Journal Home > Volume 9 , Issue 6
Background

Alpine coniferous forest ecosystems dominated by ectomycorrhizal (ECM) tree species are generally characterized by low soil nitrogen (N) availability but stabilized plant productivity. Thus, elucidating potential mechanisms by which plants maintain efficient N acquisition is crucial for formulating optimized management practices in these ecosystems.

Methods

We summarize empirical studies conducted at a long-term field monitoring station in the alpine coniferous forests on the eastern Tibetan Plateau, China. We propose a root-soil interaction-based framework encompassing key components including soil N supply, microbial N transformation, and root N uptake in the rhizosphere.

Results

We highlight that, (ⅰ) a considerable size of soil dissolved organic N pool mitigates plant dependence on inorganic N supply; (ⅱ) ectomycorrhizal roots regulate soil N transformations through both rhizosphere and hyphosphere effects, providing a driving force for scavenging soil N; (ⅲ) a complementary pattern of plant uptake of different soil N forms via root- and mycorrhizal mycelium-pathways enables efficient N acquisitions in response to changing soil N availability.

Conclusions

Multiple rhizosphere processes abovementioned collaboratively contribute to efficient plant N acquisition in alpine coniferous forests. Finally, we identify several research outlooks and directions to improve the understanding and prediction of ecosystem functions in alpine coniferous forests under on-going global changes.


menu
Abstract
Full text
Outline
About this article

How do nitrogen-limited alpine coniferous forests acquire nitrogen? A rhizosphere perspective

Show Author's information Huajun Yina,bBartosz AdamczykcQitong WangaBiao ZhudWanji GuoaXiaomin ZhuaQing LiuaZiliang Zhanga,e,*( )
CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
Natural Resources Institute Finland, PL 2, 00791, Helsinki, Finland
Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA

* Corresponding author. CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.

Abstract

Background

Alpine coniferous forest ecosystems dominated by ectomycorrhizal (ECM) tree species are generally characterized by low soil nitrogen (N) availability but stabilized plant productivity. Thus, elucidating potential mechanisms by which plants maintain efficient N acquisition is crucial for formulating optimized management practices in these ecosystems.

Methods

We summarize empirical studies conducted at a long-term field monitoring station in the alpine coniferous forests on the eastern Tibetan Plateau, China. We propose a root-soil interaction-based framework encompassing key components including soil N supply, microbial N transformation, and root N uptake in the rhizosphere.

Results

We highlight that, (ⅰ) a considerable size of soil dissolved organic N pool mitigates plant dependence on inorganic N supply; (ⅱ) ectomycorrhizal roots regulate soil N transformations through both rhizosphere and hyphosphere effects, providing a driving force for scavenging soil N; (ⅲ) a complementary pattern of plant uptake of different soil N forms via root- and mycorrhizal mycelium-pathways enables efficient N acquisitions in response to changing soil N availability.

Conclusions

Multiple rhizosphere processes abovementioned collaboratively contribute to efficient plant N acquisition in alpine coniferous forests. Finally, we identify several research outlooks and directions to improve the understanding and prediction of ecosystem functions in alpine coniferous forests under on-going global changes.

Keywords: Rhizosphere, Plant nitrogen acquisition, Root-soil interaction, Alpine coniferous forests, Nitrogen limitation

References(123)

Adamczyk, B., Sietiö, O.M., Straková, P., Prommer, J., Wild, B., Hagner, M., Pihlatie, M., Fritze, H., Richter, A., Heinonsalo, J., 2019. Plant roots increase both decomposition and stable organic matter formation in boreal forest soil. Nat. Commun. 10, 3982. https://doi.org/10.1038/s41467-019-11993-1.

Adamczyk, B., Smolander, A., Kitunen, V., Godlewski, M., 2010. Proteins as nitrogen source for plants: a short story about exudation of proteases by plant roots. Plant Signal Behav. 5, 817-819. https://doi.org/10.4161/psb.5.7.11699.

Ågren, G.I., Wetterstedt, J.M., Billberger, M.F., 2012. Nutrient limitation on terrestrial plant growth–modeling the interaction between nitrogen and phosphorus. New Phytol. 194, 953-960. https://doi.org/10.1111/j.1469-8137.2012.04116.x.

Akselsson, C., Westling, O., Alveteg, M., Thelin, G., Fransson, A.M., Hellsten, S., 2008. The influence of N load and harvest intensity on the risk of P limitation in Swedish forest soils. Sci. Total Environ. 404(2-3), 284-289. https://doi.org/10.1016/j.scitotenv.2007.11.017.

Arvieu, J.C., Leprince, F., Plassard, C., 2003. Release of oxalate and protons by ectomycorrhizal fungi in response to P-deficiency and calcium carbonate in nutrient solution. Ann. For. Sci. 60(8), 815-821. https://doi.org/10.1051/forest:2003076.

Ashton, I.W., Miller, A.E., Bowman, W.D., Suding, K.N., 2010. Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91(11), 3252-3260. https://doi.org/10.1890/09-1849.1.

