186
Views
9
Downloads
3
Crossref
3
WoS
4
Scopus
0
CSCD
Nonstructural carbohydrates (NSC) are indicators of tree carbon balance and play an important role in regulating plant growth and survival. However, our understanding of the mechanism underlying drought-induced response of NSC reserves remains limited. Here, we conducted a long-term throughfall exclusion (TFE) experiment to investigate the seasonal responses of NSC reserves to manipulative drought in two contrasting tree species (a broadleaved tree Castanopsis hystrix Miq. and a coniferous tree Pinus massoniana Lamb.) of the subtropical China. We found that in the dry season, the two tree species differed in their responses of NSC reserves to TFE at either the whole-tree level or by organs, with significantly depleted total NSC reserves in roots in both species. Under the TFE treatment, there were significant increases in the NSC pools of leaves and branches in C. hystrix, which were accompanied by significant decreases in fine root biomass and radial growth without significant changes in canopy photosynthesis; while P. massoniana exhibited significant increase in fine root biomass without significant changes in radial growth. Our results suggested that under prolonged water limitation, NSC usage for growth in C. hystrix is somewhat impaired, such that the TFE treatment resulted in NSC accumulation in aboveground organs (leaf and branch); whereas P. massoniana is capable of efficiently utilizing NSC reserves to maintain its growth under drought conditions. Our findings revealed divergent NSC allocations under experimental drought between the two contrasting tree species, which are important for better understanding the differential impacts of climate change on varying forest trees and plantation types in subtropical China.
Nonstructural carbohydrates (NSC) are indicators of tree carbon balance and play an important role in regulating plant growth and survival. However, our understanding of the mechanism underlying drought-induced response of NSC reserves remains limited. Here, we conducted a long-term throughfall exclusion (TFE) experiment to investigate the seasonal responses of NSC reserves to manipulative drought in two contrasting tree species (a broadleaved tree Castanopsis hystrix Miq. and a coniferous tree Pinus massoniana Lamb.) of the subtropical China. We found that in the dry season, the two tree species differed in their responses of NSC reserves to TFE at either the whole-tree level or by organs, with significantly depleted total NSC reserves in roots in both species. Under the TFE treatment, there were significant increases in the NSC pools of leaves and branches in C. hystrix, which were accompanied by significant decreases in fine root biomass and radial growth without significant changes in canopy photosynthesis; while P. massoniana exhibited significant increase in fine root biomass without significant changes in radial growth. Our results suggested that under prolonged water limitation, NSC usage for growth in C. hystrix is somewhat impaired, such that the TFE treatment resulted in NSC accumulation in aboveground organs (leaf and branch); whereas P. massoniana is capable of efficiently utilizing NSC reserves to maintain its growth under drought conditions. Our findings revealed divergent NSC allocations under experimental drought between the two contrasting tree species, which are important for better understanding the differential impacts of climate change on varying forest trees and plantation types in subtropical China.
Adams, H.D., Zeppel, M.J.B., Anderegg, W.R.L., Hartmann, H., Landhausser, S.M., Tissue, D.T., 2017. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 1(9), 1285-1291. https://doi.org/10.1038/s41559-017-0248-x.
Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.H., Allard, G., Running, S.W., Semerci, A., Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259(4), 660-684. https://doi.org/10.1016/j.foreco.2009.09.001.
Bloom, A.J., Mooney, H.A., 1985. Resource limitation in plants-an economic analogy. Annu. Rev. Ecol. Syst. 16(1), 363-392. https://doi.org/10.1146/annurev.es.16.110185.002051.
Carnicer, J., Barbeta, A., Sperlich, D., Coll, M., Penuelas, J., 2013. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale. Front. Plant Sci. 4, 409. https://doi.org/10.3389/fpls.2013.00409.
Chapin, F.S., Schulze, E.D., Mooney, H.A., 1990. The ecology and economics of storage in plants. Annu. Rev. Ecol. Syst. 21(1), 423-447. https://doi.org/10.1146/annurev.es.21.110190.002231.
