica, a typical resprouter. For. Ecol. Manag. 184 (1–3), 209-223. https://doi.org/10.1016/S0378-1127(03)00207-X.

Camarero, J.J., Gazol, A., Sangüesa-Barreda, G., Vergarechea, M., Alfaro-Sánchez, R., Cattaneo, N., Vicente-Serrano, S.M., 2021. Tree growth is more limited by drought in rear-edge forests most of the times. For. Ecosyst. 8, 25. https://doi.org/10.1186/s40663-021-00303-1.

Camisón, Á., Miguel, R., Marcos, J.L., Revilla, J., Tardáguila, M. Á., Hernández, D., Lakicevic, M., Jovellar, L.C., Silla, F., 2015. Regeneration dynamics of Quercus pyrenaica Willd. in the central system (Spain). For. Ecol. Manag. 343, 42-52. https://doi.org/10.1016/j.foreco.2015.01.023.

Cano, F.J., Sánchez-Gómez, D., Rodríguez-Calcerrada, J., Warren, C.R., Gil, L., Aranda, I., 2013. Effects of drought on mesophyll conductance and photosynthetic limitations at different tree canopy layers. Plant Cell Environ. 36 (11), 1961-1980. https://doi.org/10.1111/pce.12103.

Carmona, C.P., de Bello, F., Mason, N.W., Lepš, J., 2016. Traits without borders: integrating functional diversity across scales. Trends Ecol. Evol. 31 (5), 382-394. https://doi.org/10.1016/j.tree.2016.02.003.

Carmona, C.P., de Bello, F., Mason, N.W., Lepš, J., 2019. Trait probability density (TPD): measuring functional diversity across scales based on TPD with R. Ecology 100 (12), e02876. https://doi.org/10.1002/ecy.2876.

Carter, J.L., White, D.A., 2009. Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth. Tree Physiol. 29 (11), 1407-1418. https://doi.org/10.1093/treephys/tpp076.

Carvalho, J.C., Cardoso, P., 2020. Decomposing the causes for niche differentiation between species using hypervolumes. Front. Ecol. Evol. 8, 243. https://doi.org/10.3389/fevo.2020.00243.

Carvalho, B., Bastias, C.C., Escudero, A., Valladares, F., Benavides, R., 2020. Intraspecific perspective of phenotypic coordination of functional traits in Scots pine. PLoS One 15, e0228539. https://doi.org/10.1371/journal.pone.0228539.

Casson, S., Gray, J.E., 2008. Influence of environmental factors on stomatal development. New Phytol. 178 (1), 9-23. https://doi.org/10.1111/j.1469-8137.2007.02351.x.

Castaño-Santamaría, J., López-Sánchez, C.A., Obeso, J.R., Barrio-Anta, M., 2021. Structure, environmental patterns and impact of expected climate change in natural beech-dominated forests in the Cantabrian Range (NW Spain). For. Ecol. Manag. 497, 119512. https://doi.org/10.1016/j.foreco.2021.119512.

Castro, J., Zamora, R., Hódar, J.A., 2006. Restoring Quercus pyrenaica forests using pioneer shrubs as nurse plants. Appl. Veg. Sci. 9 (1), 137-142. https://doi.org/10.1111/j.1654-109X.2006.tb00663.x.

Cavender-Bares, J., Ackerly, D.D., Hobbie, S.E., Townsend, P.A., 2016. Evolutionary legacy effects on ecosystems: biogeographic origins, plant traits, and implications for management in the era of global change. Annu. Rev. Ecol. Evol. Syst. 47, 433-462. https://doi.org/10.1146/annurev-ecolsys-121415-032229.

Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., 2009. Towards a worldwide wood economics spectrum. Ecol. Lett. 12 (4), 351-366. https://doi.org/10.1111/j.1461-0248.2009.01285.

Chesson, P., 2000. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Systemat. 31 (1), 343-366. https://doi.org/10.1146/annurev.ecolsys.31.1.343.

Cocozza, C., De Miguel, M., Pšidová, E., Ditmarová, L.U., Marino, S., Maiuro, L., Alvino, A., Czajkowski, T., Bolte, A., Tognetti, R., 2016. Variation in ecophysiological traits and drought tolerance of beech (Fagus sylvatica L.) seedlings from different populations. Front. Plant Sci. 7, 886. https://doi.org/10.3389/fpls.2016.00886.

Corcuera, L., Camarero, J.J., Sisó, S., Gil-Pelegrín, E., 2006. Radial-growth and wood-anatomical changes in overaged Quercus pyrenaica coppice stands: functional responses in a new Mediterranean landscape. Trees (Berl.) 20 (1), 91-98. https://doi.org/10.1007/s00468-005-0016-4.

Curt, T., Coll, L., Prévosto, B., Balandier, P., Kunstler, G., 2005. Plasticity in growth, biomass allocation and root morphology in beech seedlings as induced by irradiance and herbaceous competition. Ann. For. Sci. 62 (1), 51-60. https://doi.org/10.1051/forest:2004092.

de la Riva, E.G., Tosto, A., Pérez-Ramos, I.M., Navarro-Fernández, C.M., Olmo, M., Anten, N.P., Marañón, T., Villar, R., 2016. A plant economics spectrum in Mediterranean forests along environmental gradients: is there coordination among leaf, stem and root traits? J. Veg. Sci. 27 (1), 187-199. https://doi.org/10.1111/jvs.12341.

de la Riva, E.G., Marañón, T., Violle, C., Villar, R., Pérez-Ramos, I.M., 2017. Biogeochemical and ecomorphological niche segregation of Mediterranean woody species along a local gradient. Front. Plant Sci. 8, 1242.

