Journal Home > Volume 10 , Issue 1

Single-tree detection is one of the main research topics in quantifying the structural properties of forests. Drone LiDAR systems and terrestrial laser scanning systems produce high-density point clouds that offer great promise for forest inventories in limited areas. However, most studies have focused on the upper canopy layer and neglected the lower forest structure. This paper describes an innovative tree detection method using drone LiDAR data from a new perspective of the under-canopy structure. This method relies on trunk point clouds, with under-canopy sections split into heights ranging from 1 to 7 ​m, which were processed and compared, to determine a suitable height threshold to detect trees. The method was tested in a dense cedar plantation forest in the Aichi Prefecture, Japan, which has a stem density of 1140 stems·ha−1 and an average tree age of 42 years. Dense point cloud data were generated from the drone LiDAR system and terrestrial laser scanning with an average point density of 5000 and 6500 points·m−2, respectively. Tree detection was achieved by drawing point-cloud section projections of tree trunks at different heights and calculating the center coordinates. The results show that this trunk-section-based method significantly reduces the difficulty of tree detection in dense plantation forests with high accuracy (F1 – Score ​= ​0.9395). This method can be extended to different forest scenarios or conditions by changing section parameters.


menu
Abstract
Full text
Outline
About this article

A tree detection method based on trunk point cloud section in dense plantation forest using drone LiDAR data

Show Author's information Yupan ZhangaYiliu TanbYuichi Ondaa( )Asahi HashimotoaTakashi GomicChenwei ChiucShodai Inokoshic
Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
Department of International Environmental and Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaie, Fuchu, Tokyo, 183-8509, Japan

Abstract

Single-tree detection is one of the main research topics in quantifying the structural properties of forests. Drone LiDAR systems and terrestrial laser scanning systems produce high-density point clouds that offer great promise for forest inventories in limited areas. However, most studies have focused on the upper canopy layer and neglected the lower forest structure. This paper describes an innovative tree detection method using drone LiDAR data from a new perspective of the under-canopy structure. This method relies on trunk point clouds, with under-canopy sections split into heights ranging from 1 to 7 ​m, which were processed and compared, to determine a suitable height threshold to detect trees. The method was tested in a dense cedar plantation forest in the Aichi Prefecture, Japan, which has a stem density of 1140 stems·ha−1 and an average tree age of 42 years. Dense point cloud data were generated from the drone LiDAR system and terrestrial laser scanning with an average point density of 5000 and 6500 points·m−2, respectively. Tree detection was achieved by drawing point-cloud section projections of tree trunks at different heights and calculating the center coordinates. The results show that this trunk-section-based method significantly reduces the difficulty of tree detection in dense plantation forests with high accuracy (F1 – Score ​= ​0.9395). This method can be extended to different forest scenarios or conditions by changing section parameters.

Keywords: Forest, LiDAR, Drone, Tree detection, Trunk sections

References(36)

Ayrey, E., Fraver, S., Kershaw, J.A., Kenefic, L.S., Hayes, D., Weiskittel, A.R., Roth, B.E., 2017. Layer stacking: a novel algorithm for individual forest tree segmentation from LiDAR point clouds. Can. J. Remote Sens. 43, 16–27. https://doi.org/10.1080/07038992.2017.1252907.

Chang, A., Eo, Y., Kim, Y., Kim, Y., 2013. Identification of individual tree crowns from LiDAR data using a circle fitting algorithm with local maxima and minima filtering. Remote Sens. Lett. 4, 29–37. https://doi.org/10.1080/2150704X.2012.684362.

Dai, W., Yang, B., Liang, X., Dong, Z., Huang, R., Wang, Y., Li, W., 2019. Automated fusion of forest airborne and terrestrial point clouds through canopy density analysis. ISPRS J. Photogrammetry Remote Sens. 156, 94–107. https://doi.org/10.1016/j.isprsjprs.2019.08.008.

Dersch, S., Heurich, M., Krueger, N., Krzystek, P., 2021. Combining graph-cut clustering with object-based stem detection for tree segmentation in highly dense airborne lidar point clouds. ISPRS J. Photogrammetry Remote Sens. 172, 207–222. https://doi.org/10.1016/j.isprsjprs.2020.11.016.

Ene, L., Næsset, E., Gobakken, T., 2012. Single tree detection in heterogeneous boreal forests using airborne laser scanning and area-based stem number estimates. Int. J. Rem. Sens. 33, 5171–5193. https://doi.org/10.1080/01431161.2012.657363.

Fernández-Guisuraga, J.M., Suárez-Seoane, S., Fernandes, P.M., Fernández-García, V., Fernández-Manso, A., Quintano, C., Calvo, L., 2022. Pre-fire aboveground biomass, estimated from LiDAR, spectral and field inventory data, as a major driver of burn severity in maritime pine (Pinus pinaster) ecosystems. For. Ecosyst. 9, 100022. https://doi.org/10.1016/j.fecs.2022.100022.