Averill, C., Turner, B.L., Finzi, A.C., 2014. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505(7484), 543-545. https://doi.org/10.1038/nature12901.

Bardgett, R.D., Streeter, T.C., Bol, R., 2003. Soil microbes compete effectively with plants for organic-nitrogen inputs to temperate grasslands. Ecology 84(5), 1277-1287. https://doi.org/10.1890/0012-9658(2003)084[1277:smcewp]2.0.co;2.

Baribault, T.W., Kobe, R.K., Finley, A.O., 2012. Tropical tree growth is correlated with soil phosphorus, potassium, and calcium, though not for legumes. Ecol. Monogr. 82(2), 189-203. https://doi.org/10.2307/41739364.

Bergmann, J., Weigelt, A., Van der Plas, F., Laughlin, D.C., Kuyper, T.W., Guerrero-Ramirez, N., Valverde-Barrantes, O.J., Bruelheide, H., Freschet, G.T., Iversen, C.M., Kattge, J., McCormack, M.L., Meier, I.C., Rillig, M.C., Roumet, C., Semchenko, M., Sweeney, C.J., Van Ruijven, J., York, L.M., Mommer, L., 2020. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6(27), eaba3756. https://doi.org/10.1126/sciadv.aba3756.

Berthrong, S.T., Finzi, A.C., 2006. Amino acid cycling in three cold temperate forests of the northeastern USA. Soil Biol. Biochem. 38(5), 861-869. https://doi.org/10.1016/j.soilbio.2005.08.002.

Broughton, R.C.I., Newsham, K.K., Hill, P.W., Stott, A., Jones, D.L., 2015. Differential acquisition of amino acid and peptide enantiomers within the soil microbial community and its implications for carbon and nitrogen cycling in soil. Soil Biol. Biochem. 88, 83-89. https://doi.org/10.1016/j.soilbio.2015.05.003.

Brzostek, E.R., Greco, A., Drake, J.E., Finzi, A.C., 2013. Root carbon inputs to the rhizosphere stimulate extracellular enzyme activity and increase nitrogen availability in temperate forest soils. Biogeochemistry 115(1), 65-76. https://doi.org/10.1007/s10533-012-9818-9.

Bücking, H., Kaflfle, A., 2015. Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agronomy 5(4), 587-612. https://doi.org/10.3390/agronomy5040587.

Burton, J., Chen, C., Xu, Z., Ghadiri, H., 2007a. Gross nitrogen transformations in adjacent native and plantation forests of subtropical Australia. Soil Biol. Biochem. 39(2), 426-433. https://doi.org/10.1016/j.soilbio.2006.08.011.

Burton, J., Chen, C., Xu, Z., Ghadiri, H., 2007b. Soluble organic nitrogen pools in adjacent native and plantation forests of subtropical Australia. Soil Biol. Biochem. 39(11), 2723-2734. https://doi.org/10.1016/j.soilbio.2007.05.021.

Cairney, J.W.G., 2012. Extramatrical mycelia of ectomycorrhizal fungi as moderators of carbon dynamics in forest soil. Soil Biol. Biochem. 47, 198-208. https://doi.org/10.1061/j-soilbio.2011.12.029.

Carmosinia, N., Devitob, K.J., Prepasc, E.E., 2002. Gross nitrogen transformations in harvested and mature aspen-conifer mixed forest soils from the Boreal Plain. Soil Biol. Biochem. 34(12), 1949-1951. https://doi.org/10.1016/S0038-0717(02)00172-4.

Chapin, F.S., Moilanen, L., Kielland, K., 1993. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361(6408), 150-153. https://doi.org/10.1038/361150a0.

Chaturvedi, O.P., Singh, J.S., 1987. The structure and function of pine forest in Central Himalaya. I. Dry matter dynamics. Ann. Bot. 60(3), 237-252. https://doi.org/10.1093/oxfordjournals.aob.a087442.

Cheng, W., Parton, W.J., Gonzalez-Meler, M.A., Phillips, R., Asao, S., McNickle, G.G., Brzostek, E., Jastrow, J.D., 2014. Synthesis and modeling perspectives of rhizosphere priming. New Phytol. 201(1), 31-44. https://doi.org/10.1111/nph.12440.

Cheng, X., Euliss, A., Baumgartner, K., 2008. Nitrogen capture by grapevine roots and arbuscular mycorrhizal fungi from legume cover-crop residues under low rates of mineral fertilization. Biol. Fertil. Soils 44(7), 965-973. https://doi.org/10.1007/s00374-008-0281-7.

Corre, M.D., Brumme, R., Veldkamp, E., Beese, F.O., 2007. Changes in nitrogen cycling and retention processes in soils under spruce forests along a nitrogen enrichment gradient in Germany. Glob. Change Biol. 13(7), 1509-1527. https://doi.org/10.1111/j.1365-2486.2007.01371.x.

