Journal Home > Volume 9 , Issue 2
Background

The present article questions the relative importance of local- and large-scale processes on the long-term dynamics of fire in the subalpine belt in the western Alps. The study is based on soil charcoal dating and identification, several study sites in contrasting environmental conditions, and sampling of soil charcoal along the elevation gradient of each site. Based on local differences in biomass combustion, we hypothesize that local-scale or landscape-scale processes have driven the fire history, while combustion homogeneity supports the hypothesis of the importance of large-scale or macro-ecological processes, especially climate.

Results

Biomass burning during the Holocene resulted from the nesting effects of climate, land use, and altitude, but was little influenced by slope exposure (north versus south), soil (dryness, pH, depth), and vegetation. The mid-Holocene (6500–2700 cal BP) was an important period for climate-driven biomass burning in the subalpine ecosystems of the western Alps, while fires over the last 2500 years appear much more episodic, prompting us to speculate that human activity has played a vital role in their occurrence.

Conclusion

Our working hypothesis that the strength of local drivers should offset the effects of regional climate is not validated. The homogeneity of the fire regime between sites thus underscores that climate was the main driver during the Holocene of the western Alps. Long-term subalpine fires are controlled by climate at the millennial scale. Local conditions matter for little in determining variability at the century scale. The mid-Holocene was a chief period for climatic biomass burning in the subalpine zone, while fires during the late Holocene appear much more episodic, suggesting that social drivers has exercised key function on their control.


menu
Abstract
Full text
Outline
About this article

Once upon a time biomass burning in the western Alps: Nesting effects of climate and local drivers on long-term subalpine fires

Show Author's information Christopher Carcailleta,b( )Benjamin Boulleya,bFrédérique Carcailletc,d
Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE (UMR LEHNA), F-69622, Villeurbanne, France
Paris Sciences & Lettres University (PSL), École Pratique des Hautes Études (EPHE), F-75014, Paris, France
NaturCom Chair, Université de Montpellier, F-34000, Montpellier, France
MARBEC (Université de Montpellier, CNRS, Ifremer, IRD), F-34000, Montpellier, France

Abstract

Background

The present article questions the relative importance of local- and large-scale processes on the long-term dynamics of fire in the subalpine belt in the western Alps. The study is based on soil charcoal dating and identification, several study sites in contrasting environmental conditions, and sampling of soil charcoal along the elevation gradient of each site. Based on local differences in biomass combustion, we hypothesize that local-scale or landscape-scale processes have driven the fire history, while combustion homogeneity supports the hypothesis of the importance of large-scale or macro-ecological processes, especially climate.

Results

Biomass burning during the Holocene resulted from the nesting effects of climate, land use, and altitude, but was little influenced by slope exposure (north versus south), soil (dryness, pH, depth), and vegetation. The mid-Holocene (6500–2700 cal BP) was an important period for climate-driven biomass burning in the subalpine ecosystems of the western Alps, while fires over the last 2500 years appear much more episodic, prompting us to speculate that human activity has played a vital role in their occurrence.

Conclusion

Our working hypothesis that the strength of local drivers should offset the effects of regional climate is not validated. The homogeneity of the fire regime between sites thus underscores that climate was the main driver during the Holocene of the western Alps. Long-term subalpine fires are controlled by climate at the millennial scale. Local conditions matter for little in determining variability at the century scale. The mid-Holocene was a chief period for climatic biomass burning in the subalpine zone, while fires during the late Holocene appear much more episodic, suggesting that social drivers has exercised key function on their control.

Keywords: Climate, Landscape, Biomass burning, Subalpine forest, Pedoanthracology, Radiocarbon dating, Pyrogenic carbon

References(76)

Alexis, M.A., Rumpel, C., Knicker, H., Leifeld, J., Rasse, D., Péchot, N., Bardoux, G., Mariotti, A., 2010. Thermal alteration of organic matter during a shrubland fire: a field study. Org. Geochem. 41, 690-697.

