Journal Home > Volume 9 , Issue 6
Background

Andean montane forests (AMF) are biodiversity hotspots that provide fundamental hydrological services as well as carbon storage and sequestration. In recent decades, southern Ecuador AMFs have been seriously threatened by increased logging and conversion to forest plantations with exotic species. In this context, our main objective was to evaluate the effects of AMF conversion to forest plantations on soil physicochemical properties in the buffer zone (Bz) of the Podocarpus National Park (PNP), in southern Ecuador. For this purpose, random samples were taken at a depth of 0–10 ​cm in four plots in each contrast zone and analyzed for bulk density, porosity, textural class, leaf litter depth, soil pH, as well as the contents of organic matter (SOM), soil organic carbon (SOC), total nitrogen, and available phosphorus and potassium.

Results

The results indicate that the conversion of AMFs produces an increase in bulk density and a decrease in SOM, SOC, and total nitrogen contents, thus modifying soil properties, which could result in a decrease in water regulation capacity and produce an increased risk of soil erosion. This accelerates degradation processes, as well as threatens shortages of the drinking water supply.

Conclusions

This study can help decision-makers to implement soil management plans in the Bz of the PNP, based on the implementation of new regulations, where the conservation of AMF is promoted. In addition, it is recommended to apply environmental restoration strategies in the anthropized areas of the AMF, as well as in the areas with exotic eucalyptus and pine plantations.


menu
Abstract
Full text
Outline
About this article

Conversion of Andean montane forest to exotic forest plantation modifies soil physicochemical properties in the buffer zone of Ecuador's Podocarpus National Park

Show Author's information Vinicio Carrión-Paladinesa( )Ángel BenítezaRoberto García-Ruízb
Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, C.P. 11 01 608, Loja, Ecuador
Departamento de Biología Animal, Biología Vegetal y Ecología, Sección de Ecología, Universidad de Jaén, Campus Las Lagunillas, Edificio Ciencias Experimentales y de la Salud (B3), 23071, Jaén, Spain

Abstract

Background

Andean montane forests (AMF) are biodiversity hotspots that provide fundamental hydrological services as well as carbon storage and sequestration. In recent decades, southern Ecuador AMFs have been seriously threatened by increased logging and conversion to forest plantations with exotic species. In this context, our main objective was to evaluate the effects of AMF conversion to forest plantations on soil physicochemical properties in the buffer zone (Bz) of the Podocarpus National Park (PNP), in southern Ecuador. For this purpose, random samples were taken at a depth of 0–10 ​cm in four plots in each contrast zone and analyzed for bulk density, porosity, textural class, leaf litter depth, soil pH, as well as the contents of organic matter (SOM), soil organic carbon (SOC), total nitrogen, and available phosphorus and potassium.

Results

The results indicate that the conversion of AMFs produces an increase in bulk density and a decrease in SOM, SOC, and total nitrogen contents, thus modifying soil properties, which could result in a decrease in water regulation capacity and produce an increased risk of soil erosion. This accelerates degradation processes, as well as threatens shortages of the drinking water supply.

Conclusions

This study can help decision-makers to implement soil management plans in the Bz of the PNP, based on the implementation of new regulations, where the conservation of AMF is promoted. In addition, it is recommended to apply environmental restoration strategies in the anthropized areas of the AMF, as well as in the areas with exotic eucalyptus and pine plantations.

Keywords: Andean montane forests, Land use conversion, Edaphic properties

References(113)

Abegaz, A., Tamene, L., Abera, W., Yaeko, T., Hailu, H., Nyawira, S.S., Da Silva, M., Sommer, R., 2020. Soil organic carbon dynamics along chrono-sequence land-use systems in the highlands of Ethiopia. Agr. Ecosyst. Environ. 300, 106997.

Aguirre, Z., Gutiérrez, M., Gaona, T., Jaramillo, N., 2016. Escenarios para la enseñanza y valoracion de la biodiversidad en la región sur del ecuador. Bosques Latitud Cero 6(2).

Aguirre Mendoza, Z., Reyes Jiménez, B., Quizhpe Coronel, W., Cabrera, A., 2017. Composición florística, estructura y endemismo del componente leñoso de un bosque montano en el sur del Ecuador. Arnaldoa 24(2), 543-556. http://doi.org/10.22497/arnaldoa.242.24207.

Ahmed, I.U., Assefa, D., Godbold, D.L., 2022. Land-use change depletes quantity and quality of soil organic matter fractions in Ethiopian Highlands. Forests 13(1), 69.