Courty, P.E., Buee, M., Diedhiou, A.G., Frey-Klett, P., Le Tacon, F., Rineau, F., Turpault, M.P., Uroz, S., Garbaye, J., 2010. The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol. Biochem. 42(5), 679-698. https://doi.org/10.1016/j.soilbio.2009.12.006.

Craine, J.M., Elmore, A.J., Aidar, M.P.M., Bustamante, M., Dawson, T.E., Hobbie, E.A., Kahmen, A., Mack, M.C., McLauchlan, K.K., Michelsen, A., Nardoto, G.B., Pardo, L.H., Penuelas, J., Reich, P.B., Schuur, E.A.G., Stock, W.D., Templer, P.H., Virginia, R.A., Welker, J.M., Wright, I.J., 2009. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183(4), 980-992. https://doi.org/10.1111/j.1469-8137.2009.02917.x.

Cui, Y., Bing, H., Fang, L., Jiang, M., Shen, G., Yu, J., Wang, X., Zhu, H., Wu, Y., Zhang, X., 2019. Extracellular enzyme stoichiometry reveals the carbon and phosphorus limitations of microbial metabolisms in the rhizosphere and bulk soils in alpine ecosystems. Plant Soil 458(1), 7-20. https://doi.org/10.1007/s11104-019-04159-x.

Daly, A.B., Jilling, A., Bowles, T.M., Buchkowski, R.W., Frey, S.D., Kallenbach, C.M., Keiluweit, M., Mooshammer, M., Schimel, J.P., Grandy, A.S., 2021. A holistic framework integrating plant-microbe-mineral regulation of soil bioavailable nitrogen. Biogeochemistry 154(2), 211-229. https://doi.org/10.1007/s10533-021-00793-9.

Davidson, E.A., Hart, S.C., Firestone, M.K., 1992. Internal cycling of nitrate in soils of a mature coniferous forest. Ecology 73(4), 1148-1156. https://doi.org/10.2307/1940665.

Ding, J., Kong, D., Zhang, Z., Cai, Q., Xiao, J., Liu, Q., Yin, H., 2020. Climate and soil nutrients differentially drive multidimensional fine root traits in ectomycorrhizal-dominated alpine coniferous forests. J. Ecol. 108(6), 2544-2556. https://doi.org/10.1111/1365-2745.13407.

Du, E., Terrer, C., Pellegrini, A.F., Ahlstrom, A., Van-Lissa, C.J., Zhao, X., Xia, N., Wu, X., Jackson, R.B., 2020. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13(3), 221-226. https://doi.org/10.1038/s41561-019-0530-4.

Elser, J.J., Bracken, M.E.S., Cleland, E.E., Gruner, D.S., Harpole, W.S., Hillebrand, H., Ngai, J.T., Seabloom, E.W., Shurin, J.B., Smith, J.E., 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10(12), 1135-1142. https://doi.org/10.1111/j.1461-0248.2007.01113.x.

Emmett, B.D., Buckley, D.H., Drinkwater, L.E., 2020. Plant growth rate and nitrogen uptake shape rhizosphere bacterial community composition and activity in an agricultural field. New Phytol. 225(2), 960-973. https://doi.org/10.1111/nph.16171.

Erktan, A., Roumet, C., Bouchet, D., Stokes, A., Pailler, F., Munoz, F., 2018. Two dimensions define the variation of fine root traits across plant communities under the joint influence of ecological succession and annual mowing. J. Ecol. 106(5), 2031-2042. https://doi.org/10.1111/1365-2745.12953.

Fagotti, D.S.L., Miyauchi, M.Y.H., Oliveira, A.G., Santinoni, I.A., Eberhardt, D.N., Nimtz, A., Ribeiro, R.A., Paula, A.M., Queiroz, C.A.S., Andrade, G., Zangaro, W., Nogueira, M.A., 2012. Gradients in N-cycling attributes along forestry and agricultural land-use systems are indicative of soil capacity for N supply. Soil Use. Manage. 28(3), 292-298. https://doi.org/10.1111/j.14752743.2012.00418.x.

Fang, Y., Yoh, M., Koba, K., 2011. Nitrogen deposition and forest nitrogen cycling along an urban–rural transect in southern China. Global Change Biol. 17(2), 872-885. https://doi.org/10.1111/j.13652486.2010.02283.x.

Finzi, A.C., Berthrong, S.T., 2005. The uptake of amino acids by microbes and trees in three cold-temperate forests. Ecology 86(12), 3345-3353. https://doi.org/10.1890/04-1460.

Finzi, A.C., Schlesinger, W.H., 2003. Soil-nitrogen cycling in a pine forest exposed to 5 years of elevated carbon dioxide. Ecosystems 6(5), 444-456. https://doi.org/10.1007/s10021-003-0205-1.

Finzi, A.C., Abramoff, R.Z., Spiller, K.S., Brzostek, E.R., Darby, B.A., Kramer, M.A., Phillips, R.P., 2015. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Global Change Biol. 21(5), 2082-2094. https://doi.org/10.1111/gcb.12816.

