Journal Home > Volume 10 , Issue 1

Hydroclimate affects the radial growth responses of trees, but the drivers of their spatial and population variability are not sufficiently understood. We addressed this issue by sampling several conifer populations located at the same latitude, but at different longitude and elevation in western (W) and eastern (E) Mexican regions. We used dendroecology to disentangle how earlywood width (EW), latewood width (LW) and adjusted LW (LWadj), i.e. the residuals after removing EW influences on LW, responded to climate variables (temperature and precipitation), climate indices (Southern Oscillation Index, SOI, Niño 3.4, Pacific Decadal Oscillation, PDO) and a drought index (Standardised Precipitation-Evapotranspiration Index, SPEI). The W species (Pinus herrerae Martínez, Pinus durangensis Martínez, Abies durangensis Martínez and Cupressus lusitanica Mill.) showed lower growth rates than the E species (Pinus hartwegii Lindl., Picea mexicana Martínez, Pseudotsuga menziesii (Mirb.) Franco and Abies vejari Martínez). Growth in W benefits mostly from high precipitation in the prior winter and current spring and it is limited by high temperatures in spring, whereas growth in the E showed similar but weaker responses. Furthermore, positive (negative) correlations were found in radial growth with the Niño 3.4 (SOI) and the PDO from the prior to current autumns, which were again stronger in absolute terms in the W than in the E regions, excepting SOI in summer. In the W, P. durangensis and C. lusitanica were the least and most responsive species to spring drought, respectively; whilst P. menziesii and A. vejari were very responsive to spring drought compared to P. hartwegii in the E. Our results suggest greater responsiveness to hydroclimate and atmospheric patterns in the W than in the E region. These findings allow better interpretations of future changes in growth and composition in Mexican conifer forests, considering that climate models forecast warmer spring conditions and increased water shortage.


menu
Abstract
Full text
Outline
About this article

Contrasting climate drivers of seasonal growth in western vs. eastern Mexican mountain conifer forests

Show Author's information Marín Pompa-Garcíaa( )J. Julio CamarerobEduardo D. Vivar-Vivara
Laboratorio de Dendroecología, Facultad de Ciencias Forestales y Ambientales, Universidad Juárez del Estado de Durango, Río Papaloapan y Blvd. Durango s/n Col. Valle del Sur, Durango, 34120, Mexico
Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50192, Zaragoza, Spain

Abstract

Hydroclimate affects the radial growth responses of trees, but the drivers of their spatial and population variability are not sufficiently understood. We addressed this issue by sampling several conifer populations located at the same latitude, but at different longitude and elevation in western (W) and eastern (E) Mexican regions. We used dendroecology to disentangle how earlywood width (EW), latewood width (LW) and adjusted LW (LWadj), i.e. the residuals after removing EW influences on LW, responded to climate variables (temperature and precipitation), climate indices (Southern Oscillation Index, SOI, Niño 3.4, Pacific Decadal Oscillation, PDO) and a drought index (Standardised Precipitation-Evapotranspiration Index, SPEI). The W species (Pinus herrerae Martínez, Pinus durangensis Martínez, Abies durangensis Martínez and Cupressus lusitanica Mill.) showed lower growth rates than the E species (Pinus hartwegii Lindl., Picea mexicana Martínez, Pseudotsuga menziesii (Mirb.) Franco and Abies vejari Martínez). Growth in W benefits mostly from high precipitation in the prior winter and current spring and it is limited by high temperatures in spring, whereas growth in the E showed similar but weaker responses. Furthermore, positive (negative) correlations were found in radial growth with the Niño 3.4 (SOI) and the PDO from the prior to current autumns, which were again stronger in absolute terms in the W than in the E regions, excepting SOI in summer. In the W, P. durangensis and C. lusitanica were the least and most responsive species to spring drought, respectively; whilst P. menziesii and A. vejari were very responsive to spring drought compared to P. hartwegii in the E. Our results suggest greater responsiveness to hydroclimate and atmospheric patterns in the W than in the E region. These findings allow better interpretations of future changes in growth and composition in Mexican conifer forests, considering that climate models forecast warmer spring conditions and increased water shortage.