Chen, L., Wen, Y., Zeng, J., Wang, H., Wang, J., Dell, B., Liu, S., 2019. Differential responses of net N mineralization and nitrification to throughfall reduction in a Castanopsis hystrix plantation in southern China. For. Ecosyst. 6, 14. https://doi.org/10.1186/s40663-019-0174-2.
Dai, A., 2021. Hydroclimatic trends during 1950-2018 over global land. Clim. Dyn. 56(11), 4027-4049. https://doi.org/10.1007/s00382-021-05684-1.
Doughty, C.E., Malhi, Y., Araujo-Murakami, A., Metcalfe, D.B., Silva-Espejo, J.E., Arroyo, L., Heredia, J.P., Pardo-Toledo, E., Mendizabal, L.M., Rojas-Landivar, V.D., Vega-Martinez, M., Flores-Valencia, M., Sibler-Rivero, R., Moreno-Vare, L., Jessica Viscarra, L., Chuviru-Castro, T., Osinaga-Becerra, M., Ledezma, R., 2014. Allocation trade-offs dominate the response of tropical forest growth to seasonal and interannual drought. Ecology 95(8), 2192-2201. https://doi.org/10.1890/13-1507.1.
Fan, Y., Lu, S., He, M., Yang, L., Hu, W., Yang, Z., Liu, X., Hui, D., Guo, J., Yang, Y., 2021. Long-term throughfall exclusion decreases soil organic phosphorus associated with reduced plant roots and soil microbial biomass in a subtropical forest. Geoderma 404, 115309. https://doi.org/10.1016/j.geoderma.2021.115309.
Fan, Y., Miguez-Macho, G., Jobbagy, E.G., Jackson, R.B., Otero-Casal, C., 2017. Hydrologic regulation of plant rooting depth. Proc. Natl. Acad. Sci. USA. 114(40), 10572-10577. https://doi.org/10.1073/pnas.1712381114.
Fermaniuk, C., Fleurial, K.G., Wiley, E., Landhausser, S.M., 2021. Large seasonal fluctuations in whole-tree carbohydrate reserves: is storage more dynamic in boreal ecosystems? Ann. Bot. 128(7), 943-957. https://doi.org/10.1093/aob/mcab099.
Furze, M.E., Huggett, B.A., Aubrecht, D.M., Stolz, C.D., Carbone, M.S., Richardson, A.D., 2019. Whole-tree nonstructural carbohydrate storage and seasonal dynamics in five temperate species. New Phytol. 221(3), 1466-1477. https://doi.org/10.1111/nph.15462.
Galiano, L., Martínez-Vilalta, J., Lloret, F., 2011. Carbon reserves and canopy defoliation determine the recovery of Scots pine 4yr after a drought episode. New Phytol. 190(3), 750-759. https://doi.org/10.1111/j.1469-8137.2010.03628.x.
Gheyret, G., Zhang, H., Guo, Y., Liu, T., Bai, Y., Li, S., Schmid, B., Bruelheide, H., Ma, K., Tang, Z., 2021. Radial growth response of trees to seasonal soil humidity in a subtropical forest. Basic Appl. Ecol. 55, 74-86. https://doi.org/10.1016/j.baae.2021.02.015.
Granda, E., Camarero, J.J., 2017. Drought reduces growth and stimulates sugar accumulation: New evidence of environmentally driven non-structural carbohydrate use. Tree Physiol. 37(8), 997-1000. https://doi.org/10.1093/treephys/tpx097.
Griebel, A., Bennett, L.T., Arndt, S.K., 2017. Evergreen and ever growing - Stem and canopy growth dynamics of a temperate eucalypt forest. For. Ecol. Manage. 389, 417-426. https://doi.org/10.1016/j.foreco.2016.12.017.
Hartmann, H., Adams, H.D., Hammond, W.M., Hoch, G., Landhausser, S.M., Wiley, E., Zaehle, S., 2018. Identifying differences in carbohydrate dynamics of seedlings and mature trees to improve carbon allocation in models for trees and forests. Environ. Exp. Bot. 152, 7-18. https://doi.org/10.1016/j.envexpbot.2018.03.011.