Frank, D.A., Groffman, P.M., 2009. Plant rhizospheric N processes: what we don't know and why we should care. Ecology 90(6), 1512-1519. https://doi.org/10.1890/08-0789.1.

Gan, D., Zeng, H., Zhu, B., 2022. The rhizosphere effect on soil gross nitrogen mineralization: a meta-analysis. Soil Ecol. Lett. 4(2), 144-154. https://doi.org/10.1007/s42832-021-0098-y.

Gao, J., Yi, M., Xu, X., Zhang, X., Yu, F., 2014. Spatiotemporal variations affect uptake of inorganic and organic nitrogen by dominant plant species in an alpine wetland. Plant Soil 381(1), 271-278. https://doi.org/10.1007/s11104-014-2130-9.

Grace, E.J., Cotsaftis, O., Tester, M., Smith, F.A., Smith, S.E., 2009. Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes. New Phytol. 181(4), 938-949. https://doi.org/10.1111/j.1469-8137.2008.02720.x.

Greaver, T.L., Clark, C.M., Compton, J.E., Vallano, D., Talhelm, A.F., Weaver, C.P., Band, L.E., Baron, J.S., Davidson, E.A., Tague, C.L., Felker-Quinn, E., Lynch, J.A., Herrick, J.D., Liu, L., Goodale, C.L., Novak, K.J., Haeuber, R.A., 2016. Key ecological responses to nitrogen are altered by climate change. Nat. Clim. Change 6(9), 836-843. https://doi.org/10.1038/NCLIMATE3088.

Guo, W., Ding, J., Wang, Q., Yin, M., Zhu, X., Liu, Q., Zhang, Z., Yin, H., 2021a. Soil fertility controls ectomycorrhizal mycelial traits in alpine forests receiving nitrogen deposition. Soil Biol. Biochem. 161, 108386. https://doi.org/10.1016/j.soilbio.2021.108386.

Guo, W., Zhang, Z., Liu, Q., Xiao, J., Yin, H., 2021b. Seasonal variations in plant nitrogen acquisition in an ectomycorrhizal alpine forest on the eastern Tibetan Plateau, China. Plant Soil 459(1), 79-91. https://doi.org/10.1016/j.soilbio.2021.108386.

Han, M., Chen, Y., Li, R., Yu, M., Fu, L., Li, S., Su, J., Zhu, B., 2022. Root phosphatase activity aligns with the collaboration gradient of the root economics space. New Phytol. 234(3), 773-775. https://doi.org/10.1111/nph.17906.

Henneron, L., Cros, C., Picon-Cochard, C., Rahimian, V., Fontaine, S., 2020a. Plant economic strategies of grassland species control soil carbon dynamics through rhizodeposition. J. Ecol. 108(2), 528-545. https://doi.org/10.1111/1365-2745.13276.

Henneron, L., Kardol, P., Wardle, D.A., Cros, C., Fontaine, S., 2020b. Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies. New Phytol. 228(4), 1269-1282. https://doi.org/10.1111/nph.16760.

Hildebrandt, T.M., Nunes, A.N., Araujo, W.L., Braun, H.P., 2015. Amino acid catabolism in plants. Mol. Plant 8(11), 1563-1579. https://doi.org/10.1016/j.molp.2015.09.005.

Hobbie, E.A., Hobbie, J.E., 2008. Natural abundance of 15N in nitrogen-limited forests and tundra can estimate nitrogen cycling through mycorrhizal fungi: a review. Ecosystems 11(5), 815-830. https://doi.org/10.1077/s10021-008-9159-7.

Hobbie, J.E., Hobbie, E.A., 2006. 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra. Ecology 87(4), 816-822..https://doi.org/10.1890/0012-9658(2006)87[816:NISFAP]2.0CO;2.

Houlton, B.Z., Sigman, D.M., Schuur, E.A., Hedin, L.O., 2007. A climate-driven switch in plant nitrogen acquisition within tropical forest communities. Proc. Natl. Acad. Sci. USA 104(21), 8902-8906. https://doi.org/10.1073/pnas.0609935104.

Hu, L., Robert, C.A.M., Cadot, S., Zhang, X., Ye, M., Li, B., Manzo, D., Chervet, N., Steinger, T., van der Heijden, M.G.A., Schlaeppi, K., Erb, M., 2018. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9, 2738. https://doi.org/10.1038/s41467-018-05122-7.

Isobe, K., Oka, H., Watanabe, T., Tateno, R., Urakawa, R., Liang, C., Senoo, K., Shibata, H., 2018. High soil microbial activity in the winter season enhances nitrogen cycling in a cool-temperate deciduous forest. Soil Biol. Biochem. 124, 90-100. https://doi.org/10.1016/j.soilbio.2018.05.028.

Jia, X., Huang, F., Hui, D., 2020. Nitrogen uptake by two plants in response to plant competition as regulated by neighbor density. Front. Plant Sci. 11, 584370. https://doi.org/10.3389/FPLS.2020.584370.