Allen, T.F.H., 2009. Hierarchy theory in ecology. In: Jorgensen, S.E. (Ed. ), Ecosystem Ecology – a Derivative of Encyclopedia of Ecology. Elsevier, Amsterdam.
DOI

Ascough, P.L., Bird, M.I., Francis, S.M., Thornton, B., Midwood, A.J., Scott, A.C., Apperley, D.C., 2011. Variability in oxidative degradation of charcoal: influence of production conditions and environmental exposure. Geochim. Cosmochim. Acta 75, 2361-2378.

Bär, A., Mayr, S., 2020. Bark insulation: ten central alpine tree species compared. For. Ecol. Manag. 474, 118361. https://doi.org/10.1016/j.foreco.2020.118361.

Bartoli, C., 1966. Etudes écologiques sur les associations végétales forestières de la Haute Maurienne. Ann. For. Sci. 23, 432-751.

Bégin, Y., Marguerie, D., 2002. Characterization of tree macroremains production in a recently burned conifer forest in northern Québec, Canada. Plant Ecol. 159, 143-152.

Blarquez, O., Carcaillet, C., Elzein, T.M., Roiron, P., 2012. Needle accumulation rate model-based reconstruction of palaeo-tree biomass in the western subalpine Alps. Holocene 22, 579-587. https://doi.org/10.1177/0959683611427333.

Bond, W.J., Keeley, J.E., 2005. Fire as a global ''herbivore": the ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387-394. https://doi.org/10.1016/j.tree.2005.04.025.

Carcaillet, C., 1998. A spatially precise study of fires, climate and human impact within the Maurienne valley, North French Alps. J. Ecol. 86, 384-396. https://doi.org/10.1046/j.1365-2745.1998.00267.x.

Carcaillet, C. 2001. Soil particles reworking evidences by AMS 14C dating of charcoal. Comptes Rendus Acad. Sci. Paris, Ser. II-A. 332, 21-28. https://doi.org/10.1016/S1251-8050(00)01485-3.

Carcaillet, C., Blarquez, O., 2017. Fire ecology of a tree glacial refugium on a nunatak with a view on Alpine glaciers. New Phytol. 216, 1281-1290. https://doi.org/10.1111/nph.14721.

Carcaillet, C., Talon, B., 2001. Soil carbon sequestration by Holocene fires inferred from soil charcoal in the dry French Alps. Arct. Antarc. Alp. Res. 33, 282-288. https://doi.org/10.1080/15230430.2001.12003432.

Carcaillet, C., Thinon, M., 1996. Pedoanthracological contribution to the evolution of the upper treeline in the Maurienne Valley (North French Alps): Methodology and preliminary data. Rev. Palaeobot. Palynol. 91, 399-416. https://doi.org/10.1016/0034-6667(95)00060-7.

Carnelli, A.L., Theurillat, J.P., Thinon, M., Vadi, G., Talon, B., 2004. Past uppermost tree limit in the central European Alps (Switzerland) based on soil and soil charcoal. Holocene 14, 393-405.

Clark, J.S., Lynch, J., Stocks, B., Goldammer, J., 1998. Relationships between charcoal particles in air and sediments in west-central Siberia. Holocene 8, 19-29.

Couillard, P.L., Tremblay, J., Lavoie, M., Payette, S., 2019. Comparative methods for reconstructing fire histories at the stand scale using charcoal records in peat and mineral soils. For. Ecol. Manag. 433, 376-385. https://doi.org/10.1016/j. foreco.2018.11.015.

Criscuoli, I., Alberti, G., Baronti, S., Favilli, F., Martinez, C., Calzolari, C., Pusceddu, E., Rumpel, C., Viola, R., Miglietta, F., 2014. Carbon sequestration and fertility after centennial time scale incorporation of charcoal into soil. PLoS ONE, e91114. https://doi.org/10.1371/journal.pone.0091114.

Debelmas, J., 1989. Geologic Map 775, Carte Géologique de la France, feuille de Modane, 1: 50 000. Edition du BRGM, Orléans, France.