de la Riva, E.G., Marañón, T., Pérez-Ramos, I.M., Navarro-Fernández, C.M., Olmo, M., Villar, R., 2018a. Root traits across environmental gradients in Mediterranean woody communities: are they aligned along the root economics spectrum? Plant Soil 424 (1), 35-48. https://doi.org/10.1007/s11104-017-3433-4.

de la Riva, E.G., Violle, C., Pérez-Ramos, I.M., Marañón, T., Navarro-Fernández, C., Olmo, M., Villar, R., 2018b. A multidimensional functional trait approach reveals the imprint of environmental stress in Mediterranean woody plant communities. Ecosystems 21, 248-262. https://doi.org/10.1007/s10021-017-0147-7.

de la Riva, E.G., Prieto, I., Marañón, T., Pérez-Ramos, I.M., Olmo, M., Villar, R., 2021a. Root economics spectrum and construction costs in Mediterranean woody plants: the role of symbiotic associations and the environment. J. Ecol. 109 (4), 1873-1885. https://doi.org/10.1111/1365-2745.13612.

de la Riva, E.G., Querejeta, J.I., Villar, R., Pérez-Ramos, I.M., Marañón, T., Galán Díaz, J., de Tomás Marín, S., Prieto, I., 2021b. The economics spectrum drives root trait strategies in Mediterranean vegetation. Front. Plant Sci. 12, 773118. https://doi.org/10.3389/fpls.2021.773118.

Delpiano, C.A., Prieto, I., Loayza, A.P., Carvajal, D.E., Squeo, F.A., 2020. Different responses of leaf and root traits to changes in soil nutrient availability do not converge into a community-level plant economics spectrum. Plant Soil 450 (1), 463-478. https://doi.org/10.1007/s11104-020-04515-2.

Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F.T., d'Amen, M., Randin, C., Engler, R., Pottier, J., Pio, D., Dubuis, A., Pellissier, L., Mateo, R.G., Hordijk, W., Salamin, N., Guisan, A., 2017. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40 (6), 774-787. https://doi.org/10.1111/ecog.02671.

Didion, M., Kupferschmid, A.D., Wolf, A., Bugmann, H., 2011. Ungulate herbivory modifies the effects of climate change on mountain forests. Clim. Change 109 (3), 647-669. https://doi.org/10.1007/s10584-011-0054-4.

Dorado-Liñán, I., Zorita, E., Martínez-Sancho, E., Gea-Izquierdo, G., Di Filippo, A., Gutiérrez, E., Levanič, T., Piovesan, G., Vacchiano, G., Zang, C., Zlatanov, T., Menzel, A., 2017. Large-scale atmospheric circulation enhances the Mediterranean East-West tree growth contrast at rear-edge deciduous forests. Agri. For. Meteorol. 239, 86-95. https://doi.org/10.1016/j.agrformet.2017.02.029.

Dorado-Liñán, I., Piovesan, G., Martínez-Sancho, E., Gea-Izquierdo, G., Zang, C., Cañellas, I., Castagneri, D., Di Filippo, A., Gutiérrez, E., Ewald, J., Fernández-de-Uña, L., Hornstein, D., Jantsch, M.C., Levanič, T., Mellert, K.H., Vacchiano, G., Zlatanov, T., Menzel, A., 2019. Geographical adaptation prevails over species-specific determinism in trees' vulnerability to climate change at Mediterranean rear-edge forests. Global Change Biol. 25 (4), 1296-1314. https://doi.org/10.1111/gcb.14544.

Durrant, T.H., De Rigo, D., Caudullo, G., 2016. Fagus sylvatica in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg.
Ellenberg, H.H., 1988. Vegetation Ecology of Central Europe. Cambridge University Press.

Falk, W., Hempelmann, N., 2013. Species favourability shift in Europe due to climate change: a case study for Fagus sylvatica L. and Picea abies (L.) Karst. based on an ensemble of climate models. J. Climatol. 2013, 787250. https://doi.org/10.1155/2013/787250.

Farquhar, G.D., Ehleringer, J.R., Hubick, K.T., 1989. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Biol. 40 (1), 503-537. https://doi.org/10.1146/annurev.pp.40.060189.002443.

Fréjaville, T., Vizcaíno-Palomar, N., Fady, B., Kremer, A., Benito Garzón, M., 2020. Range margin populations show high climate adaptation lags in European trees. Global Change Biol. 26 (2), 484-495. https://doi.org/10.1111/gcb.14881.

Freschet, G.T., Roumet, C., Comas, L.H., Weemstra, M., Bengough, A.G., Rewald, B., Bardgett, R.D., De Deyn, G.B., Johnson, D., Klimešova, J., Lukac, M., McCormack, M.L., Meier, I.C., Pagès, L., Poorter, H., Prieto, I., Wurzburger, N., Zadworny, M., Bagniewska-Zadworna, A., Blancaflor, E.B., Brunner, I., Gessler, A., Hobbie, S.E., Iversen, C.M., Mommer, L., Picon-Cochard, C., Postma, J.A., Rose, L., Ryser, P., Scherer-Lorenzen, M., Soudzilovskaia, N.A., Sun, T., Valverde-Barrantes, O.J., Weiglet, A., York, L.M., Stokes, A., 2021. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytol. 232 (3), 1123-1158. https://doi.org/10.1111/nph.17072.

Galán Díaz, J., de la Riva, E.G., Funk, J.L., Vilà, M., 2021. Functional segregation of resource-use strategies of native and invasive plants across Mediterranean biome communities. Biol. Invasions 23 (1), 253-266. https://doi.org/10.1007/s10530-020-02368-5.

García, I., Jiménez, P., Robledales de Quercus pyrenaica y robledales de Quercus robur y Quercus pyrenaica del Noroeste Ibérico. En: VV. AA., Bases Ecológicas Preliminares para la Conservación de los Tipos de Hábitat de Interés Comunitario en España. Madrid: Ministerio de Medio Ambiente y Medio Rural y Marino, p. 66. ISBN: 978-84-491-0911-9.