Jiang, J., Moore, J.A., Priyadarshi, A., Classen, A.T., 2017. Plant-mycorrhizal interactions mediate plant community coexistence by altering resource demand. Ecology 98(1), 187-197. https://doi.org/187-197.10.1002/ecy.1630.

Jones, D.L., Healey, J.R., Willett, V.B., Farrar, J.F., Hodge, A., 2005. Dissolved organic nitrogen uptake by plants-an important N uptake pathway? Soil Biol. Biochem. 37(3), 413-423. https://doi.org/10.1016/j.soilbio.2004.08.008.

Kaiser, C., Kilburn, M.R., Clode, P.L., Fuchslueger, L., Koranda, M., Cliff, J.B., Solaiman, Z.M., Murphy, D.V., 2015. Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytol. 205(4), 1537-1551. https://doi.org/10.1111/nph.13138.

Kielland, K., McFarland, J., Olson, K., 2006. Amino acid uptake in deciduous and coniferous taiga ecosystems. Plant Soil 288(1), 297-307. https://doi.org/10.1007/s11104-006-9117-0.

Koranda, M., Schnecker, J., Kaiser, C., Fuchslueger, L., Kitzler, B., Stange, C.F., Sessitsch, A., Zechmeister-Boltenstern, S., Richter, A., 2011. Microbial processes and community composition in the rhizosphere of European beech-the influence of plant C exudates. Soil Biol. Biochem. 43(3), 551-558. https://doi.org/10.1016/j.soilbio.2010.11.022.

Kuang, X., Jiao, J., 2016. Review on climate change on the Tibetan Plateau during the last half century. J. Geophys. Res. Atmos. 121(8), 3979-4007. https://doi.org/10.1002/2015jd024728.

Kuzyakov, Y., Xu, X., 2013. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol. 198(3), 656-669. https://doi.org/10.1111/nph.12235.

Laliberté, E., 2017. Below-ground frontiers in trait-based plant ecology. New Phytol. 213(4), 1597-1603. https://doi.org/10.1111/nph.14247.

Lambers, H., Mougel, C., Jaillard, B., Hinsinger, P., 2009. Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321(1), 83-115. https://doi.org/10.1007/s11104-009-0042-x.

LeBauer, D., Treseder, K., 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystem is globally distributed. Ecology 89(2), 371-379. https://doi.org/10.1890/06-2057.1.

Li, M., Zhou, X., Zhang, Q., Cheng, X., 2014. Consequences of afforestation for soil nitrogen dynamics in central China. Agric. Ecosyst. Environ. 183, 40-46. https://doi.org/10.1016/j.agee.2013.10.018.

Li, Y., Sun, D., Li, D., Xu, Z., Zhao, C., Lin, H., Liu, Q., 2015. Effects of warming on ectomycorrhizal colonization and nitrogen nutrition of Picea asperata seedlings grown in two contrasting forest ecosystems. Sci. Rep. 5, 17546. https://doi.org/10.1038/srep17546.

Liu, Y., Wang, L., He, R., Chen, Y., Xu, Z., Tan, B., Zhang, L., Xiao, J., Zhu, P., Chen, L., Guo, L., Zhang, J., 2019. Higher soil fauna abundance accelerates litter carbon release across an alpine forest-tundra ecotone. Sci. Rep. 9, 10561. https://doi.org/10.1038/s41598-019-47072-0.

Ma, L., Xu, X., Zhang, C., Lv, Y., Liu, G., Zhang, Q., Feng, J., Wang, R., 2021. Strong non-growing season N uptake by deciduous trees in a temperate forest: a 15N isotopic experiment. J. Ecol. 109(11), 3752-3766. https://doi.org/10.1111/1365-2745.13754.

McKane, R.B., Johnson, L.C., Shaver, G.R., Nadelhoffer, K.J., Rastetter, E.B., Fry, B., Giblin, A.E., Kielland, K., Kwiatkowski, B.L., Laundre, J.A., Murray, G., 2002. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415, 68-71. https://doi.org/10.1038/415068a.

Meier, I.C., Pritchard, S.G., Brzostek, E.R., McCormack, M.L., Phillips, R.P., 2015. The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO2. New Phytol. 205(3), 1164-1174. https://doi.org/10.1111/nph.13122.

Moreau, D., Bardgett, R.D., Finlay, R.D., Jones, D.L., Philippot, L., Power, S., 2019. A plant perspective on nitrogen cycling in the rhizosphere. Funct. Ecol. 33(4), 540-552. https://doi.org/10.1111/1365-2435.13303.

Mouginot, C., Kawamura, R., Matulich, K.L., Berlemont, R., Allison, S.D., Amend, A.S., Martiny, A.C., 2014. Elemental stoichiometry of fungi and bacteria strains from grassland leaf litter. Soil Biol. Biochem. 76, 278-285. https://doi.org/10.1016/j. soilbio.2014.05.011.