Hartmann, H., Trumbore, S., 2016. Understanding the roles of nonstructural carbohydrates in forest trees - from what we can measure to what we want to know. New Phytol. 211(2), 386-403. https://doi.org/10.1111/nph.13955.
Hartmann, H., Ziegler, W., Trumbore, S., 2013. Lethal drought leads to reduction in nonstructural carbohydrates in Norway spruce tree roots but not in the canopy. Funct. Ecol. 27(2), 413-427. https://doi.org/10.1111/1365-2435.12046.
He, W., Liu, H., Qi, Y., Liu, F., Zhu, X., 2020. Patterns in nonstructural carbohydrate contents at the tree organ level in response to drought duration. Glob. Chang. Biol. 26(6), 3627-3638. https://doi.org/10.1111/gcb.15078.
He, Y., Qin, L., Li, Z., Liang, X., Shao, M., Tan, L., 2013. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China. For. Ecol. Manage. 295, 193-198. https://doi.org/10.1016/j.foreco.2013.01.020.
Hertel, D., Strecker, T., Müller-Haubold, H., Leuschner, C., 2013. Fine root biomass and dynamics in beech forests across a precipitation gradient-is optimal resource partitioning theory applicable to water-limited mature trees? J. Ecol. 101(5), 1183-1200. https://doi.org/10.1111/1365-2745.12124.
Hölttä, T., Mencuccini, M., Nikinmaa, E., 2009. Linking phloem function to structure: analysis with a coupled xylem-phloem transport model. J. Theor. Biol. 259(2), 325-337. https://doi.org/10.1016/j.jtbi.2009.03.039.
Huang, J., Wang, X., Zheng, M., Mo, J., 2021. 13-year nitrogen addition increases nonstructural carbon pools in subtropical forest trees in southern China. For. Ecol. Manage. 481, 118748. https://doi.org/10.1016/j.foreco.2020.118748.
Jin, Y., Li, J., Liu, C., Liu, Y., Zhang, Y., Sha, L., Wang, Z., Song, Q., Lin, Y., Zhou, R., Chen, A., Li, P., Fei, X., Grace, J., 2018. Carbohydrate dynamics of three dominant species in a Chinese savanna under precipitation exclusion. Tree Physiol. 38(9), 1371-1383. https://doi.org/10.1093/treephys/tpy017.
Johnson, D.M., McCulloh, K.A., Woodruff, D.R., Meinzer, F.C., 2012. Hydraulic safety margins and embolism reversal in stems and leaves: Why are conifers and angiosperms so different? Plant Sci. 195, 48-53. https://doi.org/10.1016/j.plantsci.2012.06.010.
Körner, C., 2015. Paradigm shift in plant growth control. Curr. Opin. Plant Biol. 25, 107-114. https://doi.org/10.1016/j.pbi.2015.05.003.
Landhäusser, S.M., Lieffers, V.J., 2003. Seasonal changes in carbohydrate reserves in mature northern Populus tremuloides clones. Trees 17(6), 471-476. https://doi.org/10.1007/s00468-003-0263-1.
Lin, T., Zheng, H., Huang, Z., Wang, J., Zhu, J., 2018. Non-structural carbohydrate dynamics in leaves and branches of Pinus massoniana (Lamb.) following 3-year rainfall exclusion. Forests 9(6), 315. https://doi.org/10.3390/f9060315.
Liu, W., Su, J., Li, S., Lang, X., Huang, X., 2018. Non-structural carbohydrates regulated by season and species in the subtropical monsoon broad-leaved evergreen forest of Yunnan province, China. Sci. Rep. 8, 1083. https://doi.org/10.1038/s41598-018-19271-8.
Martínez-Vilalta, J., Sala, A., Asensio, D., Galiano, L., Hoch, G., Palacio, S., Piper, F.I., Lloret, F., 2016. Dynamics of non-structural carbohydrates in terrestrial plants: A global synthesis. Ecol. Monogr. 86(4), 495-516. https://doi.org/10.1002/ecm.1231.
McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D.G., Yepez, E.A., 2008. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol. 178(4), 719-739. https://doi.org/10.1111/j.1469-8137.2008.02436.x.