Garnier, E., Navas, M.L., 2012. A trait-based approach to comparative functional plant ecology: concepts, methods and applications for agroecology. A review. Agron. Sustain. Dev. 32 (2), 365-399. https://doi.org/10.1007/s13593-011-0036-y.

Gavilán, R.G., Vilches, B., Gutiérrez-Girón, A., Blanquer, J.M., Escudero, A., 2018. Sclerophyllous versus deciduous forests in the Iberian Peninsula: a standard case of Mediterranean climatic vegetation distribution. In: Greller, A.M., Fujiwara, K., Pedrotti, F. (Eds.), Geographical Changes in Vegetation and Plant Functional Types. Springer, Cham, pp. 101–116. https://doi.org/10.1007/978-3-319-68738-4_5.
DOI

Gea-Izquierdo, G., Aranda, I., Cañellas, I., Dorado-Liñán, I., Olano, J.M., Martin-Benito, D., 2021. Contrasting species decline but high sensitivity to increasing water stress on a mixed pine–oak ecotone. J. Ecol. 109 (1), 109-124. https://doi.org/10.1111/1365-2745.13450.

Gil, L., Náger, J.A., González Doncel, I., Aranda García, I., Gonzalo Jiménez, J., López de Heredia, U., Millerón, M., Nanos, N., García-Calvo, R.P., Rodríguez Calcerrada, J., Valbuena Carabaña, M., 2010. El hayedo de Montejo: una Gestión Sostenible. Dirección General de Medio Ambiente, Universidad Politécnica de Madrid, Madrid. ISBN: 978-84-451-3218-0.

González-González, B.D., Rozas, V., García-González, I., 2014. Earlywood vessels of the sub-Mediterranean oak Quercus pyrenaica have greater plasticity and sensitivity than those of the temperate Q. petraea at the Atlantic–Mediterranean boundary. Trees (Berl.) 28 (1), 237-252. https://doi.org/10.1007/s00468-013-0945-2.

Gray, L.K., Hamann, A., 2013. Tracking suitable habitat for tree populations under climate change in western North America. Clim. Change 117 (1), 289-303. https://doi.org/10.1007/s10584-012-0548-8.

Grueber, C.E., Nakagawa, S., Laws, R.J., Jamieson, I.G., 2011. Multimodel inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24 (4), 699-711. https://doi.org/10.1111/j.1420-9101.2010.02210.x.

Hacke, U., Sauter, J.J., 1995. Vulnerability of xylem to embolism in relation to leaf water potential and stomatal conductance in Fagus sylvatica f. purpurea and Populus balsamifera. J. Exp. Bot. 46 (9), 1177-1183. https://doi.org/10.1093/jxb/46.9.1177.

Hampe, A., 2004. Bioclimate envelope models: what they detect and what they hide. Global Ecol. Biogeogr. 13 (5), 469-471. https://doi.org/10.1111/j.1466-822X.2004.00090.x.

Helsen, K., Van Cleemput, E., Bassi, L., Graae, B.J., Somers, B., Blonder, B., Honnay, O., 2020. Inter-and intraspecific trait variation shape multidimensional trait overlap between two plant invaders and the invaded communities. Oikos 129 (5), 677-688. https://doi.org/10.1111/oik.06919.

Hernández Bermejo, J.E., Costa Tenorio, M., Sáinz Ollero, H., Clemente Muñoz, M., 1982. Catálogo florístico del hayedo de Montejo de la Sierra (provincia de Madrid). Lagascalia 11 (1), 3-65.

Hernández, L., Sánchez de Dios, R., Montes, F., Sainz-Ollero, H., Cañellas, I., 2017. Exploring range shifts of contrasting tree species across a bioclimatic transition zone. Eur. J. For. Res. 136 (3), 481-492. https://doi.org/10.1007/s10342-017-1047-2.

Hernández-Santana, V., Martínez-Fernández, J., Morán, C., Cano, A., 2008. Response of Quercus pyrenaica (melojo oak) to soil water deficit: a case study in Spain. Eur. J. For. Res. 127 (5), 369-378. https://doi.org/10.1007/s10342-008-0214-x.

Hope, A.C., 1968. A simplified Monte Carlo significance test procedure. J. Roy. Stat. Soc. Ser. B Methodol. 30 (3), 582-598. https://doi.org/10.1111/j.2517-6161.1968.tb00759.x.

Houba, V.J.G., Temminghoff, E.J.M., Gaikhorst, G.A., Van Vark, W., 2000. Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Commun. Soil Sci. Plant Anal. 31 (9–10), 1299-1396. https://doi.org/10.1080/00103620009370514.

Illés, G., Móricz, N., 2022. Climate envelope analyses suggests significant rearrangements in the distribution ranges of Central European tree species. Ann. For. Sci. 79, 35. https://doi.org/10.1186/s13595-022-01154-8.

Jackson, R.B., Sperry, J.S., Dawson, T.E., 2000. Root water uptake and transport: using physiological processes in global predictions. Trends Plant Sci. 5 (11), 482-488. https://doi.org/10.1016/S1360-1385(00)01766-0.

Jiménez, P., Díaz-Fernández, P., Martín, S., Gil, L., 1998. Regiones de procedencia de Quercus pyrenaica Willd., Q. faginea Lam. y Q. canariensis Willd. Organismo Autónomo Parques Nacionales. Madrid, ES 311-98-007-4.

Jonsson, M., Bengtsson, J., Gamfeldt, L., Moen, J., Snäll, T., 2019. Levels of forest ecosystem services depend on specific mixtures of commercial tree species. Native Plants 5 (2), 141-147. https://doi.org/10.1038/s41477-018-0346-z.