Munzarova, E., Lorenzen, B., Brix, H., Vojtiskova, L., Votrubova, O., 2006. Effect of NH4+/NO3 availability on nitrate reductase activity and nitrogen accumulation in wetland helophytes Phragmites australis and Glyceria maxima. Environ. Exp. Bot. 55(1-2), 49-60. https://doi.org/10.1016/j.envexpbot.2004.09.011.

Mwafulirwa, L.D., Baggs, E.M., Russell, J., Morley, N., Sim, A., Paterson, E., 2017. Combined effects of rhizodeposit C and crop residues on SOM priming, residue mineralization and N supply in soil. Soil Biol. Biochem. 113, 35-44. https://doi.org/10.1016/j.soilbio.2017.05.026.

Nordin, A., Schmidt, I.K., Shaver, G.R., 2004. Nitrogen uptake by arctic soil microbes and plants in relation to soil nitrogen supply. Ecology 85(4), 955-962. https://doi.org/10.1890/03-0084.

Nӓsholm, T., Ekblad, A., Nordin, A., Giesler, R., Högberg, M., Högberg, P., 1998. Boreal forest plants take up organic nitrogen. Nature 392(6679), 914-916. https://doi.org/10.1038/31921.

Nӓsholm, T., Kielland, K., Ganeteg, U., 2009. Uptake of organic nitrogen by plants. New Phytol. 182(1), 31-48. https://doi.org/10.1111/j.1469-8137.2008.02751.x.

Parker, A.J., Peet, R.K., 1984. Size and age structure of conifers forests. Ecology 65(5), 1685-1689. https://doi.org/10.2307/1939148.

Persson, J., Gardeström, P., Nasholm, T., 2006. Uptake, metabolism and distribution of organic and inorganic nitrogen sources by Pinus sylvestris. J. Exp. Bot. 57(11), 2651-2659. https://doi.org/10.1093/jxb/erl028.

Phillips, R.P., Brzostek, E., Midgley, M.G., 2013. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytol. 199(1), 41-51. https://doi.org/10.1111/nph.12221.

Phillips, R.P., Finzi, A.C., Bernhardt, E.S., 2011. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol. Lett. 14(2), 187-194. https://doi.org/10.1111/j.1461-0248.2010.01570.x.

Phillips, R.P., Meier, I.C., Bernhardt, E.S., Grandy, A.S., Wickings, K., Finzi, A.C., 2012. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecol. Lett. 15(9), 1042-1049. https://doi.org/10.1111/j.1461-0248.2012.01827.x.

Read, D.J., Perez-Moreno, J., 2003. Mycorrhizas and nutrient cycling in ecosystems-a journey towards relevance? New Phytol. 157(3), 475-492. https://doi.org/10.1046/j.1469-8137.2003.00704.x.

Reich, P.B., Wright, I.J., Cavender-Bares, J., Craine, J.M., Oleksyn, J., Westoby, M., Walters, M.B., 2003. The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci. 164(S3), S143-S164. https://doi.org/10.1086/374368.

Riley, W.J., Zhu, Q., Tang, J., 2018. Weaker land–climate feedbacks from nutrient uptake during photosynthesis-inactive periods. Nat. Clim. Change 8(11), 1002-1006. https://doi.org/10.1038/s41558-018-0325-4.

Rosswall, T., 1982. Microbiological regulation of the biogeochemical nitrogen cycle. Plant Soil 67(1), 15-34. https://doi.org/10.1007/bf02182752.

Rothstein, D.E., 2014. In-situ root uptake and soil transformations of glycine, glutamine and ammonium in two temperate deciduous forests of contrasting N availability. Soil Biol. Biochem. 75, 233-236. https://doi.org/10.1016/j.soilbio.2014.04.004.

Rumpf, S.B., Hulber, K., Klonner, G., Moser, D., Schutz, M., Wessely, J., Willner, W., Zimmermann, N.E., Dullinger, S., 2018. Range dynamics of mountain plants decrease with elevation. Proc. Natl. Acad. Sci. USA 115(8), 1848-1853. https://doi.org/10.1073/pnas.1713936115.

Saito, M.A., Goepfert, T.J., Ritt, J.T., 2008. Some thoughts on the concept of colimitation: three definitions and the importance of bioavailability. Limnol. Oceanogr. 53(1), 276-290. https://doi.org/10.4319/LO.2008.53.1.0276.

Schimel, J.P., Chapin, F.S., 1996. Tundra plant uptake of amino acid and NH4+ nitrogen in situ: plants complete well for amino acid N. Ecology 77(7), 2142-2147. https://doi.org/10.2307/2265708.

Schleuss, P.M., Heitkamp, F., Sun, Y., Miehe, G., Xu, X., Kuzyakov, Y., 2015. Nitrogen uptake in an alpine Kobresia pasture on the Tibetan Plateau: localization by 15N labeling and implications for a vulnerable ecosystem. Ecosystems 18(6), 946-957. https://doi.org/10.1007/s10021-015-9874-9.