McDowell, N.G., Beerling, D.J., Breshears, D.D., Fisher, R.A., Raffa, K.F., Stitt, M., 2011. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26(10), 523-532. https://doi.org/10.1016/j.tree.2011.06.003.
McDowell, N.G., Michaletz, S.T., Bennett, K.E., Solander, K.C., Xu, C., Maxwell, R.M., Middleton, R.S., 2018. Predicting chronic climate-driven disturbances and their mitigation. Trends Ecol. Evol. 33(1), 15-27. https://doi.org/10.1016/j.tree.2017.10.002.
Mei, L., Xiong, Y., Gu, J., Wang, Z., Guo, D., 2015. Whole-tree dynamics of non-structural carbohydrate and nitrogen pools across different seasons and in response to girdling in two temperate trees. Oecologia 177(2), 333-344. https://doi.org/10.1007/s00442-014-3186-1.
Newell, E.A., Mulkey, S.S., Wright, S.J., 2002. Seasonal patterns of carbohydrate storage in four tropical tree species. Oecologia 131(3), 333-342. https://doi.org/10.1007/s00442-002-0888-6.
Osaki, M., Shinano, T., Tadano, T., 1991. Redistribution of carbon and nitrogen compounds from the shoot to the harvesting organs during maturation in field crops. Soil Sci. Plant Nutr. 37(1), 117-128. https://doi.org/10.1080/00380768.1991.10415017.
Palacio, S., Camarero, J.J., Maestro, M., Alla, A.Q., Lahoz, E., Montserrat-Martí, G., 2018. Are storage and tree growth related? Seasonal nutrient and carbohydrate dynamics in evergreen and deciduous Mediterranean oaks. Trees 32(3), 777-790. https://doi.org/10.1007/s00468-018-1671-6.
Peng, H., Xia, H., Chen, H., Zhi, P., Xu, Z., 2021. Spatial variation characteristics of vegetation phenology and its influencing factors in the subtropical monsoon climate region of southern China. PLoS One 16(4), e0250825. https://doi.org/10.1371/journal.pone.0250825.
Persson, H.Å., 1983. The distribution and productivity of fine roots in boreal forests. Plant Soil 71(1), 87-101. https://doi.org/10.1007/BF02182644.
Peters, R.L., Steppe, K., Cuny, H.E., De Pauw, D.J.W., Frank, D.C., Schaub, M., Rathgeber, C.B.K., Cabon, A., Fonti, P., 2021. Turgor - a limiting factor for radial growth in mature conifers along an elevational gradient. New Phytol. 229(1), 213-229. https://doi.org/10.1111/nph.16872.
Piper, F.I., 2011. Drought induces opposite changes in the concentration of non-structural carbohydrates of two evergreen Nothofagus species of differential drought resistance. Ann. For. Sci. 68(2), 415-424. https://doi.org/10.1007/s13595-011-0030-1.
Piper, F.I., Fajardo, A., Hoch, G., 2017. Single-provenance mature conifers show higher non-structural carbohydrate storage and reduced growth in a drier location. Tree Physiol. 37(8), 1001-1010. https://doi.org/10.1093/treephys/tpx061.
Piper, F.I., Paula, S., 2020. The role of nonstructural carbohydrates storage in forest resilience under climate change. Curr. For. Reports 6(1), 1-13. https://doi.org/10.1007/s40725-019-00109-z.
Pivovaroff, A.L., McDowell, N.G., Rodrigues, T.B., Brodribb, T., Cernusak, L.A., Choat, B., Grossiord, C., Ishida, Y., Jardine, K.J., Laurance, S., Leff, R., Li, W., Liddell, M., Mackay, D.S., Pacheco, H., Peters, J., de J. Sampaio Filho, I., Souza, D.C., Wang, W., Zhang, P., Chambers, J., 2021. Stability of tropical forest tree carbon-water relations in a rainfall exclusion treatment through shifts in effective water uptake depth. Glob. Chang. Biol. 27(24), 6454-6466. https://doi.org/10.1111/gcb.15869.