Alameda, D., Villar, R., Iriondo, J.M., 2012. Spatial pattern of soil compaction: trees’ footprint on soil physical properties. Forest Ecol. Manag. 283, 128-137. https://dx.doi.org/10.1016/j.foreco.2012.07.018.

Allen, K., Corre, M.D., Tjoa, A., Veldkamp, E., 2015. Soil nitrogen-cycling responses to conversion of lowland forests to oil palm and rubber plantations in Sumatra, Indonesia. PLoS One 10(7), e0133325. https://doi.org/10.1371/journal.pone.0133325.

Álvarez-Garretón, C., Lara, A., Boisier, J.P., Galleguillos, M., 2019. The impacts of native forests and forest plantations on water supply in Chile. Forests 10(6), 473. https://doi.org/10.3390/f10060473.

Aragón, S., Salinas, N., Nina-Quispe, A., Qquellon, V.H., Paucar, G.R., Huaman, W., Chambi Porroa, P., Olarte, J., Cruz, R., Muñiz, J., Salas Yupayccana, C., Boza Espinoza, T., Tito, R., Cosio, E., Roman-Cuesta, R.M., 2021. Aboveground biomass in secondary montane forests in Peru: slow carbon recovery in agroforestry legacies. Glob. Ecol. Conserv. 28, e01696. https://doi.org/10.1016/j.gecco.2021.e01696.

Assefa, D., Rewald, B., Sandén, H., Rosinger, C., Abiyu, A., Yitaferu, B., Godbold, D.L., 2017. Deforestation and land use strongly effect soil organic carbon and nitrogen stock in Northwest Ethiopia. Catena 153, 89-99.

Avendaño, D., 2007. Biomasa y capacidad de almacenamiento de agua de las epifitas en el Páramo de Guerrero (Cundinamarca, Colombia). Trabajo de grado, Universidad Nacional de Colombia, Medellín.

Balthazar, V., Vanacker, V., Molina, A., Lambin, E.F., 2015. Impacts of forest cover change on ecosystem services in high Andean mountains. Ecol. Indic. 48, 63-75. https://doi.org/10.1016/j.ecolind.2014.07.043.

Barrezueta-Unda, S., Velepucha-Cuenca, K., Hurtado-Flores, L., Jaramillo-Aguilar, E., 2019. Soil properties and storage of organic carbon in the land use pasture and forest. Revista de Ciencias Agrícolas 36(2), 31-45. https://doi.org/10.22267/rcia.193602.116.

Beck, E., Bendix, J., Kottke, I., Makeschin, F., Mosandl, R., 2008. Gradients in a tropical mountain ecosystem of Ecuador, vol. 198. Springer Science & Business Media. https://doi.org/10.1007/978-3-540-73526-7_43.
DOI

Bergemann, S.E., Largent, D.L., 2000. The site specific variables that correlate with the distribution of the Pacific Golden' Chanterelle, Cantharellus formosus. Forest. Ecol. Manag. 130(1-3), 99-107. https://doi.org/10.1016/S0378-1127(99)00177-2.

Bernátková, A., Pařiková, A., Cisneros, R., Čupić, S., Ceacero, F., 2021. Ecological effects on the nutritional value of bromeliads, and its influence on Andean bears’ diet selection. Ursus (32e21), 1-8. https://doi.org/10.2192/URSUS-D-20-00021.2.

Black, C.A., Evans, D.D., White, J.L., Ensminger, L.E., Clark, F.E., 1965. Methods of soil analysis, Part 2, Chemical and Microbiological Properties. John Wiley & Sons, Hoboken, NJ, USA.

Bonnesoeur, V., Locatelli, B., Guariguata, M.R., Ochoa-Tocachi, B.F., Vanacker, V., Mao, Z., Stokes, A., Mathez-Stiefel, S.L., 2019. Impacts of forests and forestation on hydrological services in the Andes: a systematic review. Forest. Ecol. Manag. 433, 569-584. https://doi.org/10.1016/j.foreco.2018.11.033.

Bremner, J.M., 1966. Nitrogen-total, in: Methods of soil analysis, Part 3, Chemical Methods, Volume 5. John Wiley & Sons, Hoboken, NJ, USA, pp. 1085-1121.
DOI
Bruijnzeel, L.A., Burkard, R., Carvajal, A., Frumau, K.F.A., Kohler, L., Mulligan, M., Tobón-Marín, C., 2006. Hydrological impacts of converting tropical montane cloud forest to pasture, with initial reference to northern Costa Rica. DFID Project Report.