Shahzad, T., Chenu, C., Genet, P., Barot, S., Perveen, N., Mougin, C., Fontaine, S., 2015. Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species. Soil Biol. Biochem. 80, 146-155. https://doi.org/10.1016/j.soilbio.2014.09.023.

Simard, S.W., Jones, M.D., Durall, D.M., 2003. Carbon and nutrient fluxes within and between mycorrhizal plants. In: van der Heijden, M.G.A., Sanders, I.R. (Eds. ), Mycorrhizal Ecology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 33–74. https://doi.org/10.1007/978-3-540-38364-2_2.
DOI
Smith, S.E., Read, D.J., 2008. Mycorrhizal Symbiosis, third ed. Academic Press, London, UK. https://doi.org/10.2136/sssaj2008.0015br.
DOI

Smithwick, E.A.H., Lucash, M.S., McCormack, M.L., Sivandran, G., 2014. Improving the representation of roots in terrestrial models. Ecol. Model. 291, 193-204. https://doi.org/10.1016/j.ecolmodel.2014.07.023.

Song, F., Tian, X., Yang, C., He, X., Chen, B., Zhu, J., Hao, J., 2006. Ectomycorrhizal infection intensity of subalpine forest ecosystems in western Sichuan, China. Acta Ecol. Sin. 26, 4171-4178 (in Chinese). https://doi.org/10.3321/j.issn:1000-0933.2006.12.033.

Stefanie, V.F., Andrew, H., Nina, B., Niklaus, P.A., Bernhard, S., Michael, S.L., 2009. Belowground nitrogen partitioning in experimental grassland plant communities of varying species richness. Ecology 90(5), 1389-1399. https://doi.org/10.1890/08-0802.1.

Stuart, E.K., Plett, K.L., 2020. Digging deeper: in search of the mechanisms of carbon and nitrogen exchange in ectomycorrhizal symbioses. Front. Plant Sci. 10, 1658. https://doi.org/10.3389/fpls.2019.01658.

Talbot, J.M., Treseder, K.K., 2010. Controls over mycorrhizal uptake of organic nitrogen. Pedobiologia 53(3), 169-179. https://doi.org/10.1016/j.pedobi.2009.12.001.

Talbot, J.M., Bruns, T.D., Smith, D.P., Branco, S., Glassman, S.I., Erlandson, S., Vilgalys, R., Peay, K.G., 2013. Independent roles of ectomycorrhizal and saprotrophic communities in soil organic matter decomposition. Soil Biol. Biochem. 57, 282-291. https://doi.org/10.1016/j.soilbio.2012.10.004.

Tarvainen, L., Lutz, M., Räntfors, M., Näsholm, T., Wallin, G., 2016. Increased needle nitrogen contents did not improve shoot photosynthetic performance of mature nitrogen-poor Scots pine trees. Front. Plant Sci. 7, 1051. https://doi.org/10.3389/fpls.2016.01051.

van Dam, N.M., Bouwmeester, H.J., 2016. Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci. 21(3), 256-265. https://doi.org/10.1016/j.tplants.2016.01.008.

van der Heijden, M.G.A., Martin, F.M., Selosse, M.A., Sanders, I.R., 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205(4), 1406-1423. https://doi.org/10.1111/nph.13288.

Wallander, H., Ekblad, A., Godbold, D.L., Johnson, D., Bahr, A., Baldrian, P., Bjork, R.G., Kieliszewska-Rokicka, B., Kjoller, R., Kraigher, H., Plassard, C., Rudawska, M., 2013. Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils-a review. Soil Biol. Biochem. 57, 1034-1047. https://dx.doi.org/10.1016/j-soilbio.2012.08.027.

Wang, C., Wang, N., Zhu, J., Liu, Y., Xu, X., Niu, S., Yu, G., Han, X., He, N., 2018. Soil gross N ammonification and nitrification from tropical to temperate forests in eastern China. Funct. Ecol. 32(1), 83-94. https://doi.org/10.1111/1365-2435.13024.

Wang, L., Shen, J., 2019. Root/rhizosphere management for improving phosphorus use efficiency and crop productivity. Better Crops Plant Food 103(1), 36-39. https://doi.org/10.24047/BC103136.

Wang, Q., Xiao, J., Ding, J., Zhou, T., Zhang, Z., Liu, Q., Yin, H., 2021. Differences in root exudate inputs and rhizosphere effects on soil N transformation between deciduous and evergreen trees. Plant Soil 458(1), 277-289. https://doi.org/10.1007/s11104-019-04156-0.

Warren, C., Adams, P., 2007. Uptake of nitrate, ammonium and glycine by plants of Tasmanian wet eucalypt forests. Tree Physiol. 27(3), 413-419. https://doi.org/10.1093/treephys/27.3.413.

Wen, Z., White, P.J., Shen, J., Lambers, H., 2022. Linking root exudation to belowground economic traits for resource acquisition. New Phytol. 233(4), 1620-1635. https://doi.org/10.1111/nph.17854.