Didier, L., 2001. Invasion patterns of European larch and Swiss stone pine in subalpine pastures in the French Alps. For. Ecol. Manag. 145, 67-77.

Dupire, S., Curt, T., Bigot, S., 2017. Spatio-temporal trends in fire weather in the French Alps. Sci. Total. Environ. 595, 801-817. https://doi.org/10.1016/j.scitotenv.2017.04.027.

Dupiré, S., Curt, T., Bigot, S., Fréjaville, T., 2019. Vulnerability of forest ecosystems to fire in the French Alps. Eur. J. For. Res. 138, 813-830. 10.1007/s10342-019-01206-1.

Flannigan, M.D., Krawchuk, M.A., de Groot, W.J., Wotton, B.M., Gowman, L.M., 2009. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 18, 483e507, https://doi.org/10.1071/WF08187.

Fréjaville, T., Carcaillet, C., Curt, T., 2013a. Calibration of charcoal production from trees biomass for soil charcoal analyses in subalpine ecosystems. Quat. Intern. 289, 16-23. https://doi.org/10.1016/j.quaint.2012.02.043.

Fréjaville, T., Curt, T., Carcaillet, C., 2013b. Bark flammability as a fire-response trait for subalpine trees. Front Plant Sci. 4, 466. https://doi.org/10.3389/fpls.2013.00466.

Fréjaville, T., Curt, T., Carcaillet, C., 2018a. Higher potential fire intensity at the dry margins of European mountain trees. J. Biogeogr. 45, 2003-2015. https://doi.org/10.1111/jbi.13386.

Fréjaville, T., Vilà-Cabrera, A., Curt, T., Carcaillet, C., 2018b. Aridity and competition drive fire resistance trait covariation in mountain trees. Ecosphere 9, e02493. https://doi.org/10.1002/ecs2.2493.

Fudral, S., Deville, E., Nicoud, G., Pognante, U., Guillot, P.L., Jaillard, E., 1994. Geologic map 776, Carte Géologique de la France, feuille de Lanslebourg-Mont-d'Ambin, 1: 50 000. Edition du BRGM, Orléans.

Gao, X., Giorgi, F., 2008. Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Glob. Planet. Change 62, 195-209. https://doi.org/10.1016/j.gloplacha.2008.02.002.

Gavin, D.G., 2001. Estimation of inbuilt age in radiocarbon ages of soil charcoal for fire history studies. Radiocarbon 43, 27-44.

Gavin, D.G., Brubaker, L.B., Lertzman, K.P., 2003. Holocene fire history of a coastal temperate rain forest based on soil charcoal radiocarbon dates. Ecology 84, 186-201.

Genries, A., Mercier, L., Lavoie, M., Muller, S.D., Radakovitch, O., Carcaillet, C., 2009a. The effect of fire frequency on local cembra pine populations. Ecology 90, 476-486. https://doi.org/10.1890/07-1740.1.

Genries, A., Morin, X., Chauchard, S., Carcaillet, C., 2009b. The function of surface fires in the dynamics and structure of a formerly grazed old subalpine forest. J. Ecol. 97, 728-741, https://doi.org/10.1111/j.1365-2745.2009.01518.x.

Genries, A., Muller, S.D., Mercier, L., Bircker, L., Carcaillet, C., 2009c. Fires control spatial variability of subalpine vegetation dynamics during the Holocene in the Maurienne valley (French Alps). Ecoscience 16, 13-22. https://doi.org/10.2980/16-1-3180.

Hajdas, I., Schlumpf, N., Minikus-Stary, N., Hagedorn, F., Eckmeier, E., Schoch, W., Burga, C., Bonani, G., Schmidt, M.W.I., Cherubini, P., 2007. Radiocarbon ages of soil charcoals from the southern Alps, Ticino, Switzerland. Nucl. Instrum. Methods Phys. Res. B 259, 398-402.