Bueis, T., Turrión, M.B., Bravo, F., Pando, V., Muscolo, A., 2018. Factors determining enzyme activities in soils under Pinus halepensis and Pinus sylvestris plantations in Spain: a basis for establishing sustainable forest management strategies. Ann. For. Sci. 75, 34. https://doi.org/10.1007/s13595-018-0720-z.

Buytaert, W., Cuesta-Camacho, F., Tobón, C., 2011. Potential impacts of climate change on the environmental services of humid tropical alpine regions. Global Ecol. Biogeogr. 20(1), 19-33. https://doi.org/10.1111/j.1466-8238.2010.00585.x.

Camenzind, T., Homeier, J., Dietrich, K., Hempel, S., Hertel, D., Krohn, A., Leuschner, C., Oelmann, Y., Olsson, P.A., Suárez, J.P., Rillig, M.C., 2016. Opposing effects of nitrogen versus phosphorus additions on mycorrhizal fungal abundance along an elevational gradient in tropical montane forests. Soil Biol. Biochem. 94, 37-47. https://doi.org/10.1016/j.soilbio.2015.11.011.

Carrión-Paladines, V., Fries, A., Muñoz, A., Castillo, E., García-Ruíz, R., Marín-Armijos, D., 2021. Effects of land-use change on the community structure of the dung beetle (Scarabaeinae) in an altered ecosystem in Southern Ecuador. Insects 12(4), 306. https://doi.org/10.3390/insects12040306.

Chacón, G., Gagnon, D., Paré, D., 2009. Comparison of soil properties of native forests, Pinus patula plantations and adjacent pastures in the Andean highlands of southern Ecuador: land use history or recent vegetation effects? Soil Use Manag. 25(4), 427-433. https://doi.org/10.1111/j.1475-2743.2009.00233.x.

Chacón, G., Gagnon, D., Paré, D., 2015. Soil agricultural potential in four common Andean land use types in the Highlands of Southern Ecuador as revealed by a corn bioassay. Agr. Sci. 6(10), 1129. https://doi.org/10.4236/as.2015.610108.

Cisneros-Vidal, R., 2013. Andean bear habitat use of the páramos of Podocarpus National Park: implications for local-scale conservation Thesis. Universidad Tecnica Particular de Loja, Loja, Ecuador.
Crovo, O., Aburto, F., Albornoz, M., Southard, R., 2020. Differential responses of soil carbon, nitrogen and phosphorus stocks and available pools to conversion from native forest to exotic plant plantation in soils of contrasting origin, in: EGU General Assembly Conference Abstracts. https://doi.org/10.5194/egusphere-egu2020-20760.
DOI

Dantas de Paula, M., Forrest, M., Langan, L., Bendix, J., Homeier, J., Velescu, A., Wilcke, W., Hickler, T., 2021. Nutrient cycling drives plant community trait assembly and ecosystem functioning in a tropical mountain biodiversity hotspot. New Phytol. 232(2), 551-566. https://doi.org/10.1111/nph.17600.

Das, S.K., Varma, A., 2010. Role of enzymes in maintaining soil health, in: Shukla, G., Varma, A. (Eds.), Soil enzymology. Springer, Berlin, Heidelberg, pp. 25-42. https://doi.org/10.1007/978-3-642-14225-3_2.
DOI

Del Rio, T., Groot, J.C., DeClerck, F., Estrada-Carmona, N., 2018. Integrating local knowledge and remote sensing for eco-type classification map in the Barotse Floodplain, Zambia. Data Brief 19, 2297-2304. https://doi.org/10.1016/j.dib.2018.07.009.

Doornbos, B., 2015. El valor de los bosques andinos en asegurar agua y suelo en un contexto de creciente riesgo climático: (re) conocemos lo imperdible? http://infoandina.org/infoandina/sites/default/files/news/files/061115_articulo_n3.pdf. (Accessed 15 October 2022).

Duráng, W., Uribe, L., Henríquez, C., Mata, R., 2015. Respiración, biomasa microbiana y actividad fosfatasa del suelo en dos agroecosistemas y un bosque en Turrialba, Costa Rica. Agron. costarricense 39(1), 37-46.

Effron, D.N., Jiménez, M.P., Defrieri, R.L., Prause, J., 2006. Relación de la actividad de fosfatasa ácida con especies forestales dominantes y con algunas propiedades del suelo de un bosque argentino. Informacion tecnologica 17(1), 3-7.