Regier, N., Streb, S., Zeeman, S.C., Frey, B., 2010. Seasonal changes in starch and sugar content of poplar (Populus deltoides × nigra cv. Dorskamp) and the impact of stem girdling on carbohydrate allocation to roots. Tree Physiol. 30(8), 979-987. https://doi.org/10.1093/treephys/tpq047.
Resco de Dios, V., Gessler, A., 2021. Sink and source co-limitation in the response of stored non-structural carbohydrates to an intense but short drought. Trees 35(6), 1751-1754. https://doi.org/10.1007/s00468-021-02116-9.
Sala, A., Hoch, G., 2009. Height-related growth declines in ponderosa pine are not due to carbon limitation. Plant, Cell Environ. 32(1), 22-30. https://doi.org/10.1111/j.1365-3040.2008.01896.x.
Sala, A., Woodruff, D.R., Meinzer, F.C., 2012. Carbon dynamics in trees: Feast or famine? Tree Physiol. 32(6), 764-775. https://doi.org/10.1093/treephys/tpr143.
Schönbeck, L., Gessler, A., Hoch, G., McDowell, N.G., Rigling, A., Schaub, M., Li, M.H., 2018. Homeostatic levels of nonstructural carbohydrates after 13 yr of drought and irrigation in Pinus sylvestris. New Phytol. 219(4), 1314-1324. https://doi.org/10.1111/nph.15224.
Shen, J.X., Zhang, Y.J., Maenpuen, P., Zhang, S.B., Zhang, L., Yang, L., Tao, L.B., Yan, P.Y., Zhang, Z.M., Li, S.Q., Yuan, X., Kongjarat, W., Kaewkamol, S., Tinprabat, P., Chen, Y.J., 2021. Response of four evergreen savanna shrubs to an incidence of extreme drought: High embolism resistance, branch shedding, and maintenance of nonstructural carbohydrates. Tree Physiol. https://doi.org/10.1093/treephys/tpab150.
Smith, M.G., Miller, R.E., Arndt, S.K., Kasel, S., Bennett, L.T., 2018. Whole-tree distribution and temporal variation of non-structural carbohydrates in broadleaf evergreen trees. Tree Physiol. 38(4), 570-581. https://doi.org/10.1093/treephys/tpx141.
Souza, S.R., Veloso, M.D.M., Espírito-Santo, M.M., Silva, J.O., Sánchez-Azofeifa, A., Souza e Brito, B.G., Fernandes, G.W., 2019. Litterfall dynamics along a successional gradient in a Brazilian tropical dry forest. For. Ecosyst. 6, 35. https://doi.org/10.1186/s40663-019-0194-y.
Wang, A.Y., Han, S.J., Zhang, J.H., Wang, M., Yin, X.H., Fang, L.D., Yang, D., Hao, G.Y., 2018. The interaction between nonstructural carbohydrate reserves and xylem hydraulics in Korean pine trees across an altitudinal gradient. Tree Physiol. 38(12), 1792-1804. https://doi.org/10.1093/treephys/tpy119.
Wang, H., Liu, S., Wang, J., Li, D., Shi, Z., Liu, Y., Xu, J., Hong, P., Yu, H., Zhao, Z., Ming, A., Lu, L., Cai, D., 2017. Contrasting responses of heterotrophic and root-dependent respiration to soil warming in a subtropical plantation. Agric. For. Meteorol. 247, 221-228. https://doi.org/10.1016/j.agrformet.2017.07.025.
Wang, S., Zhuang, Q., Lahteenoja, O., Draper, F.C., Cadillo-Quiroz, H., 2018. Potential shift from a carbon sink to a source in Amazonian peatlands under a changing climate. Proc. Natl. Acad. Sci. USA. 115(49), 12407-12412. https://doi.org/10.1073/pnas.1801317115.
Wiley, E., Helliker, B., 2012. A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New Phytol. 195(2), 285-289. https://doi.org/10.1111/j.1469-8137.2012.04180.x.
Woodruff, D.R., Meinzer, F.C., 2011. Water stress, shoot growth and storage of non-structural carbohydrates along a tree height gradient in a tall conifer. Plant, Cell Environ. 34(11), 1920-1930. https://doi.org/10.1111/j.1365-3040.2011.02388.x.