Jung, V., Violle, C., Mondy, C., Hoffmann, L., Muller, S., 2010. Intraspecific variability and trait-based community assembly. J. Ecol. 98 (5), 1134-1140. https://doi.org/10.1111/j.1365-2745.2010.01687.x.

Kouba, Y., Camarero, J.J., Alados, C.L., 2012. Roles of land-use and climate change on the establishment and regeneration dynamics of Mediterranean semi-deciduous oak forests. For. Ecol. Manag. 274, 143-150. https://doi.org/10.1016/j.foreco.2012.02.033.

Kraft, N.J., Godoy, O., Levine, J.M., 2015. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl. Acad. Sci. USA 112 (3), 797-802. https://doi.org/10.1073/pnas.1413650112.

Kramer, K., Degen, B., Buschbom, J., Hickler, T., Thuiller, W., Sykes, M.T., de Winter, W., 2010. Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change—range, abundance, genetic diversity and adaptive response. For. Ecol. Manag. 259 (11), 2213-2222. https://doi.org/10.1016/j.foreco.2009.12.023.

Laureano, R.G., Lazo, Y.O., Linares, J.C., Luque, A., Martínez, F., Seco, J.I., Merino, J., 2008. The cost of stress resistance: construction and maintenance costs of leaves and roots in two populations of Quercus ilex. Tree Physiol. 28 (11), 1721-1728. https://doi.org/10.1007/s11104-012-1296-2.

Leuschner, C., Backes, K., Hertel, D., Schipka, F., Schmitt, U., Terborg, O., Runge, M., 2001. Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. For. Ecol. Manag. 149 (1–3), 33-46. https://doi.org/10.1016/S0378-1127(00)00543-0.

Lloret, F., de la Riva, E.G., Pérez-Ramos, I.M., Marañón, T., Saura-Mas, S., Díaz-Delgado, R., Villar, R., 2016. Climatic events inducing die-off in Mediterranean shrublands: are species' responses related to their functional traits? Oecologia 180 (4), 961-973. https://doi.org/10.1007/s00442-016-3550-4.

Loidi, J., 2017. The Vegetation of the Iberian Peninsula. Springer, Cham. https://doi.org/10.1007/978-3-319-54867-8.
DOI

Lorite, J., Salazar, C., Peñast, J., Valle, F., 2008. Phytosociological review on the forests of Quercus pyrenaica Willd. Acta Bot. Gall. 155 (2), 219-233. https://doi.org/10.1080/12538078.2008.10516105.

MacArthur, R., Levins, R., 1967. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101 (921), 377-385.

Mao, W., Zhao, X., Sun, Z., Felton, A.J., Zhang, T., Li, Y., Smith, M.D., 2018. Limiting similarity mediates plant community niche hypervolume across a desert-steppe ecotone of Inner Mongolia. Environ. Exp. Bot. 153, 320-326. https://doi.org/10.1016/j.envexpbot.2018.06.011.

Maracchi, G., Sirotenko, O., Bindi, M., 2005. Impacts of present and future climate variability on agriculture and forestry in the temperate regions: Europe. Clim. Change 70 (1), 117-135. https://doi.org/10.1007/1-4020-4166-7_6.

Martínez del Castillo, E., García-Martin, A., Aladrén, L.A.L., de Luis, M., 2015. Evaluation of forest cover change using remote sensing techniques and landscape metrics in Moncayo Natural Park (Spain). Appl. Geogr. 62, 247-255. https://doi.org/10.1016/j.apgeog.2015.05.002.

Mayfield, M.M., Levine, J.M., 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13 (9), 1085-1093. https://doi.org/10.1111/j.1461-0248.2010.01509.

McGill, B.J., Enquist, B.J., Weiher, E., Westoby, M., 2006. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21 (4), 178-185. https://doi.org/16/j.tree.2006.02.002.

Meier, I.C., Leuschner, C., 2008. Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Global Change Biol. 14 (9), 2081-2095. https://doi.org/10.1111/j.1365-2486.2008.01634.x.

Mencuccini, M., Rosas, T., Rowland, L., Choat, B., Cornelissen, H., Jansen, S., Kramer, K., Lapenis, A., Manzoni, S., Niinemets, Ü., Reich, P.B., Schrodt, F., Soudzilovskaia, N., Wright, I.J., Martínez-Vilalta, J., 2019. Leaf economics and plant hydraulics drive leaf: wood area ratios. New Phytol. 224 (4), 1544-1556. https://doi.org/10.1111/nph.15998.

Mey, R., Zell, J., Thürig, E., Stadelmann, G., Bugmann, H., Temperli, C., 2022. Tree species admixture increases ecosystem service provision in simulated spruce-and beech-dominated stands. Eur. J. For. Res. 141, 801-820. https://doi.org/10.1007/s10342-022-01474-4.

Meyer, P., Tabaku, V., Von Lupke, B., 2003. Die Struktur albanischer Rotbuchen-Urwälder – Ableitungen für eine naturnahe Buchenwirtschaft. Structural characteristics of Albanian beech (Fagus sylvatica L.) virgin forests — deductions for semi-natural forestry. Forstwiss. Cent. blatt 122 (1), 47-58. https://doi.org/10.1046/j.1439-0337.2003.02041.x.

Milios, E., Papalexandris, C., 2019. Height growth of sprouts emerged from small stumps and seed origin saplings under shade, in low elevation Fagus sylvatica L. s. l. stands in Greece. Dendrobiology 82, 1-7. https://doi.org/10.12657/denbio.082.001.