Hellberg, E., Carcaillet, C., 2003. Wood anatomy of West-European Betula: quantitative descriptions and applications for routine identification in paleoecological studies. Ecoscience 10, 370-379. https://doi.org/10.1080/11956860.2003.11682786.

Im, E.S., Coppola, E., Giorgi, F., Bi, X., 2010. Local effects of climate change over the Alpine region: A study with a high resolution regional climate model with a surrogate climate change scenario. Geophys. Res. Lett. 37, L0570.

IPCC, 2021. Climate Change 2021: the Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

Jacquiot, C., 1955. Atlas d'anatomie des bois de conifères. Centre technique du bois, Paris.

Jacquiot, C., Trenard, Y., Dirol, D., 1973. Atlas d'anatomie des bois des Angiospermes (Essences feuillues). Centre technique du bois, Paris.

Kasin, I., Ellingsen, V.M., Aspun, J., Ohlson, M., 2017. Spatial and temporal dynamics of the soil charcoal pool in relation to fire history in a boreal forest landscape. Can. J. For. Res. 47, 28-35.

Lê, S., Josse, J., Husson, F., 2008. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Software 25, 1-18.

Leys, B., Carcaillet, C., 2016. Subalpine fires: the roles of vegetation, climate and, ultimately, land uses. Clim. Change 135, 683-697 https://doi.org/10.1007/s10584-016-1594-4.

Lingua, E., Cherubini, P., Motta, R., Nola, P., 2008. Spatial structure along an altitudinal gradient in the Italian central Alps suggests competition and facilitation among coniferous species. J. Veg. Sci. 19, 425-436.

Loehman, R.A., Reinhardt, E., Riley, K.L., 2014. Wildland fire emissions, carbon and climate: Seeing the forest and the trees - Across-scale assessment of wildfire and carbon dynamics in fire-prone, forested ecosystems. For. Ecol. Manage. 317, 9-19.

Lynch, J.A., Clark, J.S., Stocks, B.J., 2004. Charcoal production, dispersal, and deposition from the Fort Providence experimental fire: Interpreting fire regimes from charcoal records in boreal forests. Can. J. For. Res. 34, 1642-1656.

Maezumi, S.Y., Gosling, W.D., Kirschner, J., Chevalier, M., Cornelissen, H.L., Jeinecke, T., McMichael, C.N.H., 2021. A modern analogue matching approach to characterize fire temperatures and plant species from charcoal. Palaeogeogr. Palaeoclim. Palaeoecol. 578, 110580. http://doi.org/10.1016/j.palaeo.2021.110580.

Michczyński, A., 2007. Is it possible to find a good point estimate of a calibrated radiocarbon date? Radiocarbon 49, 393-401. http://doi.org/10.1017/S0033822200042326.

Moritz, M.A., Batllori, E., Bradstock, R.A., Gill, M., Handmer, J., Hessburg, P.F., Leonard, J., McCaffrey, S., Odion, D. C, Schoennagel, T., Syphard, D.A., 2014. Learning to coexist with wildfire. Nature 515, 58-66. https://doi.org/10.1038/nature13946.

Moritz, M.A., Parisien, M.A., Batllori, E., Krawchuk, MA, Van Dorn, J, Ganz, DJ, Hayhoe, K, 2012. Climate change and disruptions to global fire activity. Ecosphere 3, 49. https://doi.org/10.1890/ES11-00345.1.

Motta, R., Lingua, E., 2005. Human impact on size, age, and spatial structure in a mixed European larch and Swiss stone pine forest in the Western Italian Alps. Can. J. For. Res. 35: 1809-1820.

Mourier, B., Poulenard, J., Chauvel, C., Faivre, P., Carcaillet, C., 2008. Distinguishing subalpine soil types using extractible Al and Fe fractions and REE geochemistry. Geoderma 145, 107-120. https://doi.org/10.1016/j.geoderma.2008.03.001.