Evans, J., 2009. Planted forests: uses, impacts and sustainability. CAB International and FAO, Rome.
DOI
FAO, 2000. Global Forest Resources Assessment 2000, vol. 20. Main Report: Forestry Paper 140, FAO, Rome, Italy. Main Report: Forestry Paper 140.

Farley, K.A., Kelly, E.F., Hofstede, R.G., 2004. Soil organic carbon and water retention after conversion of grasslands to pine plantations in the Ecuadorian Andes. Ecosystems 7(7), 729-739. https://doi.org/10.1007/s10021-004-0047-5.

Fries, A., Rollenbeck, R., Göttlicher, D., Nauss, T., Homeier, J., Peters, T., Bendix, J., 2009. Thermal structure of a megadiverse Andean mountain ecosystem in southern Ecuador and its regionalization. Erdkunde 63, 321-335. https://doi.org/10.3112/erdkunde.2009.04.03.

Fries, A., Rollenbeck, R., Nauss, T., Peters, T., Bendix, J., 2012. Near surface air humidity in a megadiverse Andean mountain ecosystem of southern Ecuador and its regionalization. Agric. Forest Meteorol. 152, 17-30. https://doi.org/10.1016/j.agrformet.2011.08.004.

Fries, A., Rollenbeck, R., Bayer, F., González, V., Onate-Valivieso, F., Peters, T., Bendix, J., 2014. Catchment precipitation processes in the San Francisco valley in southern Ecuador: combined approach using high-resolution radar images and in situ observations. Meteorol. Atmos. Phys. 126(1), 13-29. https://doi.org/10.1007/s00703-014-0335-3.

Fries, A., Silva, K., Pucha-Cofrep, F., Oñate-Valdivieso, F., Ochoa-Cueva, P., 2020. Water balance and soil moisture deficit of different vegetation units under semiarid conditions in the andes of southern Ecuador. Climate 8(2), 30. https://doi.org/10.3390/cli8020030.

Giertz, S., Junge, B., Diekkrüger, B., 2005. Assessing the effects of land use change on soil physical properties and hydrological processes in the sub-humid tropical environment of West Africa. Phys. Chem. Earth 30(8-10), 485-496. https://doi.org/10.1016/j.pce.2005.07.003.

Günter, S., González, P., Álvarez, G., Aguirre, N., Palomeque, X., Haubrich, F., Weber, M., 2009. Determinants for successful reforestation of abandoned pastures in the Andes: soil conditions and vegeta.tion cover. Forest Ecol. Manag. 258(2), 81-91. https://doi.org/10.1016/j.foreco.2009.03.042.

Guo, L.B., Gifford, R.M., 2002. Soil carbon stocks and land use change: a meta-analysis. Global Change Biol. 8, 345-360.

Hammer, Ø., Harper, D.A., Ryan, P.D., 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9.

Herzog, S.K., Rodney Martínez, P., Joergensen, M., Tiessen, H., 2011. Climate change and biodiversity in the tropical Andes. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE).

Hofstede, R.G., Groenendijk, J.P., Coppus, R., Fehse, J.C., Sevink, J., 2002. Impact of pine plantations on soils and vegetation in the Ecuadorian high Andes. Mt. Res. Dev. 22(2), 159-167. https://doi.org/10.1659/0276-4741(2002)022[0159:IOPPOS]2.0.CO;2.

Iglesias Abad, S., Alegre Orihuela, J., Salas Macías, C., Egüez Moreno, J., 2018. El rendimiento del maíz (Zea mays L.) mejora con el uso del biochar de eucalipto. Sci. Agropecu. 9(1), 25-32. https://dx.doi.org/10.17268/sci.agropecu.2018.01.03.

Inamhi, 2004-2013. Anuarios meteorologicos. https://www.serviciometeorologico.gob.ec/biblioteca/. (Accessed 15 October 2022).

Inbar, M., Llerena, C.A., 2000. Erosion processes in high mountain agricultural terraces in Peru. Mt. Res. Dev. 20(1), 72-79. https://doi.org/10.1659/0276-4741(2000)020[0072:EPIHMA]2.0.CO;2.

IPCC, 2001. Climate change: the scientific basis. Cambridge University Press, Cambridge, UK.

Jacquemin, J., Drouet, T., Delsinne, T., Roisin, Y., Leponce, M., 2012. Soil properties only weakly affect subterranean ant distribution at small spatial scales. Appl. Soil Ecol. 62, 163-169. https://doi.org/10.1016/j.apsoil.2012.08.008.