Millerón, M., López de Heredia, U., Lorenzo, Z., Perea, R., Dounavi, A., Alonso, J., Gil, L., Nanos, N., 2012. Effect of canopy closure on pollen dispersal in a wind-pollinated species (Fagus sylvatica L.). Plant Ecol. 213 (11), 1715-1728. https://doi.org/10.1007/s11258-012-0125-2.

Moreno, J. Á. C., de las Heras Puñal, P., Estébanez, N.L., Martín, M.J.R., 2005. Caracterizacion paisajistica y ecologica de la Sierra del Rincon (Madrid). Centro de Investigaciones Ambientales de la Comunidad de Madrid, Comunidad de Madrid. https://doi.org/10.13140/2.1.4707.2322.
Murphy, L., 2015. Package 'likelihood'; version 1.7. https://cran.r-project.org/web/packages/likelihood/likelihood.pdf. (Accessed 5 January 2022).

Nanos, N., Pardo, F., Nager, J.A., Pardos, J.A., Gil, L., 2005. Using multivariate factorial kriging for multiscale ordination: a case study. Can. J. For. Res. 35 (12), 2860-2874. https://doi.org/10.1139/x05-211.

Nock, C.A., Vogt, R.J., Beisner, B.E., 2016. Functional traits. eLS 1-8. https://doi.org/10.1002/9780470015902.a0026282.

Ohse, B., Seele, C., Holzwarth, F., Wirth, C., 2017. Different facets of tree sapling diversity influence browsing intensity by deer dependent on spatial scale. Ecol. Evol. 7 (17), 6779-6789. https://doi.org/10.1002/ece3.3217.

Packham, J.R., Thomas, P.A., Atkinson, M.D., Degen, T., 2012. Biological Flora of the British Isles: Fagus sylvatica. J. Ecol. 100 (6), 1557-1608. https://doi.org/10.1111/j.1365-2745.2012.02017.x.

Palombo, C., Chirici, G., Marchetti, M., Tognetti, R., 2013. Is land abandonment affecting forest dynamics at high elevation in Mediterranean mountains more than climate change? Plant Biosyst. 147 (1), 1-11. https://doi.org/10.1080/11263504.2013.772081.

Pardo, F., Gil, L., 2005. The impact of traditional land use on woodlands: a case study in the Spanish Central System. J. Hist. Geogr. 31 (3), 390-408. https://doi.org/10.1016/j.jhg.2004.11.002.

Pardo, F., Gil, L., Pardos, J.A., 1997. Field study of beech (Fagus sylvatica L.) and melojo oak (Quercus pyrenaica Willd) leaf litter decomposition in the centre of the Iberian Peninsula. Plant Soil 191 (1), 89-100. https://doi.org/10.1023/A:1004237305438.

Pardo, F., Gil, L., Pardos, J.A., 2004. Structure and composition of pole-stage stands developed in an ancient wood pasture in central Spain. Forestry 77 (1), 67-74. https://doi.org/10.1007/s13595-020-01004-5.

Pearman, P.B., Guisan, A., Broennimann, O., Randin, C.F., 2008. Niche dynamics in space and time. Trends Ecol. Evol. 23 (3), 149-158. https://doi.org/10.1016/j.tree.2007.11.005.

Peguero-Pina, J.J., Sisó, S., Sancho-Knapik, D., Díaz-Espejo, A., Flexas, J., Galmés, J., Gil-Pelegrín, E., 2015. Leaf morphological and physiological adaptations of a deciduous oak (Quercus faginea Lam.) to the Mediterranean climate: a comparison with a closely related temperate species (Quercus robur L.). Tree Physiol. 36 (3), 287-299. https://doi.org/10.1093/treephys/tpv107.

Peña-Angulo, D., Khorchani, M., Errea, P., Lasanta, T., Martínez-Arnáiz, M., Nadal-Romero, E., 2019. Factors explaining the diversity of land cover in abandoned fields in a Mediterranean mountain area. Catena 181, 104064. https://doi.org/10.1016/j.catena.2019.05.010.

Peñuelas, J., Boada, M., 2003. A global change-induced biome shift in the Montseny mountains (NE Spain). Global Change Biol. 9 (2), 131-140. https://doi.org/10.1046/j.1365-2486.2003.00566.x.

Peñuelas, J., Ogaya, R., Boada, M., Jump, S.A., 2007. Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography 30 (6), 829-837. https://doi.org/10.1111/j.2007.0906-7590.05247.x.

Perea, R., López-Sánchez, A., Pallarés, J., Gordaliza, G.G., González-Doncel, I., Gil, L., Rodríguez-Calcerrada, J., 2020. Tree recruitment in a drought-and herbivory-stressed oak-beech forest: implications for future species coexistence. For. Ecol. Manag. 477, 118489. https://doi.org/10.1016/j.foreco.2020.118489.

Pérez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M.S., Cornwell, W.K., Craine, J.M., Gurvich, D.E., Urcelay, C., Veneklaas, E.J., Reich, P.B., Poorter, L., Wright, I.J., Ray, P., Enrico, L., Pausas, J.G., de Vos, A.C., Buchmann, N., Funes, G., Quétier, F., Hodgson, J.G., Thompson, K., Morgan, H.D., ter Steege, H., van der Heijden, M.G.A., Sack, L., Blonder, B., Poschlod, P., Vaieretti, M.V., Conti, G., Staver, A.C., Aquino, S., Cornelissen, J.H.C., 2013. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167-234.

Pérez-Luque, A.J., Benito, B.M., Bonet-Garcia, F.J., Zamora, R., 2020. Ecological diversity within rear-edge: a case study from mediterranean Quercus pyrenaica Willd. Forests 12 (1), 10. https://doi.org/10.3390/f12010010.