Keywords: Drought, Earlywood, El Niño-Southern Oscillation, Latewood

References(61)

Acosta-Hernández, A.C., Pompa-García, M., Camarero, J.J., 2017. An updated review of dendrochronological investigations in Mexico, a megadiverse country with a high potential for tree-ring sciences. Forests 8, 160. https://doi.org/10.3390/f8050160.

Adams, D., Comrie, A., 1997. The North American monsoon. Bull. Am. Meteorol. Soc. 78, 2197–2213. https://doi.org/10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

SellersW.D.El Niño and its effect on precipitation in Arizona and western New MexicoJ. Climatol.1988840341010.1002/joc.3370080407

Andrade Jr., E.R., Sellers, W.D., 1988. El Niño and its effect on precipitation in Arizona and western New Mexico. J. Climatol. 8, 403–410. https://doi.org/10.1002/joc.3370080407.

BickfordI.N.FuléP.Z.KolbT.E.Growth sensitivity to drought of co-occurring Pinus spp. along an elevation gradient in northern Mexico. WestN. Am. Nat.20117133834810.3398/064.071.030210.3398/064.071.0302

Bickford, I.N., Fulé, P.Z., Kolb, T.E., 2011. Growth sensitivity to drought of co-occurring Pinus spp. along an elevation gradient in northern Mexico. West. N. Am. Nat. 71, 338–348. https://doi.org/10.3398/064.071.0302.

Bonanomi, G., Zotti, M., Mogavero, V., Cesarano, G., Saulino, L., Rita, Á., Tesei, J., Allegrezza, M., Saracino, A., Allevato, E., 2020. Climatic and anthropogenic factors explain the variability of Fagus sylvatica treeline elevation in fifteen mountain groups across the Apennines. For. Ecosyst. 7, 5. https://doi.org/10.1186/s40663-020-0217-8.

Briffa, K.R., Jones, P.D., 1990. Basic chronology statistics and assessment. In: Cook, E.R., Kairiukstis, L. (Eds.), Methods of Dendrochronology: Applications in the Environmental Sciences. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 137–152.

Camarero, J.J., Collado, E., Martínez-de-Aragón, J., de-Miguel, S., Büntgen, U., Martínez-Peña, F., Martín-Pinto, P., Ohenoja, E., Romppannen, T., Salo, K., Oria-de-Rueda, J.A., Bonet, J.A., 2021. Associations between climate and earlywood and latewood width in boreal and Mediterranean Scots pine forests. Trees (Berl.) 35, 155–169. https://doi.org/10.1007/s00468-020-02028-0.

CamareroJ.J.GazolA.Sangüesa-BarredaG.OlivaJ.Vicente-SerranoS.M.To die or not to die: early-warning signals of dieback in response to a severe droughtJ. Ecol.2015103445710.1111/1365-2745.12295

Camarero, J.J., Gazol, A., Sangüesa-Barreda, G., Oliva, J., Vicente-Serrano, S.M., 2015. To die or not to die: early-warning signals of dieback in response to a severe drought. J. Ecol. 103, 44–57. https://doi.org/10.1111/1365-2745.12295.

Collado, E., Camarero, J.J., de Aragón, J.M., Pemán, J., Bonet, J.A., de-Miguel, S., 2018. Linking fungal dynamics, tree growth and forest management in a Mediterranean pine ecosystem. For. Ecol. Manag. 422, 223–232. https://doi.org/10.1016/j.foreco.2018.04.025.

Cook, E.R., Krusic, P.J., 2008. A Tree-Ring Standardization Program Based on Detrending and Autoregressive Time Series Modeling, with Interactive Graphics (ARSTAN). Tree-Ring Laboratory, Lamont Doherty Earth Observatory, Columbia University, New York, USA.

Devi, N.M., Kukarskih, V.V., Galimova, А.A., Mazepa, V.S., Grigoriev, A.A., 2020. Climate change evidence in tree growth and stand productivity at the upper treeline ecotone in the Polar Ural Mountains. For. Ecosyst. 7, 7. https://doi.org/10.1186/s40663-020-0216-9.