Jones, H.H., Barreto, E., Murillo, O., Robinson, S.K., 2021. Turnover-driven loss of forest-dependent species changes avian species richness, functional diversity, and community composition in Andean forest fragments. Glob. Ecol. Conserv. 32, e01922. https://doi.org/10.1016/j.gecco.2021.e01922.

Kessler, M., 2001. Pteridophyte species richness in Andean forests in Bolivia. Biodivers. Conserv. 10(9), 1473-1495. https://doi.org/10.1023/A:1011811224595.

Kleemann, J., Zamora, C., Villacis-Chiluisa, A.B., Cuenca, P., Koo, H., Noh, J.K., Fürst, C., Thiel, M., 2022. Deforestation in Continental Ecuador with a focus on protected areas. Land 11(2), 268. https://doi.org/10.3390/land11020268.

Knoke, T., Bendix, J., Pohle, P., Hamer, U., Hildebrandt, P., Roos, K., Gerique, A., Sandoval, M.L., Breuer, L., Tischer, A., Brenner, S., Calvas, B., Aguirre, N., Castro, L.M., Windhorts, D., Weber, M., Stimm, B., Günter, S., Palomeque, X, Mora, J., Mosandl, R., Beck, E., 2014. Afforestation or intense pasturing improve the ecological and economic value of abandoned tropical farmlands. Nat. Commun. 5 (1), 1-12. https://doi.org/10.1038/ncomms6612.

Langeveld, H., Quist-Wessel, F., Dimitriou, I., Aronsson, P., Baum, C., Schulz, U., Bolte, A., Baum, S., Köhn, J., Weih, M., Gruss, H., Leinweber, P., Lamersdorf, N., Schmidt-Walter, P., Berndes, G., 2012. Assessing environmental impacts of short rotation coppice (SRC) expansion: model definition and preliminary results. Bioenergy Res. 5(3), 621-635. https://doi.org/10.1007/s12155-012-9235-x.

Leischner, B., Bussmann, R.W., 2003. Mercado y uso de madera en el Sur de Ecuador Timber market and timber use in Southern Ecuador. Lyonia 5, 51-60.

Levi, N., Hillel, N., Zaady, E., Rotem, G., Ziv, Y., Karnieli, A., Paz-Kagan, T., 2021. Soil quality index for assessing phosphate mining restoration in a hyper-arid environment. Ecol. Indic. 125, 107571. https://doi.org/10.1016/j.ecolind.2021.107571.

Ligonja, P.J., Shrestha, R.P., 2013. Soil erosion assessment in kondoa eroded area in Tanzania using universal soil loss equation, geographic information systems and socioeconomic approach. Land Degrad. Dev. 26(4), 367-379. https://doi.org/10.1002/ldr.2215.

Llerena Pinto, C.A., 2018. Los bosques y el agua. Xilema 29(1), 97-102.

Lozano, P., Bussmann, R., 2005. Importancia de los deslizamientos en el Parque Nacional Podocarpus, Loja, Ecuador. Rev. Peru Biol. 12(2), 195-202.

Lozano, P., Kueppers, M., Bussmann, R.W., 2010. Plant diversity of páramo and Andean elfin forest in Podocarpus National Park-Loja, Ecuador. Arnaldoa 17(2), 193-202.

Malhi, Y., Girardin, C.A., Goldsmith, G.R., Doughty, C.E., Salinas, N., Metcalfe, D.B., Silman, M., 2017. La variación de la productividad y su asignación a lo largo de un gradiente de elevación tropical: una perspectiva completa del presupuesto de carbono. Nuevo fitólogo 214(3), 1019-1032.

Marian, F., Ramirez Castillo, P., Iniguez Armijos, C., Günter, S., Maraun, M., Scheu, S., 2020. Conversion of Andean montane forests into plantations: effects on soil characteristics, microorganisms, and microarthropods. Biotropica 52(6), 1142-1154. https://doi.org/10.1111/btp.12813.

Marín, F., Dahik, C.Q., Mosquera, G.M., Feyen, J., Cisneros, P., Crespo, P., 2018. Changes in soil hydro-physical properties and SOM due to pine afforestation and grazing in Andean environments cannot be generalized. Forests 10(1), 17. https://doi.org/10.3390/f10010017.

Mendoza, L.G., Vera, V., Giler, J.M., Simbaña, K., 2022. Características fisicoquímicas de suelos de uso agrícola y forestal. Caso: san Pablo de Tarugo, Chone–Ecuador. Rev. Cient. Cien. Nat. Ambien. 16(1), 334-342.