Peuke, A.D., Gessler, A., Rennenberg, H., 2006. The effect of drought on C and N stable isotopes in different fractions of leaves, stems and roots of sensitive and tolerant beech ecotypes. Plant Cell Environ. 29 (5), 823-835. https://doi.org/10.1111/j.1365-3040.2005.01452.x.

Poorter, H., De Jong, R.O.B., 1999. A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity. New Phytol. 143 (1), 163-176. https://doi.org/10.1046/J.1469-8137.1999.00428.X.

Pratt, R.B., Jacobsen, A.L., Ewers, F.W., Davis, S.D., 2007. Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol. 174 (4), 787-798. https://doi.org/10.1111/j.1469-8137.2007.02061.

Prieto, I., Roumet, C., Cardinael, R., Dupraz, C., Jourdan, C., Kim, J.H., Maeght, J.L., Mao, Z., Pierret, A., Portillo, N., Roupsard, O., Thammahacksa, C., Stokes, A., 2015. Root functional parameters along a land-use gradient: evidence of a community-level economics spectrum. J. Ecol. 103 (2), 361-373. https://doi.org/10.1111/1365-2745.12351.

Prieto, I., Querejeta, J.I., Segrestin, J., Volaire, F., Roumet, C., 2018. Leaf carbon and oxygen isotopes are coordinated with the leaf economics spectrum in Mediterranean rangeland species. Funct. Ecol. 32 (3), 612-625. https://doi.org/10.1111/1365-2435.13025.

Pšidová, E., Živčák, M., Stojnić, S., Orlović, S., Gömöry, D., Kučerová, J., Ditmarová, L., Střelcová, K., Brestič, M., Kalaji, H.M., 2018. Altitude of origin influences the responses of PSII photochemistry to heat waves in European beech (Fagus sylvatica L.). Environ. Exp. Bot. 152, 97-106. https://doi.org/10.1016/j.envexpbot.2017.12.001.

Querejeta, J.I., Prieto, I., Torres, P., Campoy, M., Alguacil, M.M., Roldán, A., 2018. Water-spender strategy is linked to higher leaf nutrient concentrations across plant species colonizing a dry and nutrient-poor epiphytic habitat. Environ. Exp. Bot. 153, 302-310. https://doi.org/10.1016/j.envexpbot.2018.06.007.

Querejeta, J.I., Ren, W., Prieto, I., 2021. Vertical decoupling of soil nutrients and water under climate warming reduces plant cumulative nutrient uptake, water-use efficiency and productivity. New Phytol. 230 (4), 1378-1393. https://doi.org/10.1111/nph.17258.

Querejeta, J.I., Prieto, I., Armas, C., Casanoves, F., Diémé, J.S., Diouf, M., Yossi, H., Pugnaire, F.I., Rusch, G.M., 2022. Higher leaf nitrogen content is linked to tighter stomatal regulation of transpiration and more efficient water use across dryland trees. New Phytol. 235, 1351-1364. https://doi.org/10.1111/nph.18254.

Quézel, P., 1985. Definition of the Mediterranean Region and the Origin of its Flora. Geobotany, Dordrecht.
Quintano, P.N., Caudullo, G., de Rigo, D., 2016. Quercus pyrenaica in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, p. e01f807+.
R Core Team, 2021. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Regent Instruments, Win/MacRHIZO, V, 2001. 5.0A User's Guide, Regent Instruments. Québec, QC.

Rivas-Martínez, S., Penas, Á., Díaz González, T.E., Ladero Álvarez, M., Asensi Marfil, A., Díez Garretas, B., Molero Mesa, J., Valle Tendero, F., Cano, E., Costa Talens, M., López, M.L., Fernández Prieto, J.A., Llorens, L., del Arco, M., Pérez de Paz, P.L., Wildpret de la Torre, W., Sánchez Mata, D., Fernández, F., Masalles Raurell, R., Ladero Fernández, M., Izco Sevillano, J., Amigo, J., Loidi Arregui, J., Alcaraz Ariza, F., del Río, S., Herrero, L., 2011. Mapa de series, geoseries y geopermaseries de vegetación de España (Memoria del mapa de vegetación potential de España). Parte Ⅱ. Itinera Geobot 18 (2), 425-800.

Robert, E.M., Mencuccini, M., Martínez-Vilalta, J., 2017. The anatomy and functioning of the xylem in oaks. In: Gil-Pelegrín, E., Peguero-Pina, J.J., Sancho-Knapik, D. (Eds.), Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. Springer, Cham, pp. 261–302. https://doi.org/10.1007/978-3-319-69099-5_8.
DOI

Robson, T.M., Rodríguez-Calcerrada, J., Sánchez-Gómez, D., Aranda, I., 2009. Summer drought impedes beech seedling performance more in a sub-Mediterranean forest understory than in small gaps. Tree Physiol. 29 (2), 249-259. https://doi.org/10.1093/treephys/tpn023.

Rodríguez-Calcerrada, J., Nanos, N., Del Rey, M.C., de Heredia, U.L., Escribano, R., Gil, L., 2011. Small-scale variation of vegetation in a mixed forest understorey is partly controlled by the effect of overstory composition on litter accumulation. J. For. Res. 16 (6), 473-483. https://doi.org/10.1007/s10310-010-0237-2.

Rodríguez-Calcerrada, J., Salomón, R.L., Gordaliza, G.G., Miranda, J.C., Miranda, E., de la Riva, E.G., Gil, L., 2019. Respiratory costs of producing and maintaining stem biomass in eight co-occurring tree species. Tree Physiol. 39 (11), 1838-1854. https://doi.org/10.1093/treephys/tpz069.

Roumet, C., Birouste, M., Picon-Cochard, C., Ghestem, M., Osman, N., Vrignon-Brenas, S., Cao, K., Stokes, A., 2016. Root structure–function relationships in 74 species: evidence of a root economics spectrum related to carbon economy. New Phytol. 210 (3), 815-826. https://doi.org/10.1111/nph.13828.