Forzieri, G., Girardello, M., Ceccherini, G., Spinoni, J., Feyen, L., Hartmann, H., Beck, P.S., Camps-Valls, G., Chirici, G., Mauri, A., Cescatti, A., 2021. Emergent vulnerability to climate-driven disturbances in European forests. Nat. Commun. 12, 1081. https://doi.org/10.1038/s41467-021-21399-7.

Fritts, H.C., 1976. Tree-Rings and Climate. Academic Press, London.

Galicia, L., Zarco-Arista, A.E., 2014. Multiple ecosystem services, possible trade-offs and synergies in a temperate forest ecosystem in Mexico: a review. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 10, 275–288. https://doi.org/10.1080/21513732.2014.973907.

González-Cásares, M., Pompa-García, M., Camarero, J.J., 2017. Differences in climate–growth relationship indicate diverse drought tolerances among five pine species coexisting in Northwestern Mexico. Trees (Berl.) 31, 531–544. https://doi.org/10.1007/s00468-016-1488-0.

González-Cásares, M., Pompa-García, M., Padilla-Martínez, J.R., 2022. Pith eccentricity, basal area increments and disturbances inferred from tree-ring growth. Tree-Ring Res. 78, 25–35. https://doi.org/10.3959/TRR2021-1.

Griffin, D., Meko, D.M., Touchan, R., Leavitt, S.W., Woodhouse, C.A., 2011. Latewood chronology development for summer-moisture reconstruction in the U.S. Southwest. Tree-Ring Res. 67, 87–101. https://doi.org/10.3959/2011-4.1.

Griffin, D., Woodhouse, C.A., Meko, D.M., Stahle, D.W., Faulstich, H.L., Carrillo, C., Touchan, R., Castro, C.L., Leavitt, S.W., 2013. North American monsoon precipitation reconstructed from tree-ring latewood. Geophys. Res. Lett. 40, 954–958. https://doi.org/10.1002/grl.50184.

Harris, I., Osborn, T.J., Jones, P., Lister, D., 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109. https://doi.org/10.1038/s41597-020-0453-3.

Holmes, R.L., 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43, 69–78.

Huang, J., Tardif, J.C., Bergeron, Y., Denneler, B., Berninger, F., Girardin, M.P., 2010. Radial growth response of four dominant boreal tree species to climate along a latitudinal gradient in the eastern Canadian boreal forest. Global Change Biol. 16, 711–731. https://doi.org/10.1111/j.1365-2486.2009.01990.x.

Körner, C., 2007. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22, 569–574. https://doi.org/10.1016/j.tree.2007.09.006.

Li, J., Shi, J., Zhang, D.D., Yang, B., Fang, K., Yue, P.H., 2017. Moisture increase in response to high-altitude warming evidenced by tree-rings on the southeastern Tibetan Plateau. Clim. Dynam. 48, 649–660. https://doi.org/10.1007/s00382-016-3101-z.

LiuJ.LiZ.S.KeyimuM.WangX.LiangH.FengX.GaoG.FuB.Accelerated warming in the late 20th century promoted tree radial growth in the Northern HemisphereJ. Plant Ecol.202210.1093/jpe/rtac077

Liu, J., Li, Z.S., Keyimu, M., Wang, X., Liang, H., Feng, X., Gao, G., Fu, B., 2022. Accelerated warming in the late 20th century promoted tree radial growth in the Northern Hemisphere. J. Plant Ecol. https://doi.org/10.1093/jpe/rtac077rtac077.

LloydA.H.BunnA.G.BernerL.A latitudinal gradient in tree growth response to climate warming in the Siberian taigaGlobal Change Biol.2010171935194510.1111/j.1365-2486.2010.02360.x

Lloyd, A.H., Bunn, A.G., Berner, L., 2010. A latitudinal gradient in tree growth response to climate warming in the Siberian taiga. Global Change Biol. 17, 1935–1945. https://doi.org/10.1111/j.1365-2486.2010.02360.x.