Wilkinson, A., Hill, P.W., Farrar, J.F., Jones, D.L., Bardgett, R.D., 2014. Rapid microbial uptake and mineralization of amino acids and peptides along a grassland productivity gradient. Soil Biol. Biochem. 72, 75-83. https://doi.org/10.1016/j.soilbio.2014.01.026.

Xu, Z., Hu, R., Xiong, P., Wan, C., Cao, G., Liu, Q., 2010. Initial soil responses to experimental warming in two contrasting forest ecosystems, Eastern Tibetan Plateau, China: nutrient availabilities, microbial properties and enzyme activities. Appl. Soil Ecol. 46(2), 291-299. https://doi.org/10.1016/j.apsoil.2010.07.005.

Xu, Z., Yin, H., Xiong, P., Wan, C., Liu, Q., 2012. Short-term responses of Picea Asperata seedlings of different ages grown in two contrasting forest ecosystems to experimental warming. Environ. Exp. Bot. 77, 1-11. https://doi.org/10.1016/j.envexpbot.2011.10.011.

Yin, H., Wheeler, E., Phillips, R.P., 2014. Root-induced changes in nutrient cycling in forests depend on exudation rates. Soil Biol. Biochem. 78, 213-221. https://doi.org/10.1016/j.soilbio.2014.07.022.

Zhang, F., Shen, J., Zhang, J., Zuo, Y., Li, L., Chen, X., 2010. Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: implications for China. Adv. Agr. 107, 1-32. https://doi.org/10.1016/S0065-2113(10)07001-X.

Zhang, Z., Li, N., Xiao, J., Zhao, C., Zou, T., Li, D., Liu, Q., Yin, H., 2018a. Changes in plant nitrogen acquisition strategies during the restoration of spruce plantations on the eastern Tibetan Plateau, China. Soil Biol. Biochem. 119, 50-58. https://doi.org/10.1016/j.soilbio.2018.01.002.

Zhang, Z., Phillips, R.P., Zhao, W., Yuan, Y., Liu, Q., Yin, H., 2019a. Mycelia-derived C contributes more to nitrogen cycling than root-derived C in ectomycorrhizal alpine forests. Funct. Ecol. 33(2), 346-359. https://doi.org/10.1111/1365-2435.13236.

Zhang, Z., Xiao, J., Yuan, Y., Zhao, C., Liu, Q., Yin, H., 2018b. Mycelium- and root-derived C inputs differ in their impacts on soil organic C pools and decomposition in forests. Soil Biol. Biochem. 123, 257-265. https://doi.org/10.1016/j.soilbio.2018.05.015.

Zhang, Z., Yuan, Y., Liu, Q., Yin, H.J., 2019b. Plant nitrogen acquisition from inorganic and organic sources via root and mycelia pathways in ectomycorrhizal alpine forests. Soil Biol. Biochem. 136, 107517. https://doi.org/10.1016/j.soilbio.2019.06.013.

Zhang, Z., Yuan, Y., Zhao, W., He, H., Li, D., Liu, Q., Yin, H., 2017. Seasonal variations in the soil amino acid pool and flux following the conversion of a natural forest to a pine plantation on the eastern Tibetan Plateau, China. Soil Biol. Biochem. 105, 1-11. https://doi.org/10.1016/j.soilbio.2016.11.002.

Zhu, F., Dai, L., Hobbie, E.A., Koba, K., Liu, X., Gurmesa, G.A., Huang, S., Li, S., Li, Y., Han, S., Fang, Y., 2019. Uptake patterns of glycine, ammonium, and nitrate differ among four common tree species of northeast China. Front. Plant Sci. 10, 799. https://doi.org/10.3389/fpls.2019.00799.

Zhu, X., Liu, D., Yin, H., 2021. Roots regulate microbial N processes to achieve an efficient NH4+ supply in the rhizosphere of alpine coniferous forests. Biogeochemistry 155(1), 39-57. https://doi.org/10.1007/s10533-021-00811-w.

Zhu, X., Zhang, Z., Wang, Q., Peñuelas, J., Sardans, J., Lambers, H., Liu, Z., Yin, H., 2022. More soil organic carbon is sequestered through the mycelium-pathway than through the root-pathway under nitrogen enrichment in an alpine forest. Global Change Biol. 28(16), 4947-4961. https://doi.org/10.1111/gcb.16263.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 16 September 2022
Revised: 22 October 2022
Accepted: 23 October 2022
Published: 03 November 2022
Issue date: December 2022

Copyright

© 2022 The Authors.

Acknowledgements

Acknowledgements

This study was supported jointly by the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (No. 2019QZKK0301), the Chinese Academy of Sciences (CAS) Interdisciplinary Innovation Team (No. xbzg-zysys-202112), and the National Natural Science Foundation of China (Nos. 32171757, 31872700). Moreover, Bartosz Adamczyk acknowledges the Academy of Finland (No. 330136).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return