Rubio-Cuadrado, Á., Camarero, J.J., del Río, M., Sánchez-González, M., Ruiz-Peinado, R., Bravo-Oviedo, A., Gil, L., Montes, F., 2018a. Long-term impacts of drought on growth and forest dynamics in a temperate beech-oak-birch forest. Agri. For. Meteorol. 259, 48-59. https://doi.org/10.1016/j.agrformet.2018.04.015.

Rubio-Cuadrado, Á., Camarero, J.J., del Río, M., Sánchez-González, M., Ruiz-Peinado, R., Bravo-Oviedo, A., Gil, L., Montes, F., 2018b. Drought modifies tree competitiveness in an oak-beech temperate forest. For. Ecol. Manag. 429, 7-17. https://doi.org/10.1016/j.foreco.2018.06.035.

Rubio-Cuadrado, Á., Camarero, J.J., Gordaliza, G.G., Cerioni, M., Montes, F., Gil, L., 2020. Competition overrides climate as trigger of growth decline in a mixed Fagaceae Mediterranean rear-edge forest. Ann. For. Sci. 77, 94. https://doi.org/10.1007/s13595-020-01004-5.

Rubio-Cuadrado, Á., Camarero, J.J., Rodríguez-Calcerrada, J., Perea, R., Gómez, C., Montes, F., Gil, L., 2021. Impact of successive spring frosts on leaf phenology and radial growth in three deciduous tree species with contrasting climate requirements in central Spain. Tree Physiol. 41 (12), 2279-2292. https://doi.org/10.1093/treephys/tpab076.

Ruiz-Labourdette, D., Nogués-Bravo, D., Ollero, H.S., Schmitz, M.F., Pineda, F.D., 2012. Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. J. Biogeogr. 39 (1), 162-176. https://doi.org/10.1111/j.1365-2699.2011.02592.

Salomón, R., Rodríguez-Calcerrada, J., González-Doncel, I., Gil, L., Valbuena-Carabaña, M., 2017. On the general failure of coppice conversion into high forest in Quercus pyrenaica stands: a genetic and physiological approach. Folia Geobot. 52 (1), 101-112. https://doi.org/10.1007/s12224-016-9257-9.

Sánchez de Dios, R., Benito-Garzón, M., Sainz-Ollero, H., 2009. Present and future extension of the Iberian submediterranean territories as determined from the distribution of marcescent oaks. Plant Ecol. 204 (2), 189-205. https://doi.org/10.1007/s11258-009-9584-5.

Sánchez de Dios, R., Gómez, C., Aullo, I., Canellas, I., Gea-Izquierdo, G., Montes, F., Sainz-Ollero, H., Velázquez, J.C., Hernández, L., 2021. Fagus sylvatica L. peripheral populations in the mediterranean Iberian Peninsula: climatic or anthropic relicts? Ecosystems 24 (1), 211-226. https://doi.org/10.1007/s10021-020-00513-8.

Schneider, C.A., Rasband, W.S., Eliceiri, K.W., 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9 (7), 671-675. https://doi.org/10.1038/nmeth.2089.

Schöb, C., Armas, C., Guler, M., Prieto, I., Pugnaire, F.I., 2013. Variability in functional traits mediates plant interactions along stress gradients. J. Ecol. 101 (3), 753-762. https://doi.org/10.1111/1365-2745.12062.

Schoener, T.W., 1968. The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49 (4), 704-726.

Schüller, H., 1969. Die CAL-Methode, eine neue Methode zur Bestimmung des pflanzenverfügbaren Phosphates in Böden. Z. für Pflanzenernährung Bodenkunde 123 (1), 48-63. https://doi.org/10.1002/jpln.19691230106.

Shipley, B., Vu, T.T., 2002. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytol. 153 (2), 359-364. https://doi.org/10.1046/j.0028-646X.2001.00320.x.

Speziale, K.L., Ezcurra, C., 2011. Patterns of alien plant invasions in northwestern Patagonia, Argentina. J. Arid Environ. 75 (10), 890-897. https://doi.org/10.1016/j.jaridenv.2011.04.014.

Steppe, K., Lemeur, R., 2007. Effects of ring-porous and diffuse-porous stem wood anatomy on the hydraulic parameters used in a water flow and storage model. Tree Physiol. 27 (1), 43-52. https://doi.org/10.1093/treephys/27.1.43.

Stojnic, S., Orlovic, S., Trudic, B., Zivkovic, U., von Wuehlisch, G., Miljkovic, D., 2015. Phenotypic plasticity of European beech (Fagus sylvatica L.) stomatal features under water deficit assessed in provenance trial. Dendrobiology 73, 163-173. https://doi.org/10.12657/denbio.073.017.

Torchiano, M., 2018. Effsize: efficient effect size computation. https://doi.org/10.5281/zenodo.1480624.

Valbuena-Carabaña, M., Gil, L., 2013. Genetic resilience in a historically profited root sprouting oak (Quercus pyrenaica Willd.) at its southern boundary. Tree Genet. Genomes 9 (5), 1129-1142. https://doi.org/10.1007/s11295-013-0614-z.

Van de Peer, T., Verheyen, K., Kint, V., Van Cleemput, E., Muys, B., 2017. Plasticity of tree architecture through interspecific and intraspecific competition in a young experimental plantation. For. Ecol. Manag. 385, 1-9. https://doi.org/10.1016/j.foreco.2016.11.015.

van der Merwe, S., Greve, M., Olivier, B., le Roux, P.C., 2021. Testing the role of functional trait expression in plant–plant facilitation. Funct. Ecol. 35 (1), 255-265. https://doi.org/10.1111/1365-2435.13681.