Magaña, V., Pérez, J.L., Vázquez, J.L., Carrizosa, E., Pérez, J., 1999. El Niño y el clima. In: Magaña, V. (Ed.), Los Impactos de El Niño en México. CONACYT, México, pp. 23–68.

Manzanilla-Quiñones, U., Aguirre-Calderón, O.A., Jiménez-Pérez, J., Villanueva-Díaz, J., 2020. Sensibilidad climática en anchuras de anillos de crecimiento de Pinus hartwegii: una especie alpina mexicana con potential dendroclimático. Rev. Mex. Biodivers. 91, e913117. https://doi.org/10.22201/ib.20078706e.2020.91.3117.

Mayr, S., Schmid, P., Beikircher, B., Feng, F., Badel, E., 2020. Die hard: timberline conifers survive annual winter embolism. New Phytol. 226, 13–20. https://doi.org/10.1111/nph.16304.

Meko, D.M., Baisan, C.H., 2001. Pilot study of latewood-width of conifers as an indicator of variability of summer rainfall in the north American monsoon region. Int. J. Climatol. 21, 697–708. https://doi.org/10.1002/joc.646.

Mérian, P., Pierrat, J.-C., Lebourgeois, F., 2013. Effect of sampling effort on the regional chronology statistics and climate-growth relationships estimation. Dendrochronologia 31, 58–67. https://doi.org/10.1016/j.dendro.2012.07.001.

Pasho, E., Camarero, J.J., Vicente-Serrano, S.M., 2012. Climatic impacts and drought control of radial growth and seasonal wood formation in Pinus halepensis. Trees (Berl.) 26, 1875–1886. https://doi.org/10.1007/s00468-012-0756-x.

Pompa-García, M., Antonio-Némiga, X., 2015. ENSO index teleconnection with seasonal precipitation in a temperate ecosystem of northern Mexico. Atmósfera 28, 43–50. https://doi.org/10.1016/S0187-6236(15)72158-2.

Pompa-GarcíaM.CamareroJ.J.ColangeloM.Different xylogenesis responses to atmospheric water demand contribute to species coexistence in a mixed pine–oak forestJ. For. Res.202210.1007/s11676-022-01484-3

Pompa-García, M., Camarero, J.J., Colangelo, M., 2022. Different xylogenesis responses to atmospheric water demand contribute to species coexistence in a mixed pine–oak forest. J. For. Res. https://doi.org/10.1007/s11676-022-01484-3.

Pompa-García, M., Camarero, J.J., Colangelo, M., Gallardo-Salazar, J.L., 2021c. Xylogenesis is uncoupled from forest productivity. Trees (Berl.) 35, 1123–1134. https://doi.org/10.1007/s00468-021-02102-1.

Pompa-García, M., Camarero, J.J., Colangelo, M., González-Cásares, M., 2021b. Inter and intra-annual links between climate, tree growth and NDVI: improving the resolution of drought proxies in conifer forests. Int. J. Biometeorol. 65, 2111–2121. https://doi.org/10.1007/s00484-021-02170-5.

Pompa-García, M., Cerano-Paredes, J., Fulé, P.Z., 2013. Variation in radial growth of Pinus cooperi in response to climatic signals across an elevational gradient. Dendrochronologia 31, 198–204. https://doi.org/10.1016/j.dendro.2013.05.003.

Pompa-García, M., González-Cásares, M., Gazol, A., Camarero, J.J., 2021a. Run to the hills: forest growth responsiveness to drought increased at higher elevation during the late 20th century. Sci. Total Environ. 772, 145286. https://doi.org/10.1016/j.scitotenv.2021.145286.

Pompa-García, M., Sánchez-Salguero, R., Camarero, J.J., 2017. Observed and projected impacts of climate on radial growth of three endangered conifers in northern Mexico indicate high vulnerability of drought-sensitive species from mesic habitats. Dendrochronologia 45, 145–155. https://doi.org/10.1016/j.dendro.2017.08.006.