Ferreira, M.P., de Almeida, D.R.A., de Almeida Papa, D., Minervino, J.B.S., Veras, H.F.P., Formighieri, A., Santos, C.A.N., Ferreira, M.A.D., Figueiredo, E.O., Ferreira, E.J.L., 2020. Individual tree detection and species classification of Amazonian palms using UAV images and deep learning. For. Ecol. Manag. 475, 118397. https://doi.org/10.1016/j.foreco.2020.118397.

Forzieri, G., Guarnieri, L., Vivoni, E.R., Castelli, F., Preti, F., 2009. Multiple attribute decision making for individual tree detection using high-resolution laser scanning. For. Ecol. Manag. 258, 2501–2510. https://doi.org/10.1016/j.foreco.2009.09.006.

Fu, H., Li, H., Dong, Y., Xu, F., Chen, F., 2022. Segmenting individual tree from TLS point clouds using improved DBSCAN. Forests 13, 566. https://doi.org/10.3390/f13040566.

Gaonkar, M.N., Sawant, K., 2013. AutoEpsDBSCAN : DBSCAN with Eps automatic for large dataset. Int. J. Adv. Comput. Theory Eng. 2, 2319-2526.

Gupta, S., Weinacker, H., Koch, B., 2010. Comparative analysis of clustering-based approaches for 3-D single tree detection using airborne fullwave Lidar data. Remote Sens. 2, 968–989. https://doi.org/10.3390/rs2040968.

Hao, Z., Lin, L., Post, C.J., Mikhailova, E.A., Li, M., Chen, Y., Yu, K., Liu, J., 2021. Automated tree-crown and height detection in a young forest plantation using mask region-based convolutional neural network (Mask R-CNN). ISPRS J. Photogrammetry Remote Sens. 178, 112–123. https://doi.org/10.1016/j.isprsjprs.2021.06.003.

Hillman, S., Wallace, L., Lucieer, A., Reinke, K., Turner, D., Jones, S., 2021. A comparison of terrestrial and UAS sensors for measuring fuel hazard in a dry sclerophyll forest. Int. J. Appl. Earth Obs. Geoinf. 95, 102261. https://doi.org/10.1016/j.jag.2020.102261.

Holmgren, J., Tulldahl, M., Nordlöf, J., Willén, E., Olsson, H., 2019. Mobile laser scanning for estimating tree stem diameter using segmentation and tree spine calibration. Rem. Sens. 11, 1–18. https://doi.org/10.3390/rs11232781.

Huo, L., Lindberg, E., Holmgren, J., 2022. Towards low vegetation identification: a new method for tree crown segmentation from LiDAR data based on a symmetrical structure detection algorithm (SSD). Remote Sens. Environ. 270, 112857. https://doi.org/10.1016/j.rse.2021.112857.

Husain, A., Chandra Vaishya, R., 2020. An automated approach for street trees detection using mobile laser scanner data. Remote Sens. Appl. Soc. Environ. 20, 100371. https://doi.org/10.1016/j.rsase.2020.100371.

Hyyppä, E., Hyyppä, J., Hakala, T., Kukko, A., Wulder, M.A., White, J.C., Pyörälä, J., Yu, X., Wang, Y., Virtanen, J.P., Pohjavirta, O., Liang, X., Holopainen, M., Kaartinen, H., 2020. Under-canopy UAV laser scanning for accurate forest field measurements. ISPRS J. Photogrammetry Remote Sens. 164, 41–60. https://doi.org/10.1016/j.isprsjprs.2020.03.021.

Hyyppä, J., Kelle, O., Lehikoinen, M., Inkinen, M., 2001. A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners. IEEE Trans. Geosci. Remote Sens. 39, 969–975. https://doi.org/10.1109/36.921414.

Jacobs, M., Rais, A., Pretzsch, H., 2021. How drought stress becomes visible upon detecting tree shape using terrestrial laser scanning (TLS). For. Ecol. Manage. 489, 118975. https://doi.org/10.1016/j.foreco.2021.118975.

Jaskierniak, D., Lucieer, A., Kuczera, G., Turner, D., Lane, P.N.J., Benyon, R.G., Haydon, S., 2021. Individual tree detection and crown delineation from Unmanned Aircraft System (UAS) LiDAR in structurally complex mixed species eucalypt forests. ISPRS J. Photogrammetry Remote Sens. 171, 171–187. https://doi.org/10.1016/j.isprsjprs.2020.10.016.

Kaartinen, H., Hyyppä, J., Yu, X., Vastaranta, M., Hyyppä, H., Kukko, A., Holopainen, M., Heipke, C., Hirschmugl, M., Morsdorf, F., Næsset, E., Pitkänen, J., Popescu, S., Solberg, S., Wolf, B.M., Wu, J.C., 2012. An international comparison of individual tree detection and extraction using airborne laser scanning. Rem. Sens. 4, 950–974. https://doi.org/10.3390/rs4040950.

Komatsu, H., Kume, T., 2020. Modeling of evapotranspiration changes with forest management practices: a genealogical review. J. Hydrol. 585, 124835. https://doi.org/10.1016/j.jhydrol.2020.124835.