VanDerWal, J., Shoo, L.P., Johnson, C.N., Williams, S.E., 2009. Abundance and the environmental niche: environmental suitability estimated from niche models predicts the upper limit of local abundance. Am. Nat. 174 (2), 282-291. https://doi.org/10.1086/600087.

Vila-Viçosa, C., Arenas-Castro, S., Marcos, B., Honrado, J., García, C., Vázquez, F.M., Almeida, R., Gonçalves, J., 2020a. Combining satellite remote sensing and climate data in species distribution models to improve the conservation of Iberian white oaks (Quercus L.). ISPRS Int. J. Geo-Inf. 9 (12), 735. https://doi.org/10.3390/ijgi9120735.

Vila-Viçosa, C., Gonçalves, J., Honrado, J., Lomba, Â., Almeida, R.S., Vázquez, F.M., Garcia, C., 2020b. Late Quaternary range shifts of marcescent oaks unveil the dynamics of a major biogeographic transition in southern Europe. Sci. Rep. 10, 21598. https://doi.org/10.1038/s41598-020-78576-9.

Villar, R., Merino, J., 2001. Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems. New Phytol. 151 (1), 213-226. https://doi.org/10.1046/j.1469-8137.2001.00147.x.

Villar, R., Robleto, J.R., De Jong, Y., Poorter, H., 2006. Differences in construction costs and chemical composition between deciduous and evergreen woody species are small as compared to differences among families. Plant Cell Environ. 29 (8), 1629-1643. https://doi.org/10.1111/j.1365-3040.2006.01540.x.

Vitasse, Y., Bresson, C.C., Kremer, A., Michalet, R., Delzon, S., 2010. Quantifying phenological plasticity to temperature in two temperate tree species. Funct. Ecol. 24 (6), 1211-1218. https://doi.org/10.1111/j.1365-2435.2010.01748.x.

Vodnik, D., Gričar, J., Lavrič, M., Ferlan, M., Hafner, P., Eler, K., 2019. Anatomical and physiological adjustments of pubescent oak (Quercus pubescens Willd.) from two adjacent sub-Mediterranean ecosites. Environ. Exp. Bot. 165, 208-218. https://doi.org/10.1016/j.envexpbot.2019.06.010.

von Wühlisch, G., 2008. Fagus sylvatica-Technical guidelines for genetic conservation and Use for European beech. EUFORGEN Technical Guidelines for Genetic Conservation and Use. Bioversity International, Rome, Italy, p. 6. ISBN 978-92-9043-787-1.

Wang, F., Israel, D., Ramírez-Valiente, J.-A., Sánchez-Gómez, D., Aranda, I., Aphalo, P.J., Robson, T.M., 2021. Seedlings from marginal and core populations of European beech (Fagus sylvatica L.) respond differently to imposed drought and shade. Trees (Berl.) 35, 53-67. https://doi.org/10.1007/s00468-020-02011-9.

Warren, D.L., Glor, R.E., Turelli, M., 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evol. Int. J. Org. Evol. 62 (11), 2868-2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x.

Wortemann, R., Herbette, S., Barigah, T.S., Fumanal, B., Alia, R., Ducousso, A., Gomory, D., Roeckel-Drevet, P., Cochard, H., 2011. Genotypic variability and phenotypic plasticity of cavitation resistance in Fagus sylvatica L. across Europe. Tree Physiol. 31 (11), 1175-1182. https://doi.org/10.1093/treephys/tpr101.

Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J., Villar, R., 2004. The worldwide leaf economics spectrum. Nature 428 (6985), 821-827. https://doi.org/10.1038/nature02403.

Zapater, M., Hossann, C., Bréda, N., Bréchet, C., Bonal, D., Granier, A., 2011. Evidence of hydraulic lift in a young beech and oak mixed forest using 18O soil water labelling. Trees (Berl.) 25 (5), 885-894. https://doi.org/10.1007/s00468-011-0563-9.

Žemaitis, P., Gil, W., Borowski, Z., 2019. Importance of stand structure and neighborhood in European beech regeneration. For. Ecol. Manag. 448, 57-66. https://doi.org/10.1016/j.foreco.2019.05.066.

Zhang, J., He, N., Liu, C., Xu, L., Chen, Z., Li, Y., Wang, R., Yu, G., Sun, W., Xiao, C., Chen, H.Y.H., Reich, P.B., 2020. Variation and evolution of C: N ratio among different organs enable plants to adapt to N-limited environments. Global Change Biol. 26 (4), 2534-2543. https://doi.org/10.1111/gcb.14973.

Zhao, N., Yu, G., He, N., Xia, F., Wang, Q., Wang, R., Xu, Z., Jia, Y., 2016. Invariant allometric scaling of nitrogen and phosphorus in leaves, stems, and fine roots of woody plants along an altitudinal gradient. J. Plant Res. 129 (4), 647-657. https://doi.org/10.1007/s10265-016-080.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 21 October 2022
Revised: 07 February 2023
Accepted: 09 February 2023
Published: 14 February 2023
Issue date: April 2023

Copyright

© 2023 The Authors.

Acknowledgements

Acknowledgements

The authors of this study would like to thank Mario Vega and all the technical staff of the "Hayedo de Montejo" for their always good willingness to facilitate our works in the forest and the interest shown in this study. Many thanks to Claudia Buchwald for her help and guidance in the lab analysis carried out for this research. Also thanks to Diego Alejandro Melo Prieto for his great help both in the field and in the lab, and to Pardis Golabvand and Marina Tsioli for their help with the lab analyses. We would also like to thank Professor Dr. Francisco Lloret for his advice on field ecological methodology and to his biology student at the time of the performance of this study Anna Ticó i Pifarré for her great help and support with the field work.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return