Meza Aliaga, M.S., Castro Galvez, P.F., Pereira, K., Puga, G., 2017. Indicadores para el monitoreo de la calidad del suelo en areas periurbanas. Valle de Quillota, cuenca del Aconcagua, Chile.
MingmingG.U.O.WenlongW.A.N.G.HongliangK.A.N.G.BoY.A.N.G.Changes in soil properties and erodibility of gully heads induced by vegetation restoration on the Loess Plateau, ChinaJ. Arid Land.201810571272510.1007/s40333-018-0121-z

Mingming, G.U.O., Wenlong, W.A.N.G., Hongliang, K.A.N.G., Bo, Y.A.N.G., 2018. Changes in soil properties and erodibility of gully heads induced by vegetation restoration on the Loess Plateau, China. J. Arid Land. 10(5), 712-725. https://doi.org/10.1007/s40333-018-0121-z.

Mogrovejo, R.K., Marquez, V.G., 2017. La restauracion de bosques andinos y sus vínculos con el agua.
Molina, E., 2007. Analisis de suelos y su interpretacion. CIA-UCR-Amino Grow International, San José, CR.

Mounce, R., Rivers, M., Sharrock, S., Smith, P., Brockington, S., 2018. Comparing and contrasting threat assessments of plant species at the global and sub-global level. Biodivers. Conserv. 27(4), 907-930. https://doi.org/10.1007/s10531-017-1472-z.

Muñoz, A.A., González, M.E., Celedón, C., Veblen, T.T., 2012. Respuesta inicial de la regeneración arbórea luego de la floración y muerte de Chusquea culeou (Poaceae) en bosques andinos del centro-sur de Chile. Bosque 33(2), 153-162. https://dx.doi.org/10.4067/S0717-92002012000200005.

Ochoa-Jiménez, D.A., Cueva-Agila, A., Prieto, M., Aragón, G., Benitez, Á., 2015. Cambios en la composición de líquenes epífitos relacionados con la calidad del aire en la ciudad de Loja (Ecuador). Caldasia 37(2), 333-343. https://doi.org/10.15446/caldasia.v37n2.53867.

Ojeda, V., Trejo, A., 2002. Primeros registros de nidificacion en cavidades para tres especies de aves del bosque andino patagonico. Hornero 17(2), 85-89.

Osorio, A., Bahamon, C., 2008. Dinámica de la humedad del suelo en bosques alto andinos en el páramo de guerrero, Cundinamarca-Colombia. Doctoral dissertation, Tesis, Universidad Nacional de Colombia sede Medellín.

Pacheco, E., Ataroff, M., 2002. Relación precipitación-percolación en una selva nublada andina venezolana. Selvas y bosques nublados andinos, pp. 4-62.

Page, S.E., Baird, A.J., 2016. Peatlands and global change: response and resilience. Annu. Rev. Env. Resour. 41, 35-57.

Page, A.L., Miller, R.H., Keeney, D.R., 1982. Methods of soil analysis, Part Ⅱ, American Society of Agronomy. Madison, WI, USA.

Patino, S., Hernández, Y., Plata, C., Domínguez, I., Daza, M., Oviedo-Ocaña, R., Buytaert, W., Ochoa-Tocachi, B.F., 2021. Influence of land use on hydro-physical soil properties of Andean páramos and its effect on streamflow buffering. Catena 202, 105227. https://doi.org/10.1016/j.catena.2021.105227.

Peyton, B., Yerena, E., Rumiz, D.I., Jorgenson, J., Orejuela, J., 1998. Status of wild Andean bears and policies for their management. Ursus 10, 87-100. https://www.jstor.org/stable/3873115. (Accessed 15 October 2022).

Pogrzeba, M., Rusinowski, S., Krzyzak, J., 2018. Macroelements and heavy metals content in energy crops cultivated on contaminated soil under different fertilization-case studies on autumn harvest. Environ. Sci. Pollut. 25, 12096-12106. https://doi.org/10.1007/s11356-018-1490-8.

PREDESUR - Programa de Desarrollo del Sur., 2004. Megaproyecto de Repoblacion Forestal de 300.000 ha en la provincia de Loja y parte alta de la provincia de El Oro. Loja, Ecuador.

Quichimbo, P., Jiménez, L., Veintimilla, D., Tischer, A., Günter, S., Mosandl, R., Hamer, U., 2017. Forest site classification in the southern Andean region of Ecuador: a case study of pine plantations to collect a base of soil attributes. Forests 8(12), 473. https://doi.org/10.3390/f8120473.