R Core Team, 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, ViennaVienna, Austria. https://www.R-project.org/. (Accessed 10 January 2022).
RaynerN.A.ParkerD.E.HortonE.B.FollandC.K.AlexanderL.V.RowellD.P.KentE.C.KaplanA.Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth centuryJ. Geophys. Res. Atmos.2003108440710.1029/2002JD002670

Rayner, N.A., Parker, D.E., Horton, E.B., Folland, C.K., Alexander, L.V., Rowell, D.P., Kent, E.C., Kaplan, A., 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407. https://doi.org/10.1029/2002JD002670.

ReynoldsR.W.SmithT.M.LiuC.CheltonD.B.CaseyK.S.SchlaxM.G.Daily high-resolution blended analyses for sea surface temperatureJ. Clim.2007205473549610.1175/2007JCLI1824.1

Reynolds, R.W., Smith, T.M., Liu, C., Chelton, D.B., Casey, K.S., Schlax, M.G., 2007. Daily high-resolution blended analyses for sea surface temperature. J. Clim. 20, 5473–5496. https://doi.org/10.1175/2007JCLI1824.1.

Ropelewski, C.F., Jones, P.D., 1987. An extension of the Tahiti-Darwin Southern oscillation index. Mon. Weather Rev. 115, 2161–2165. https://doi.org/10.1175/1520-0493(1987)115<2161:AEOTTS>2.0.CO;2.

Rzedowski, J., 2006. Vegetación de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (México).

Sánchez-González, A., 2008. Una visión actual de la diversidad y distribución de los pinos de México. Madera Bosques 14, 107–120.

Seager, R., Ting, M., Davis, M., Cane, M., Naik, N., Nakamura, J., Li, C., Cook, E.R., Stahle, D., 2009. Mexican drought: an observational modeling and tree ring study of variability and climate change. Atmósfera 22, 1–31.

Seftigen, K., Frank, D.C., Björklund, J., Babst, F., Poulter, B., 2018. The climatic drivers of normalized difference vegetation index and tree-ring-based estimates of forest productivity are spatially coherent but temporally decoupled in Northern Hemispheric forests. Global Ecol. Biogeogr. 27, 1352–1365. https://doi.org/10.1111/geb.12802.

Seneviratne, S.I., 2012. Historical drought trends revisited. Nature 491, 338–339. https://doi.org/10.1038/491338a.

Sheil, D., 2018. Forests, atmospheric water and an uncertain future: the new biology of the global water cycle. For. Ecosyst. 5, 19. https://doi.org/10.1186/s40663-018-0138-y.

Shi, C., Gao, C., Zhang, Y., Shi, F., Shen, M., Shi, S., 2021. The majority of tree growth on the monsoonal Tibetan Plateau has benefited from recent summer warming. Catena 207, 105649. https://doi.org/10.1016/j.catena.2021.105649.

Siyum, Z.G., Ayoade, J.O., Onilude, M.A., Feyissa, M.T., 2019. Climate forcing of tree growth in dry Afromontane forest fragments of Northern Ethiopia: evidence from multi-species responses. For. Ecosyst. 6, 15. https://doi.org/10.1186/s40663-019-0178-y.

StahleD.W.CleavelandM.K.Southern Oscillation extremes reconstructed from tree rings of the Sierra Madre Occidental and southern great plainsJ. Clim.1993612914010.1175/1520-0442(1993)006&lt;0129:SOERFT&gt;2.0.CO;2

Stahle, D.W., Cleaveland, M.K., 1993. Southern Oscillation extremes reconstructed from tree rings of the Sierra Madre Occidental and southern great plains. J. Clim. 6, 129–140. https://doi.org/10.1175/1520-0442(1993)006&lt;0129:SOERFT&gt;2.0.CO;2.

Tewari, V.P., Verma, R.K., von Gadow, K., 2017. Climate changes effects in the Western Himalayan ecosystems of India: evidence and strategies. For. Ecosyst. 4, 13. https://doi.org/10.1186/s40663-017-0100-4.