Novakov, T., Cachier, H., Clark, J.S., Gaudichet, A., Macko, S., Masclet, P., 1997. Characterization of particulate products of biomass combustion, In: Clark, J.S., Cachier, H., Goldammer, J.G., Stocks, B. (eds), Sediment Records of Biomass Burning and Global Change, pp. 117-143. Springer Verlag, Berlin. https://doi.org/10.1007/978-3-642-59171-6_6.
DOI

Ohlson, M., Kasin, I., Nordtug Wist, A., Bjune, A.E., 2013. Size and spatial structure of the soil and lacustrine charcoal pool across a boreal forest watershed. Quat. Res. 80, 417-424.

Ohlson, M., Tryterud, E., 2000. Interpretation of the charcoal record in forest soils: Forest fires and their production and deposition of macroscopic charcoal. Holocene 10, 519-525.

O'Neill, R.V., 1988. Hierarchy theory and global change. In: Rosswall, T., Woodmansee, R.G., Risser, P.G. (Eds. ), Scales and Global Change. Wiley, New York, pp. 29–45.

Payette, S., Delwaide, A., Schaffhauser, A., Magnan, G., 2012. Calculating long-term fire frequency at the stand scale from charcoal data. Ecosphere 3, 59. https://doi.org/10.1890/ES12-00026.1.

Payette, S., Gagnon, R., 1985. Late Holocene deforestation and tree regeneration in the forest-tundra of Quebec. Nature 202, 469-461.

Power, M.J., Marlon, J., Ortiz, N., Bartlein, P.J., Harrison, S.P., Mayle, F.E., Ballouche, A., Bradshaw, R.H.W., Carcaillet, C., Cordova, C., Mooney, S., Moreno, P.I., Prentice, I.C., Thonicke, K., Tinner, W., Whitlock, C., Zhang, Y., Zhao, Y., Ali, A.A., Anderson, R.S., Beer, R., Behling, H., Briles, C., Brown, K.J., Brunelle, A., Bush, M., Camill, P., Chu, G.Q., Clark, J., Colombaroli, D., Connor, S., Daniau, A. -L., Daniels, M., Dodson, J., Doughty, E., Edwards, M.E., Finsinger, W., Foster, D., Frechette, J., Gaillard, M. -J., Gavin, D.G., Gobet, E., Haberle, S., Hallett, D.J., Higuera, P., Hope, G., Horn, S., Inoue, J., Kaltenrieder, P., Kennedy, L., Kong, Z.C., Larsen, C., Long, C.J., Lynch, J., Lynch, E.A., McGlone, M., Meeks, S., Mensing, S., Meyer, G., Minckley, T., Mohr, J., Nelson, D.M., New, J., Newnham, R., Noti, R., Oswald, W., Pierce, J., Richard, P.J.H., Rowe, C., Sanchez Goñi, M.F., Shuman, B.N., Takahara, H., Toney, J., Turney, C., Urrego-Sanchez, D.H., Umbanhowar, C., Vandergoes, M., Vanniere, B., Vescovi, E., Walsh, M., Wang, X., Williams, N., Wilmshurst, J., Zhang, J.H., 2008. Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Clim. Dyn. 30, 887-907. https://doi.org/10.1007/s00382-007-0334-x.

Piedallu, C., Gégout, J.C. (2007) Multiscale computation of solar radiation for predictive vegetation modelling. Ann. For. Sci. 64, 899-909.

Preston, C.M., Schmidt, M.W.I., 2006. Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 3, 397-420.

Saulnier, M., Talon, B., Edouard, J.L., 2015. New pedoanthracological data for the long-term history of forest species at mid-high altitudes in the Queyras Valley (Inner Alps). Quat. Int. 366, 15-24.

Schumacher, S., Bugmann, H. 2006. The relative importance of climatic effects, wildfires and management for future forest landscape dynamics in the Swiss Alps. Glob. Change Biol. 12, 1435e1450. https://doi.org/10.1111/j.1365-2486.2006.01188.x.

Schweingruber, F.H., 1990. Anatomie Europäischer Hölzer. Paul Haupt, Bern.
Stuiver, M., Reimer, P.J., Reimer, R.W., 2021. Calib 8.2 [WWW program]. http://calib.org.