Kukkonen, M., Maltamo, M., Korhonen, L., Packalen, P., 2021. Fusion of crown and trunk detections from airborne UAS based laser scanning for small area forest inventories. Int. J. Appl. Earth Obs. Geoinf. 100. https://doi.org/10.1016/j.jag.2021.102327.

Liang, X., Hyyppä, J., Kaartinen, H., Lehtomäki, M., Pyörälä, J., Pfeifer, N., Holopainen, M., Brolly, G., Francesco, P., Hackenberg, J., Huang, H., Jo, H.W., Katoh, M., Liu, L., Mokroš, M., Morel, J., Olofsson, K., Poveda-Lopez, J., Trochta, J., Wang, D., Wang, J., Xi, Z., Yang, B., Zheng, G., Kankare, V., Luoma, V., Yu, X., Chen, L., Vastaranta, M., Saarinen, N., Wang, Y., 2018. International benchmarking of terrestrial laser scanning approaches for forest inventories. ISPRS J. Photogrammetry Remote Sens. 144, 137–179. https://doi.org/10.1016/j.isprsjprs.2018.06.021.

Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., Yu, X., Kaartinen, H., Jaakkola, A., Guan, F., Holopainen, M., Vastaranta, M., 2016. Terrestrial laser scanning in forest inventories. ISPRS J. Photogrammetry Remote Sens. 115, 63–77. https://doi.org/10.1016/j.isprsjprs.2016.01.006.

McGaughey, R.J., 2020. FUSION/LDV: Software for LiDAR Data Analysis and Visualization, FUSION Version 4.0, vol. 170. US Dep. Agric.

de Paula Pires, R., Olofsson, K., Persson, H.J., Lindberg, E., Holmgren, J., 2022. Individual tree detection and estimation of stem attributes with mobile laser scanning along boreal forest roads. ISPRS J. Photogrammetry Remote Sens. 187, 211–224. https://doi.org/10.1016/j.isprsjprs.2022.03.004.

Polewski, P., Erickson, A., Yao, W., Coops, N., Krzystek, P., Stilla, U., 2016. Object-based coregistration of terrestrial photogrammetric and ALS point clouds in forested areas. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. III–3, 347–354. https://doi.org/10.5194/isprs-annals-III-3-347-2016.

Tang, F., Zhang, X., Liu, J., 2007. Segmentation of tree crown model with complex structure from airborne LiDAR data. Geoinformatics 2007: Remote. Sensed Data Inf. 6752, 67520A. https://doi.org/10.1117/12.760476.

Wang, C., Ji, M., Wang, J., Wen, W., Li, T., Sun, Y., 2019. An improved DBSCAN method for LiDAR data segmentation with automatic Eps estimation. Sensors 19. https://doi.org/10.3390/s19010172.

Wang, Y., Hyyppa, J., Liang, X., Kaartinen, H., Yu, X., Lindberg, E., Holmgren, J., Qin, Y., Mallet, C., Ferraz, A., Torabzadeh, H., Morsdorf, F., Zhu, L., Liu, J., Alho, P., 2016. International benchmarking of the individual tree detection methods for modeling 3-D canopy structure for silviculture and forest ecology using airborne laser scanning. IEEE Trans. Geosci. Rem. Sens. 54, 5011–5027. https://doi.org/10.1109/TGRS.2016.2543225.

Wang, Y., Weinacker, H., Koch, B., 2008. A lidar point cloud based procedure for vertical canopy structure analysis and 3D single tree modelling in forest. Sensors 8, 3938–3951. https://doi.org/10.3390/s8063938.

Zhang, W., Qi, J., Wan, P., Wang, H., Xie, D., Wang, X., Yan, G., 2016. An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Rem. Sens. 8, 501. https://doi.org/10.3390/rs8060501.

Zhang, Y., Onda, Y., Kato, H., Feng, B., Gomi, T., 2022. Understory biomass measurement in a dense plantation forest based on drone-SfM data by a manual low-flying drone under the canopy. J. Environ. Manage. 312, 114862. https://doi.org/10.1016/j.jenvman.2022.114862.

Zhen, Z., Quackenbush, L.J., Zhang, L., 2016. Trends in automatic individual tree crown detection and delineation—evolution of LiDAR data. Rem. Sens. https://doi.org/10.3390/rs8040333.

Zhou, T., dos Santos, R.C., Liu, J., Lin, Y.C., Fei, W.C., Fei, S., Habib, A., 2022. Comparative evaluation of a newly developed trunk-based tree detection/localization strategy on leaf-off LiDAR point clouds with varying characteristics. Rem. Sens. 14, 3738. https://doi.org/10.3390/rs14153738.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 20 July 2022
Revised: 28 November 2022
Accepted: 11 December 2022
Published: 12 January 2023
Issue date: February 2023

Copyright

© 2023 The Authors.

Acknowledgements

We gratefully acknowledge Yuichi Onda and Takashi Gomi for support of field surveys, LiDAR scanning and drone equipment for collecting LiDAR data. We thank anonymous reviewers for comments that improved the manuscript. We are also very grateful to Shodai Inokoshi and Asahi Hashimoto for the indispensable support during the field work. Further we thank Yiliu Tan for her valuable help and critical discussions during the algorithm process.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return