Würth, M.K.R., Peláez-Riedl, S., Wright, S.J., Körner, C., 2005. Non-structural carbohydrate pools in a tropical forest. Oecologia 143(1), 11-24. https://doi.org/10.1007/s00442-004-1773-2.
Yang, B., Peng, C., Zhu, Q., Zhou, X., Liu, W., Duan, M., Wang, H., Liu, Z., Guo, X., Wang, M., 2019. The effects of persistent drought and waterlogging on the dynamics of nonstructural carbohydrates of Robinia pseudoacacia L. seedlings in northwest China. For. Ecosyst. 6, 23. https://doi.org/10.1186/s40663-019-0181-3.
Yang, Y.J., Liu, S.R., Schindlbacher, A., Wang, J., Li, Z., Wang, H., Ming, A., Lu, L., Li, Z., 2021. Topsoil organic carbon increases but its stability declines after five years of reduced throughfall. Soil Biol. Biochem. 156, 108221. https://doi.org/10.1016/j.soilbio.2021.108221.
Yang, Y.J., Liu, S.R., Wang, H., Chen, L., Lu, L.H., Cai, D.X., 2019. Reduction in throughfall reduces soil aggregate stability in two subtropical plantations. Eur. J. Soil Sci. 70(2), 301-310. https://doi.org/10.1111/ejss.12734.
Yemm, E.W., Willis, A.J., 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57(3), 508-514. https://doi.org/10.1042/bj0570508.
Yu, L.M., Wang, C.K., Wang, X.C., 2011. Allocation of nonstructural carbohydrates for three temperate tree species in Northeast China. Chinese J. Plant Ecol. 35(12), 1245-1255. https://doi.org/10.3724/sp.j.1258.2011.01245.
Zhang, P., Zhou, X., Fu, Y., Shao, J., Zhou, L., Li, S., Zhou, G., Hu, Z., Hu, J., Bai, S.H., McDowell, N.G., 2020. Differential effects of drought on nonstructural carbohydrate storage in seedlings and mature trees of four species in a subtropical forest. For. Ecol. Manage. 469, 118159. https://doi.org/10.1016/j.foreco.2020.118159.
Zhang, Y.J., Meinzer, F.C., Hao, G.Y., Scholz, F.G., Bucci, S.J., Takahashi, F.S.C., Villalobos-Vega, R., Giraldo, J.P., Cao, K.F., Hoffmann, W.A., Goldstein, G., 2009. Size-dependent mortality in a Neotropical savanna tree: The role of height-related adjustments in hydraulic architecture and carbon allocation. Plant, Cell Environ. 32(10), 1456-1466. https://doi.org/10.1111/j.1365-3040.2009.02012.x.
Zhao, X., Zhao, P., Zhu, L., Wang, Q., Hu, Y., Cranston, B.M., Kaplick, J., Lei, O., Chen, X., Ni, G., Ye, Q., Macinnis-Ng, C., 2021. Exploring the influence of biological traits and environmental drivers on water use variations across contrasting forests. Forests 12(2), 161. https://doi.org/10.3390/f12020161.
Zhou, G., Zhou, X., Liu, R., Du, Z., Zhou, L., Li, S., Liu, H., Shao, J., Wang, J., Nie, Y., Gao, J., Wang, M., Zhang, M., Wang, X., Bai, S.H., 2020. Soil fungi and fine root biomass mediate drought-induced reductions in soil respiration. Funct. Ecol. 34(12), 2634-2643. https://doi.org/10.1111/1365-2435.13677.
We would like to thank the Youyiguan Forest Ecosystem Research Station for experimental and logistic support, and Chaoyin Li, Zhanchao Song and Weijian Jiang for assistance in fieldwork and laboratory analyses. This study was jointly supported by the National Natural Science Foundation of China (Grant No. 31930078) and the Ministry of Science and Technology of China for Key R & D Program (Grant No. 2021YFD2200405). Authors are also grateful to two anonymous reviewers for constructive comments and editorial suggestions over a previous version of the manuscript.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).