Talon, B., 1997. Etude anatomique et comparative de charbons de bois de Larix decidua Mill. et de Picea abies (L. ) Karst. C. R. Acad. Sci. Paris Life Science 320, 581-588.

Talon, B., 2004. Wood anatomical criteria for identification of European Boreo-Alpine Ericaceae. In: International Symposium of Wood Sciences. IAWA-IAWS, Montpellier, France, 24-29 October 2004.

Talon, B., 2010. Reconstruction of Holocene high altitude vegetation cover in the French Southern Alps: evidence from soil charcoal. Holocene 20, 34-44.

Talon, B., Payette, S., Filion, L., Delwaide, A., 2005. Reconstruction of the long-term fire history of an old-growth deciduous forest in southern Quebec, Canada, from charred wood in mineral soils. Quat. Res. 64, 36-43.

Tasser, E., Tappeiner, U., 2002. Impact of land use changes on mountain vegetation. App. Veg. Sci. 5, 173-184.

Tasser, E., Walde, J., Tappeiner, U., Teutsch, A., Noggler, W., 2007. Land use changes and natural reforestation in the Eastern Central Alps. Agr. Ecosyst. Environ. 118, 115-129.

Telford, R.J., Heegaard, E., Birks, H.J.B., 2004. The intercept is a poor estimate of a calibrated radiocarbon age. Holocene 14, 296-298.

Théry-Parisot, I., 2002. Fuel management (bone and wood) during the Lower Aurignacian in the Pataud Rock Shelter (Lower Palaeolithic, Les Eyzies de Tayrac, Dordogne, France). Contribution of experimentation. J. Archaeol. Sci. 29, 1415-1421.

Tian, Y.Q., Davies-Colley, R.J., Gong, P., Thorrold, B.W., 2001. Estimating solar radiation on slopes of arbitrary aspect. Agr. For. Meteorol. 109, 67-74.

Vannière, B., Blarquez, O., Rius, D., Doyen, E., Brucher, T., Colombaroli, D., Connor, S., Feurdean, A., Hickler, T.M., Kaltenrieder, P., Lemmon, C., Leys, B., Massa, C., Olofsson, J. (2016) 7000-year human legacy of elevation-dependent European fire regimes. Quat. Sci. Rev. 132, 206-212.

Yocom Kent, L.L., Fulé, P.Z., Brown, P.M., Cerano-Paredes, J., Cornejo-Oviedo, E., Cortés Montano, C., Drury, S.A., Falk, D.A., Meunier, J., Poulos, H.M., Skinner, C.N., Stephens, S.L., Villanueva-Dìaz, J., 2017. Climate drives fire synchrony but local factors control fire regime change in northern Mexico. Ecosphere 8, e01709. https://doi.org/10.1002/ecs2.1709.

Zumbrunnen, T., Bugmann, H., Conedera, M., Bürgi, M., 2009. Linking forest fire regimes and climate - a historical analysis in a dry inner Alpine valley. Ecosystems 12, 73-86. https://doi.org/10.1007/s10021-008-9207-3.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 07 March 2022
Accepted: 07 March 2022
Published: 09 March 2022
Issue date: April 2022

Copyright

© 2022 Beijing Forestry University.

Acknowledgements

Acknowledgements

A reviewer is warmly thanked for his/her relevant recommendations. We thank Marion Martinez, who assisted with charcoal identification on the Lanslevillard site during her Master internship at the EPHE, and also Adam Ali, Olivier Blarquez, Jean-Jacques Brun, Lydie Feltgen, Brice Mourier, Brigitte Talon, and Michel Thinon for their help during fieldwork. This study could hardly have been carried out without the availability of the charcoal lab facilities at the IMBE, Marseille, notably during the internship of Marion Martinez; many thanks to Brigitte Talon for her kind hospitality. The English text was edited by SEES-Editing Ltd.

Rights and permissions

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return