TherrellM.D.StahleD.W.CleavelandM.K.Villanueva-DíazJ.Warm season tree growth and precipitation over MexicoJ. Geophys. Res. Atmos.2002107420510.1029/2001JD000851

Therrell, M.D., Stahle, D.W., Cleaveland, M.K., Villanueva-Díaz, J., 2002. Warm season tree growth and precipitation over Mexico. J. Geophys. Res. Atmos. 107, 4205. https://doi.org/10.1029/2001JD000851.

Torbenson, M.C.A., Stalhe, D.W., Villanueva-Díaz, J., Cook, E.R., Griffin, D., 2016. The relationship between earlywood and latewood ring-growth across North America. Tree-Ring Res. 72, 53–66. https://doi.org/10.3959/1536-1098-72.02.53.

Vicente-SerranoS.M.BegueríaS.López-MorenoJ.I.A multi-scalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index–SPEIJ. Clim.2010231696171810.1175/2009JCLI2909.1

Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I., 2010. A multi-scalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index–SPEI. J. Clim. 23, 1696–1718. https://doi.org/10.1175/2009JCLI2909.1.

Villanueva-Díaz, J., Cerano-Paredes, J., Fulé, P.Z., Cortés-Montaño, C., Vázquez-Selem, L., Yocom, L.L., Ruiz-Corral, J.A., 2015. Cuatro siglos de variabilidad hidroclimática en el noroeste de Chihuahua, México, reconstruida con anillos de árboles. Invest. Geográficas 87, 141–153. https://doi.org/10.14350/rig.44485.

Wang, J., Yang, B., Qin, C., Kang, S., He, M., Wang, Z., 2014. Tree-ring inferred annual mean temperature variations on the southeastern Tibetan Plateau during the last millennium and their relationships with the Atlantic multidecadal Oscillation. Clim. Dynam. 43, 627–640. https://doi.org/10.1007/s00382-013-1802-0.

Wehenkel, C., Mariscal-Lucero, S.R., Jaramillo-Correa, J.P., López-Sánchez, C.A., Várgas-Hernández, J.J., Sáenz-Romero, C., 2017. Genetic diversity and conservation of Mexican forest trees. In: Ahuja, M.R., Jain, S.M. (Eds.), Biodiversity and Conservation of Woody Plants, Sustainable Development and Biodiversity, vol. 17. Springer, Cham. https://doi.org/10.1007/978-3-319-66426-2_2.
DOI

Williams, A.P., Allen, C.D., Macalady, A.K., Griffin, D., Woodhouse, C.A., Meko, D.M., Swetnam, T.W., Rauscher, S.A., Seager, R., Grissino-Mayer, H.D., Dean, J.S., Cook, E.R., Gangodagamage, C., Cai, M., McDowell, N.G., 2013. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3, 292–297. https://doi.org/10.1038/nclimate1693.

Zang, C., Hartl-Meier, C., Dittmar, C., Rothe, A., Menzel, A., 2014. Patterns of drought tolerance in major European temperate forest trees: climatic drivers and levels of variability. Global Change Biol. 20, 3767–3779. https://doi.org/10.1111/gcb.12637.

ZhangY.WallaceJ.M.BattistiD.S.ENSO-like interdecadal variability: 1900–93J. Clim.1997101004102010.1175/1520-0442(1997)010&lt;1004:ELIV&gt;2.0.CO;2

Zhang, Y., Wallace, J.M., Battisti, D.S., 1997. ENSO-like interdecadal variability: 1900–93. J. Clim. 10, 1004–1020. https://doi.org/10.1175/1520-0442(1997)010&lt;1004:ELIV&gt;2.0.CO;2.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 12 September 2022
Revised: 09 January 2023
Accepted: 09 January 2023
Published: 12 January 2023
Issue date: February 2023

Copyright

© 2023 The Authors.

Acknowledgements

Acknowledgements

We thank to José Guadalupe López Sánchez de La Peña, Zenón Gámez, Eladio H. Cornejo Oviedo, Carlos Zapata, María Luisa Soto Moreno (Chea), Natividad Rivas Ortíz and UCODEFO 4 for their valuable support during field work. We gratefully acknowledge the Dirección General de Vida Silvestre, SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales, México) and Holística Consultores Ambientales (HCA S.C.) for facilitating field sampling.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return