Quichimbo, P., Jiménez, L., Veintimilla, D., Potthast, K., Tischer, A., Günter, S., Mosandl, R., Hamer, U., 2020. Nutrient dynamics in an Andean forest region: a case study of exotic and native species plantations in southern Ecuador. New Forest. 51(2), 313-334. https://doi.org/10.1007/s11056-019-09734-9.

Raes, L., Speelman, S., Aguirre, N., 2017. Farmers’ preferences for PES contracts to adopt silvopastoral systems in southern Ecuador, revealed through a choice experiment. Environ. Manage. 60(2), 200-215. https://doi.org/10.1007/s00267-017-0876-6.

Reyes-Knoche, A., 2012. Sustainable water supply in pre-Columbian civilizations in Ancient Peru and South America, in: Angelakis, A.N., Mays, L.W., Koutsoyiannis, D., Mamassis, N. (Eds.), Evolution of water supply through the millennia. IWA Publishing, London, pp. 271-299.

Rodríguez-Alarcón, S., Rodríguez-Eraso, N., Pineda-Rincón, I., López-Camacho, R., 2018. Effects of fragmentation on functional diversity associated with aboveground biomass in a high Andean forest in Colombia. Landscape Ecol. 33(11), 1851-1864. https://doi.org/10.1007/s10980-018-0719-8.

Saetre, P., Bååth, E., 2000. Spatial variation and patterns of soil microbial community structure in a mixed spruce-birch stand. Soil Biol. Biochem. 32(7), 909-917. https://doi.org/10.1016/S0038-0717(99)00215-1.

Salazar, J.M., Pomavilla, M., Pollard, A.T., Chica, E.J., Peña, D.F., 2020. Endophytic fungi associated with roots of epiphytic orchids in two Andean forests in Southern Ecuador and their role in germination. Lankesteriana 20(1), 37-47. https://dx.doi.org/10.15517/lank.v20i1.41157.

Sandoval, M., Fernandez, J., Seguel, O., Becerra, J., Salazar, D., 2011. Metodos de Analisis Fisicos de Suelos. Doctoral dissertation, Universidad de Concepcion.
SchoonoverJ.E.CrimJ.F.An introduction to soil concepts and the role of soils in watershed managementJ. Contemp. Wat. Res. Ed.201515412147

Schoonover, J.E., Crim, J.F., 2015. An introduction to soil concepts and the role of soils in watershed management. J. Contemp. Wat. Res. Ed. 154(1), 21-47.

10.1111/j.1936-704X.2015.03186.x

Smith, P., 2008. Land use change and soil organic carbon dynamics. Nutr. Cycl. Agroecosys. 81(2), 169-178. https://doi.org/10.1007/s10705-007-9138-y.

Soil Survey Staff, 2014. Keys to soil taxonomy, 12th edn. NRCS, USDA, USA.

Sultan, D., Tsunekawa, A., Haregeweyn, N., Adgo, E., Tsubo, M., Meshesha, D.T., Masunaga, T., Alog, D., Ebabu, K., 2017. Analyzing the runoff response to soil and water conservation measures in a tropical humid Ethiopian highland. Phys. Geogr. 38(5), 423-447. https://doi.org/10.1080/02723646.2017.1302869.

Tan, D., Jin, J., Jiang, L., Huang, S., Liu, Z., 2012. Potassium assessment of grain producing soils in North China. Agr. Ecosyst. Environ. 148, 65-71. https://doi.org/10.1016/j.agee.2011.11.016.

Tapia-Armijos, M.F., Homeier, J., Espinosa, C.I., Leuschner, C., de la Cruz, M., 2015. Deforestation and forest fragmentation in South Ecuador since the 1970s-losing a hotspot of biodiversity. PLoS One 10(9), e0133701. https://doi.org/10.1371/journal.pone.0142359.

Tellen, V.A., Yerima, B.P., 2018. Effects of land use change on soil physicochemical properties in selected areas in the North West region of Cameroon. Environ. Syst. Res. 7(1), 1-29. https://doi.org/10.1186/s40068-018-0106-0.

Tobón, C., 2009. Los bosques andinos y el agua (No. Serie investigación y sistematización# 4). Programa Regional Ecobona-Intercooperation, Condesan, Quito.
Tobón, C., Bruijnzeel, L.A., Fruma, A., 2009. Physical and hydraulic properties of Tropical Montane Cloud Forest soils and their changes after conversion to pasture. Proceedings of the Second International Symposium: Science for Conserving and Managing Tropical Montane Cloud Forests, Waimea, Hawaii, July 27-August 1, 2004.

Toledo, C.V., Barroetaveña, C., Rajchenberg, M., 2014. Fenología y variables ambientales asociadas a la fructificación de hongos silvestres comestibles de los bosques andino-patagónicos en Argentina. Rev. Mex. Biodivers. 85(4), 1093-1103. https://doi.org/10.7550/rmb.40010.

Tripathi, S., Chakraborty, A., Chakrabarti, K., Bandyopadhyay, B.K., 2007. Enzyme activities and microbial biomass in coastal soils of India. Soil Biol. Biochem. 39(11), 2840-2848.

Turner, B.L., 2010. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils. Appl. Environ. Microb. 76(19), 6485-6493.

Valarezo Torres, G.E., Carrión-Paladines, H.V., Capa-Mora, E.D., Jiménez Álvarez, L.S., 2021. Soil quality/health indicators in a disturbed ecosystem in southern Ecuador. Soil Sci. Annu. 72(2), 135991. https://doi.org/10.37501/soilsa/135991.

van Voss, O.H., Aguirre, N., Hofstede, R., 2001. Sistemas forestales integrales para la sierra del Ecuador. Editorial Abya Yala, Quito, Ecuador.

Vela Correa, G., López Blanco, J., Rodríguez Gamino, M.D.L., 2012. Niveles de carbono orgánico total en el Suelo de Conservación del Distrito Federal, centro de México. Invest. Geográficas. 77, 18-30.

Villa, M.D., Cristiano, P.M., De Diego, M.S., Rodríguez, S.A., Efron, S.T., Bucci, S.J., Scholz, F., Goldstein, G., 2022. Do selective logging and pine plantations in humid subtropical forests affect aboveground primary productivity as well as carbon and nutrients transfer to soil? Forest Ecol. Manag. 503, 119736. https://doi.org/10.1016/j.foreco.2021.119736.

Watson, C.S., Elliott, J.R., Ebmeier, S.K., Vásquez, M.A., Zapata, C., Bonilla-Bedoya, S., Cubillo, P., Orbe, D.F., Córdova, M., Menoscal, J., Sevilla, E., 2022. Enhancing disaster risk resilience using greenspace in urbanising Quito, Ecuador. Nat. Hazard. Earth Syst. 22(5), 1699-1721. https://doi.org/10.5194/nhess-22-1699-2022, 2022.

Weber, M., Günter, S., Aguirre, N., Stimm, B., Mosandl, R., 2008. Reforestation of abandoned pastures: silvicultural means to accelerate forest recovery and biodiversity, in: Beck, E., Bendix, J., Kottke, I., Makeschin, F., Mosandl, R. (Eds.), Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin, Heidelberg, pp. 431-441. https://doi.org/10.1007/978-3-540-73526-7_41.
DOI
Yigini, Y., Olmedo, G.F., Reiter, S., Baritz, R., Viatkin, K., Vargas, R.R., 2018. Soil organic carbon mapping cookbook, 2nd edn. FAO, Rome.

Young, K.R., León, B., 2000. Biodiversity conservation in Peru's eastern montane forests. Mt. Res. Dev. 20(3), 208-211. https://doi.org/10.1659/0276-4741(2000)020[0208:BCIPSE]2.0.CO;2.

Zagatto, M.R.G., de Araujo Pereira, A.P., de Souza, A.J., Pereira, R.F., Baldesin, L.F., Pereira, C.M., Viccino Lopes, R., Cardoso, E. J.B.N., 2019. Interactions between mesofauna, microbiological and chemical soil attributes in pure and intercropped Eucalyptus grandis and Acacia mangium plantations. Forest Ecol. Manag. 433, 240-247.

Zhang, X., Zhang, L., Zhao, J., Rustomji, P., Hairsine, P., 2008. Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour. Res. 44(7). https://doi.org/10.1029/2007WR006711.

Zhu, L., Wang, J., Weng, Y., Chen, X., Wu, L., 2020. Soil characteristics of Eucalyptus urophylla × Eucalyptus grandis plantations under different management measures for harvest residues with soil depth gradient across time. Ecol. Indic. 117, 106530. https://doi.org/10.1016/j.ecolind.2020.106530.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 06 July 2022
Revised: 09 November 2022
Accepted: 21 November 2022
Published: 02 December 2022
Issue date: December 2022

Copyright

© 2022 The Authors.

Acknowledgements

Our thanks to the Universidad Técnica Particular de Loja for funding this research (PROY_INV_CCBIO_2020_2773). Special thanks to Gregory Gedeon for proofreading the English text.

Rights and permissions

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return